In our previous chemical study of the production mechanism of black tea polyphenols, we demonstrated that Japanese pear fruit homogenate oxidizes green tea catechins bearing pyrogallol-type and catechol-type B-rings to produce theaflavins and dehydrotheasinensins. In contrast, unripe fruit homogenate of Citrus unshiu selectively oxidizes pyrogallol-type catechins to yield only dehydrotheasinensins. The difference in the selectivity of the two homogenates is probably related to the lower redox potential of pyrogallol-type catechins. The oxidation of epigallocatechin with C. unshiu homogenate gave two new compounds, including an ethanol adduct of an oolongtheanin precursor and epigallocatechin 4′-O-rutinoside, together with theasinensin C, dehydrotheasinensin E, and desgalloyl oolongtheanin. The structure of desgalloyl oolongtheanin should be revised based on the spectroscopic and computational data collected in the current study, and a mechanism responsible for the production of oolongtheanins is also proposed.
雑誌名
Tetrahedron
巻
71
号
17
ページ
2540 - 2548
発行年
2015-04-29
出版者
Elsevier Limited
ISSN
00404020
DOI
10.1016/j.tet.2015.03.016
権利
c 2015 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/