Influenza virus B belongs to the family Orthomyxoviridae with segmented negative-sense RNA genomes. Since 1970s, influenza B has diverged intoVictoria and Yamagata, which differs in antigenic and evolutionary characteristics. Yet, molecular-epidemiological information of influenza B from developing nations is limited. In central Vietnam, influenza A subtype-specific circulation pattern and clinical characteristics were previously described. However, molecular evolutionary characteristics of influenza B has not been discussed to date. We utilized the influenza B positives obtained from paediatric ARI surveillance during 2007?2013. Influenza B HA and NA genes were amplified, sequenced, and phylogenetic/molecular evolutionary analysis was performed using Maximum Likelihood and Bayesian MCMC. Phylodynamics analysis was performed with Bayesian Skyline Plot (BSP). Furthermore, we performed selection pressure analysis and estimated N-glycosylation sites. In the current study, overall positive rate for influenza B was 3.0%, and Victoria lineage immediately became predominant in post-A/H1N1pdm09 period. The noticeable shift in Victoria lineage WHO Group occurred. With respect to the evolutionary rate (substitutions/site/year), Victoria lineage HA gene was evolving faster than Yamagata lineage (2.43 × 10?3 vs 2.00 × 10?3). Furthermore, the evolutionary rate of Victoria Group 5 was greater than Group 1. BSP presented the rapid growth in Effective Population Size (EPS) of Victoria lineage occurred soon after the 1st A/H1N1pdm09 case was detected whereas the EPS of Yamagata lineage was stable for both genes. N-glycosylation pattern between lineages and among WHO Groups were slightly different, and HA gene had a total of 6 amino acid substitutions under positive section pressure (4 for Victoria and 2 for Yamagata). The current results highlight the importance of Victoria lineage in post-A/H1N1pdm09 period. Difference in evolutionary characteristics and phylodynamics may indicate lineage and WHO Group-specific evolutionary dynamics. It is necessary to further continue the molecular-epidemiological surveillance in local setting to gain a better understanding of local evolutionary characteristics of influenza B strains.
雑誌名
Infection, Genetics and Evolution
巻
81
ページ
104264
発行年
2020-02-24
出版者
Elsevier B.V.
ISSN
15671348
DOI
10.1016/j.meegid.2020.104264
権利
c 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
著者版フラグ
publisher
引用
Infection, Genetics and Evolution, 81, art.no.104264; 2020