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INTRODUCTION

Research interest pertaining to CO2-driven ocean
acidification has been centered on certain groups of
calcifying marine organisms (Kleypas et al. 2006). In
contrast, knowledge is limited on the possible impacts
of ocean acidification on fish. We surveyed 116 papers
(published 1969 through 2008) on the effects of high
pCO2 on fishes and summarize the results in Table 1.
The survey revealed that the data from these studies
are of limited value to predict the fate of fishes in
the future acidified oceans for the following reasons:
(1) the pCO2 levels used were much higher (above
50 000 µatm in 92% of the papers: 1 µatm = 0.76 ×
10–3 mmHg = 0.1013 Pa) than projected for the oceans
in the next centuries (max. 1900 µatm at around the
year 2300, Caldeira & Wickett 2003; see also Caldeira
& Wickett 2005 for other projections), with only 2 stud-
ies covering the pCO2 range below 2000 µatm (Jones
et al. 1985, Ross et al. 2001); (2) CO2 exposure periods

were less than 4 d in 79% of the in vivo studies with
only 8 experiments longer than 60 d; (3) marine species
were used only in 25% of the studies; (4) research has
focused largely on acid–base regulation and cardio-
respiratory control (58% of the papers), and other
aspects were little investigated; (5) effects on early
development have been studied in only 2 papers
(Kikkawa et al. 2003, this paper was counted under
‘sequestration,’ Sawada et al. 2008); and (6) all are
laboratory experiments.

Another source of information that might give clues
for considering CO2 impacts on fish is the rich litera-
ture on freshwater acidification (Morris et al. 1989).
However, extrapolations from freshwater acidification
research must be made with caution: (1) the physico-
chemical nature of the milieu, and the taxonomy and
physiology of the fish are vastly different between
freshwater and seawater ecosystems; (2) the pH reduc-
tions envisaged in the future scenarios of ocean acidifi-
cation (max. 0.77 pH units at around the year 2300,
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Caldeira & Wickett 2003) are of smaller magnitude and
will develop on a longer timescale than those caused
by freshwater acidification. Freshwater acidification in
susceptible areas (several countries in Europe and
North America) has occurred more rapidly with larger
pH reductions than ocean acidification (e.g. a pH
reduction of ~2.0 within 30 yr in a forest lake, Anders-
son & Olsson 1985), often accompanying episodic fur-
ther pH declines of 1.0 to 2.5 due to heavy rainfall or
snowmelt (Reader & Dempsey 1989); (3) CO2 often has
greater negative impacts on exposed animals than
mineral acids at identical pH levels (Crocker & Cech
1996, Hayashi et al. 2004a, Kikkawa et al. 2004).

This review attempts to summarize currently avail-
able information about selected aspects of CO2 impacts
on fish to provide a basis for understanding conse-
quences of ocean acidification on the biology of marine
fish. We propose research areas that need urgent
attention.

MORTALITY

High concentrations of CO2 kill fish (Lee et al. 2003,
Hayashi et al. 2004b, Ishimatsu et al. 2004). The results
of Lee et al. (2003) suggested cardiac failure is an
important factor in acute death of the yellowtail Seriola
quinqueradiata when it is exposed to 50 000 µatm of
CO2. Hayashi et al. (2004b) demonstrated that fish
death occurred after arterial blood pH was restored to
the pre-exposure level. However, the acutely lethal
pCO2 levels (in less than 3 d, >30 000 to 50 000 µatm)
used in these studies far exceed those pertaining to
ocean acidification and, therefore, will not be consid-
ered further.

The information on the prolonged impact of some-
what lower pCO2 on fish mortality can be found in the
aquaculture literature, even though the pCO2 levels
used in these experiments are still higher than those
projected for the future oceans (Table 2). We were able
to find only 2 aquaculture papers reporting mortality of
seawater fish in hypercapnic environments. Although
fish mortality appears to be positively dependent on
imposed pCO2 levels and exposure duration, the data
are somewhat variable between studies even for the
same species, possibly due to differences in experi-
mental temperature and fish size. Furthermore, the
interpretation of the 3 freshwater aquaculture studies
is complicated by possible involvement of aluminium
in fish mortality, which is thought to be a main factor in
acid-water toxicity to freshwater fish (Heath 1995).
Aluminium is mobilized from the soil by reductions of
surface water pH and can reach 100 µmol l–1 (total alu-
minium) during low pH episodes (Reader & Dempsey
1989). However, aluminium concentration in seawater
is usually much lower (<20 nmol l–1 in open oceans but
up to 150 nmol l–1 in semi-enclosed seas, Tria et al.
2007). In addition, calcium, which counteracts the toxic
effects of aluminium, is higher in seawater (10 mmol l–1

in 35 ppt seawater, Thurman & Trujillo 1999) than in
freshwater (0.05 to 5.0 mmol l–1, Appelo & Postma
2006), which makes it unlikely for aluminium to be
involved in CO2 toxicity to seawater fish.

None of the aquaculture studies examined mortality
during early developmental stages (see initial body
weight in Table 2). Acute (up to 72 h) mortality under
pCO2 of 3000 to 148 000 µatm was studied for embryos
and larvae of marine teleosts (Pagrus major and Sillago
japonica), which demonstrated that the most suscepti-
ble stages were cleavage and juvenile, whereas the
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Habitata pCO2 (µatm)b Duration (d)c Purpose of studyd

Freshwater (88) <5000 (9) <1 (52) Acid-base (38)
Seawater (30: teleosts 22, 5000 to 10 000 (52) 1 to 4 (27) Cardiorespiratory (29)
elasmobranchs 8) 10 000 to 50 000 (44) 4 to 10 (3) Growth (10)

>50 000 (8) >30 (18) Miscellaneous (39)
a2 studies used both freshwater and seawater fish
bSum of the listed studies is 113 since several studies did not report pCO2 values. For those studies in which several levels of
pCO2 were used, the lowest pCO2 values were counted. Original papers reported CO2 levels as concentration (mg l–1) or
pCO2 in mmHg, torr or kPa. We calculated pCO2 in µatm using reported experimental temperature and CO2 solubility 
values (Dejours 1981)

cSum of the listed studies is 100 since we excluded in vitro studies. For those studies in which several exposure durations were
tested, the longest duration was counted

dFor those studies in which more than 1 purpose was stated, we selected the major purpose

Table 1. Summary of the literature survey on the effects of CO2 on fishes. Numbers in parentheses indicate number of papers
classified according to fish habitat, pCO2 level used, exposure duration, and purpose of study. Total number of papers surveyed =
116. ‘Miscellaneous’ includes CO2 anesthesia (6 studies), in vitro myocardium physiology (6), CO2 sequestration (6), palatine
CO2 receptors (5), sperm motility (4), metabolism (2), behaviour (2), swimbladder gas (1), fillet attributes (1), Ca metabolism (1), 

ammonia (1), cataract (1), blood sugar (1), feed intake (1), and early development (1)
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preflexion and flexion stages were more tolerant
(Kikkawa et al. 2003). Recently, Sawada et al. (2008)
reported that 150 min exposure to pCO2 of 92 000 µatm
resulted in significantly higher mortality in the em-
bryos of the striped jack Pseudocaranx dentex. Studies
of CO2 impacts on early developmental stages of
marine fish are particularly important since freshwater
acidification studies have revealed that embryonic and
larval stages are often the most sensitive stages to
acute acid stress (Morris et al. 1989, Sayer et al. 1993,
Heath 1995). Kurihara (2008, this Theme Section) dis-
cusses effects of high pCO2 on early development of
marine invertebrates.

The cause for fish mortality in long-term high pCO2

exposure remains unknown. Aquaculture studies often
reported occurrence of calcareous precipitates in the
kidney (nephrocalcinosis), which may obstruct the
lumen of kidney tubules (Fivelstad et al. 1999, 2003).
Among the 2 studies on seawater fish, Foss et al. (2003)
found increased percentage of fish with nephrocalci-
nosis, whereas Fivelstad et al. (1998) did not. Long-
lasting reductions of plasma Cl–, possible reductions
of hepatic metabolism, and a shift to anaerobic meta-
bolism (see ‘Energetic costs of living in high CO2

oceans’) deserve attention in elucidating mechanism(s)
of fish mortality during long-term exposure to environ-
mental hypercapnia. Recently, Kikkawa et al. (2008)
indicated an inverse relationship between acute CO2

mortality and oxygen consumption among marine ani-
mals.

ENERGETIC COSTS OF LIVING IN HIGH 
CO2 OCEANS

Elevations of ambient pCO2 may require fishes to
spend more energy for physiological adaptations, in par-
ticular, acid–base regulation and cardiorespiratory con-
trol. Many excellent reviews have been already pub-
lished on these topics (Milsom 2002, Perry & Gilmour
2002, Evans et al. 2005, Marshall & Grosell 2006, Perry &
Gilmour 2006); therefore we limit our discussion to the
energetic aspects of these physiological processes.

Cost of osmoregulation in seawater fish has been
estimated to be 6 to 15% of resting oxygen consump-
tion (Kirschner 1993, Kidder et al. 2006). On top of this
baseline cost for osmoregulation, elevation in seawater
pCO2 would require additional energy expenditure for
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Species Medium pCO2 Temp Period Initial body Mortality Source
(µatm)a (°C) (d) weight (g) (%)b

Salmo salar
Parr FW 380 0

15 800
5

47 10 to 13
0

1
660 15 0

15 800 0

Smolt FWc 2600 1.5
6600 3–7 62 53 4.6 2

11 800 7.7

FWc 2600 3
6600 7–9 60 66 2.4 3
9200 4.5

FWc 920
6.4 to 9 42 50

0
4

7100 0

Postsmolt SW 790 0
6400

15 to 16 43 170 to 260
0

5
15 800 1.1
26 300 4.3

Anarhichas minor
Juvenile SW 480 0

8000
6 70 16

0
6

14 700 0
26 100 0

aOriginal papers reported CO2 levels as concentration (mg l–1) or pCO2 in mmHg, torr or kPa. We calculated pCO2 in µatm
using reported experimental temperature and CO2 solubility values (Dejours 1981)

bPercent mortality recorded at the end of the experiments
cFish were transferred to normocapnic seawater subsequent to the freshwater periods

Table 2. Mortality of fish under elevated CO2 conditions reported in aquaculture papers. FW: freshwater; SW: seawater. (1)
Fivelstad et al. (2007), (2) Fivelstad et al. (1999), (3) Fivelstad et al. (2003), (4) Hosfeld et al. (2008), (5) Fivelstad et al. (1998),

(6) Foss et al. (2003)
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acid–base regulation. When the body fluid becomes
acidic, fish excrete excess H+ ions into the ambient
water across different epithelia (gills, kidney and
intestine) to restore body fluid pH near to its normal
level (Heisler 1986). Fish are usually more efficient in
extracellular acid–base regulation than invertebrates
(Widdicombe & Spicer 2008). One consistent finding
for teleosts, but not elasmobranchs, is that plasma Cl–

concentration decreases at a nearly 1:1 ratio with
increasing plasma bicarbonate in both freshwater and
seawater species (Ishimatsu et al. 2005). Such reduc-
tions of plasma Cl– persisted even after 70 d when a
seawater spotted wolffish Anarhichas minor was
exposed to 8000 to 26 000 µatm pCO2 (Foss et al. 2003).
Because Cl– is actively extruded in marine fish (Mar-
shall & Grosell 2006), the observed further reductions
of plasma Cl– during exposure to high CO2 would
require the fish to expend additional energy. Similar
long-lasting reductions of plasma Cl– were observed
also in freshwater species exposed to high pCO2 (Fivel-
stad et al. 1999, Danley et al. 2005).

Ventilation of water-breathing animals is energeti-
cally more costly than in air-breathing animals. This is
due to the relative scarcity of oxygen in water com-
pared to air, the higher density and viscosity of water
than of air (Dejours 1981), and is reflected in much
higher energetic cost of ventilation in water breathers
(around 10% at rest and up to 70% during exercise in
fish) than in air breathers (1 to 2%, Gilmour 1998). It
appears that fish would show little respiratory acclima-
tion during long-term exposure to a high pCO2 envi-
ronment. Fivelstad et al. (1999) found that ventilatory
frequencies remained significantly higher (ca. 125%
of the control) in Atlantic salmon smolt exposed to
12 000 µatm pCO2 than in the control
fish throughout a 62 d exposure
period. Similarly, Hosfeld et al. (2008)
reported significant increases in ven-
tilatory frequency for the same spe-
cies throughout a 36 d exposure to
7900 µatm pCO2. These observations
indicate that the fish needed to ex-
pend more energy in ventilation
throughout the hypercapnic period.

OXYGEN CONSUMPTION

Notwithstanding the possible higher
energetic costs during hypercapnic
exposure, oxygen consumption did
not change significantly when resting
fish were exposed to sublethal levels
of CO2 (Table 3). A transient increase
in oxygen consumption was observed

in 2 elasmobranchs, and a significant rise reported for
Leiostomus xanthurus might be due to the short dura-
tion of the experiment. The constant oxygen uptake of
fish during hypercapnic exposure is at variance with
the data for invertebrates, where oxygen consumption
decreased significantly (Table 3). Fabry et al. (2008)
also reported unpublished data showing 20 to 50%
reductions in oxygen consumption for marine inverte-
brates during hypercapnia. In spite of the insignificant
changes in oxygen consumption of fish during hyper-
capnia, an in vitro study by Langenbuch & Pörtner
(2003) demonstrated a reduction of oxygen consump-
tion by hepatocytes of 2 Antarctic fish when incubated
at a pCO2 of 10 000 µatm. They estimated that 60% of
the observed reduction in oxygen consumption was
accounted for by a decline in protein synthesis in both
species. A recent study on a seawater fish, Sparus
auratus, subjected to a pCO2 of 5000 µatm suggested a
shift from aerobic to anaerobic metabolism on the basis
of changes in metabolic enzyme activities (Michaelidis
et al. 2007). Because published data on oxygen con-
sumption in fish during hypercapnic exposure are all
of short duration (<24 h) and under pCO2 higher than
levels projected for future oceans, long-term mea-
surements of oxygen consumption are needed under
pCO2 conditions relevant to the ocean acidification
scenarios.

GROWTH

It may be inferred that fish growth is reduced due to
the possible additional energetic costs imposed by ele-
vated pCO2, when overall oxygen consumption re-
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Species Medium pCO2 Temp Duration Control Source
(µatm) (°C) (h) %

Fishes
Oncorhynchus mykiss FW 7500 9 to 11 0.5 No change 1
Cyprinus carpio FW 13 200 25 6 No change 2
Fundulus heteroclitus 25 ppt 92 000 30 Not stated No change 3
Palaemonetes pugio 25 ppt 92 000 30 Not stated No change 3
Leiostomus xanthurus 25 ppt 92 000 30 Not stated 147 3
Raja ocellata SW 9900 12 24 No changea 4
Scyliorhinus stellaris SW 6600 16 to 19 4 No changea 5

Invertebrates
Mytilus galloprovincialis SW 5000 18 20 35 (adults) 6

90 d 65 (juveniles)
Sipunculus nudus SW 10 300 15 2 to 3 80 7

aTransient significant increases at the onset of hypercapnia

Table 3. Effect of hypercapnia on oxygen consumption of selected marine animals.
The 5 upper fish species are teleosts; the bottom 2 fishes are elasmobranchs. FW:
freshwater. SW: seawater. Source: (1) Kinkead et al. (1993), (2) Takeda (1991),
(3) Cochran & Burnett (1996), (4) Graham et al. (1990), (5) Randall et al. (1976),

(6) Michaelidis et al. (2005), (7) Pörtner et al. (1998)



Ishimatsu et al.: Fishes in high-CO2 oceans

mains unchanged. Again, information is only available
from aquaculture investigations that employed rela-
tively high pCO2. Increments of body weight were in
general unaffected by exposure to pCO2 of up to
15 000 µatm irrespective of salinity (Fivelstad et al.
1998, 1999, 2003, Foss et al. 2003, Hosfeld et al. 2008).
The condition factor ([100 × body weight] / [body
length]3) tended to decrease at high pCO2, but the
threshold for this effect appears to depend on species,
fish size and salinity. Growth was invariably reduced at
pCO2 >26 000 µatm. Fivelstad et al. (2007) recently
demonstrated that negative CO2 effect on fish growth
was more pronounced at a low temperature when ex-
posed to the same pCO2 (16 000 µatm). Feeding may be
suppressed at a very high pCO2 (55 000 µatm, Cecchini
et al. 2001; 26 500 µatm, Foss et al. 2003).

Inspection of these growth studies revealed that the
smallest initial fish size was 4 g (juvenile Acipenser
transmostanus, Crocker & Cech 1996). To our knowl-
edge, no paper has been published on growth from fish
eggs or larvae under pCO2 of < 2000 µatm. There is an
urgent need to conduct CO2 exposure experiments
from fish eggs and larvae to compare subsequent
growth and survival at pCO2 of <2000 µatm.

SKELETONS AND OTOLITH FORMATION

Gil-Martens et al. (2006) is probably the only study
that investigated effects of high pCO2 on fish bones,
minerals of which are composed of calcium phosphate
in the form of hydroxyapatite Ca10(PO4)6(OH)2. After
rearing Atlantic salmon for 135 d under control (pCO2

3300 µatm) and gradually increasing pCO2 conditions
(4700 to 16 600 µatm), they found higher Ca and P con-
tents in vertebral bones of the experimental fish than
in control fish. Histological examinations suggested
higher bone remodeling activities in the high CO2

group, while no morphological difference was de-
tected by X-ray radiography.

In contrast to bones, fish otoliths usually deposit
aragonite, the orthorhombic polymorph of calcium car-
bonate (CaCO3) (Carlström 1963). Aragonite is more
soluble than calcite, the other most common marine
CaCO3 (Zeebe & Wolf-Gladrow 2001, Morse et al.
2007). Thus, elevated environmental pCO2 could
reduce CaCO3 saturation of the endolymph, in which
the fish otolith is formed, and thereby affect otolith
growth. There is limited information available on arag-
onite saturation and on the acid–base status of the
endolymph of the inner ear sacs, and on the mecha-
nisms of otolith formation in fish. Takagi (2002) and
Takagi et al. (2005) reported that endolymph is super-
saturated with respect to aragonite in rainbow trout
under normocapnic conditions. However, the

reported pCO2 of the saccular endolymph (11 000 to
16 500 µatm) is high compared with values commonly
reported for arterial plasma of chronically cannulated
fish (2600 to 5300 µatm, Heisler 1986); therefore, this
value needs confirmation. Payan et al. (1997, 1998)
demonstrated that endolymph in rainbow trout is char-
acterized by higher pH and total CO2 than in plasma,
although the reported values of low arterial pH (7.2 to
7.3, as opposed to the typical 7.8 to 8.0 at the experi-
mental temperature of Payan et al. 1997, 1998, see
Heisler 1986) and high pCO2 (8000 to 12 000 µatm)
might be due to some sampling and/or analytical prob-
lem. We are not aware of any study that addressed the
impacts of high CO2 on otolith formation in fish.

Fish otolith is involved in both sound perception and
the maintenance of postural equilibrium. The data by
Gagliano et al. (2008) suggest that asymmetry of the
saccular otolith affects the ability of larvae to distin-
guish between different sound frequencies in a coral
reef fish (Pomatocentrus ambioinensis), which possibly
lead to higher mortality by impairing navigation in
coral reefs. As a more extreme case, Riley & Moorman
(2000) demonstrated that bilateral loss of utricular
otoliths disrupts vestibular functions and is invariably
lethal for zebrafish larvae. Gagliano et al. (2008) also
found that otolith asymmetries arising early in the
embryonic stage were not corrected during the subse-
quent larval stage. Otoliths, as well as labyrinth, are
formed before hatching (Noakes & Godin 1988) when
the capacity for acid–base regulation may not be fully
developed (Alderdice 1988). Thus, there is a need to
investigate effects of CO2 on otolith growth, including
asymmetry.

SUMMARY AND RESEARCH NEEDS

Here we summarize some of the research areas of
high priority to understand effects of ocean acidifica-
tion on fish. Several recent reviews have discussed
future research needs in broader contexts (Fabry et al.
2008, Guinotte & Fabry 2008, Doney et al. 2009).

(1) Effect of CO2 acidified seawater on reproduction
of fish needs urgent attention. To our knowledge, no
information is available on fecundity, egg viability and
hatching, and progeny survival of marine fish under
high pCO2 conditions, for which ample evidence for
negative impacts is available in the freshwater acidifi-
cation literature (Heath 1995). Kitamura & Ikuta (2000)
reported that nest-digging behaviour of female hime
salmon (land-locked Oncorhynchus nerka) was signif-
icantly inhibited by a pH reduction of 6.8 (control) to
only 6.4.

(2) Long-term exposure experiments covering entire
life stages need to be conducted under realistic future

299



Mar Ecol Prog Ser 373: 295–302, 2008

ocean CO2 conditions and sublethal impacts must be
carefully investigated on developmental and homeo-
static processes from molecular, biochemical and phys-
iological viewpoints, with particular attention to early
developmental stages.

(3) Behaviour (e.g. feeding, prey capture, escape
from predators) must be quantitatively analyzed using
fish reared under hypercapnic conditions. Behavioural
responses can be a sensitive indicator of environmen-
tal stress and have significant ecological implications
(Roast et al. 2001).

(4) Possible acclimation of marine fish to hypercapnic
marine environments needs to be studied. One exam-
ple is the finding that a strain of Japanese dace, inhab-
iting an acid lake (pH 3.5), exhibits a marked acid tol-
erance, while individuals of the same species
inhabiting circumneutral lakes died rapidly when
exposed to pH 3.5 conditions (Kaneko et al. 1999,
Hirata et al. 2003). Interspecific differences in acclima-
tion capacity could alter species composition of fish
communities.

(5) Endocrine responses to prolonged exposure to
high pCO2 are not known. Acute CO2 exposure did not
affect blood concentrations of catecholamines and
somatolactin in rainbow trout (Kakizawa et al. 1997,
Julio et al. 1998). Endocrine responses to acidic fresh-
water stress were reviewed by Wendelaar Bonga &
Balm (1989).

(6) Indirect impacts through changes in food avail-
ability and quality are another important issue in con-
sidering the fate of fish in high CO2 oceans (Guinotte &
Fabry 2008). Effect of high pCO2 on the appetite of fish
is not well understood. Yoshii & Yoshii (1997) reported
suppression of taste nerve responses by CO2.

Few research efforts have been directed to marine
fishes to test possible impacts of ocean acidification.
The present review has demonstrated that the existing
knowledge of CO2 impacts on fish could provide no
more than useful starting points to understand possible
alterations of marine fish populations in future oceans.
We hope this review will provide momentum in research
into fish biology in high-CO2, acidified oceans.
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