Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment. We demonstrated that the combinatorial use of mannose-modified bubble lipoplexes with ultrasound exposure achieved the efficient delivery of NF-κB decoy oligonucleotides into tumor-associated macrophages (TAM) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. Using this method, NF-κB decoy transfer into TAM inhibited the malignant ascites progression significantly that may be the phenotypic conversion of TAM from M2 toward M1.
雑誌名
Cancer Science
巻
105
号
8
ページ
1049 - 1055
発行年
2014-08
出版者
日本癌学会
出版者別言語
Japanese Cancer Association
ISSN
13479032
DOI
10.1111/cas.12452
権利
c 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.