Let M be a Stein manifold, K a compact holomorphic set in M and V a Stein neighborhood of K. Then any element of the topological dual space {Ωp(K)}′of the space of holomorphic p-forms on K can be represented as the integration whose kernel is exactly an element of H n-1(V-K, Ωn-p). This integral representation implies the isomorphism {Ωp(K)′=H n-1(V-K, Ωn-p).
雑誌名
長崎大学教育学部自然科学研究報告
巻
36
ページ
1 - 6
発行年
1985-02-28
ISSN
0386443X
書誌レコードID
AN00178280
著者版フラグ
publisher
その他のタイトル
Integral Representation of a Linear Functional of the Space of Holomorphic p-forms