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 Abstract 19 

  Distributions of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean 20 

(Chukchi Sea and Canada Basin) in September 2012 were investigated to elucidate the 21 

mechanisms behind the transport of these metals from the Chukchi Shelf to the Canada Basin. 22 

Filtered (< 0.22 μm) and unfiltered seawater samples were analyzed to determine dissolved 23 

(D) and total dissolvable (TD) trace metal concentrations, respectively. We identified 24 

maxima in vertical profiles for the concentrations of D-Fe and TD-Fe, as well as for the other 25 

four analyzed trace metals, which occurred in the halocline and/or near-bottom waters. 26 

Concentration profiles of all trace metals except for Cd also tended to show peaks near the 27 

surface, which suggest that the inflow of low-salinity Pacific-origin water from the Bering 28 

Strait, as well as local fresh water inputs such as river water and melting sea-ice, influenced 29 

trace metal concentrations. The distribution patterns and concentration ranges were generally 30 

similar between the D and TD fractions for Ni, Zn and Cd, which indicate that Ni, Zn and Cd 31 

were present mainly in their dissolved forms, whereas the concentrations of TD-Fe and TD-32 

Mn were generally higher than those of D-Fe and D-Mn, respectively. These results are 33 

consistent with the results of previous studies of this region. For both Fe and Mn, labile 34 

particulate (LP) concentrations (the difference between the TD and D fractions, which is 35 

acid-leachable fraction in the particles during storage at pH 1.5-1.6) were highest in the near-36 

bottom waters of the Chukchi Shelf region. The relationships between the distance from the 37 

shelf break and the concentrations of trace metals revealed that Fe and Mn concentrations in 38 

halocline waters tended to decrease logarithmically with distance, whereas changes in the 39 

concentrations of Ni, Zn, Cd and phosphate with distance were small. These results suggest 40 

that the distributions of Fe and Mn were controlled mainly by input from shelf sediment and 41 

removal through scavenging processes. Based on the phase distributions of Fe and Mn, which 42 

were calculated as ratios between the LP and D fractions, different behaviors between Fe and 43 

Mn were expressed during lateral transportation. The concentration of TD-Fe declined 44 
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rapidly via removal of LP-Fe from the water column, whereas the concentration of TD-Mn 45 

declined more slowly through the transformation of D-Mn into LP-Mn. In contrast, the 46 

concentrations of D-Cd, D-Zn and D-Ni were more strongly correlated with phosphate levels, 47 

which suggest that, like phosphate, the distributions of Cd, Zn and Ni were generally 48 

controlled by the internal biogeochemical cycles of the ocean interior. Based on the findings 49 

of studies that have previously evaluated the concentration maxima of Ni, Zn and Cd within 50 

the halocline layer in the Canada Basin near the Canadian Arctic Archipelago, the elevated 51 

Ni, Zn and Cd concentrations in the halocline layer may extend across the Canada Basin from 52 

the Chukchi Sea shelf-break area. The determination coefficients for correlations with 53 

phosphate concentration varied between the concentrations of Ni, Zn and Cd, which suggest 54 

that the sources of these trace metals, such as sediments and sea-ice melting, affected their 55 

patterns of distributions differently. Our findings reveal the importance and impact of the 56 

halocline layer for the transport of trace metals in the western Arctic Ocean during the late 57 

summer. The existence of rich and various sources likely sustained the high concentrations of 58 

trace metals and their unique profiles in this region. 59 

 60 
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 1. Introduction 64 

Although the Arctic Ocean constitutes only about 3% of the world’s oceans by area, it 65 

includes approximately 20% of the world’s continental shelf area (Chang and Devol, 2009). 66 

The Chukchi Sea, located in the western Arctic Ocean, is a highly productive region during 67 

times of ice-edge retreat (Hill and Cota, 2005). Physical, chemical and biological 68 

characteristics of the Chukchi Sea are strongly influenced by currents that flow northward 69 

through the Bering Strait (Springer and McRoy, 1993). The mean annual transport through 70 

the Bering Strait into the Chukchi Sea is about 0.8 Sv, which has strong seasonal variability 71 

between a summer maximum and a winter minimum, and supports the high productivity of 72 

this region through the transport of nutrients (Coachman and Aagaard, 1988). It has been 73 

reported that a large fraction of the organic matter that forms in surface waters in the shelf 74 

areas of the Chukchi Sea sinks to the seafloor, which fuels productive benthic communities 75 

and causes high rates of sedimentary denitrification (Chang and Devol, 2009; Brown et al., 76 

2015). The Pacific-origin water from the Bering Strait is already depleted in nitrate (NO3
-) 77 

relative to phosphate (PO4
3-), and NO3

- is further depleted relative to PO4
3- in the Chukchi Sea 78 

via the effect of sedimentary denitrification (Yamamoto-Kawai et al., 2006). A unique 79 

feature of the upper surface water in the western Arctic Ocean is the dominance of a strong, 80 

cold halocline that separates the Pacific-origin surface waters from the underlying Atlantic-81 

origin waters (Aagaard et al., 1981). Cold and dense brine is produced in the fall and winter 82 

as sea ice forms, and the halocline is maintained by large-scale lateral advection from the 83 

adjoining continental shelves (Aagaard et al., 1981; Jones and Anderson, 1986). The water of 84 

this halocline is therefore associated with prominent maxima of nutrients and dissolved 85 

organic matter (Anderson et al., 2013). In the Canada Basin, mixtures of Pacific-origin and 86 

Atlantic-origin waters are only found below the nutrient maxima (Yamamoto-Kawai et al., 87 

2008). Pacific-origin water that enters through the Bering Strait can be highly modified 88 

throughout transport on the shelves by runoff, interaction between sediment and near-bottom 89 
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water, and sea-ice formation (Cooper et al., 1997). The Canada Basin is separated from the 90 

Makarov Basin by the Mendeleev–Alpha Ridge with a sill depth of ~2000 m, and is fairly 91 

isolated from ventilation by the dense shelf waters of the Makarov, Barents, Kara and Laptev 92 

seas (Swift et al., 1997). In the Canada Basin, freshening of surface seawater began in the 93 

1990s and has been attributed to increased river runoff and sea ice melting (Morison et al. 94 

(2012) and references therein). 95 

Trace metals such as iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn) and cadmium 96 

(Cd) are involved in numerous processes in the metabolisms of phytoplankton and can be 97 

toxic at high concentration (Twining and Baines, 2013 and references therein). Iron is 98 

required for many processes including photosynthesis, chlorophyll synthesis and nitrogen 99 

metabolic pathways such as nitrogen fixation and NO3
- and nitrite (NO2

-) reduction. It is well 100 

established that Fe often limits phytoplankton growth in environments where subsurface 101 

nutrients are replete, which include high-nutrient, low-chlorophyll areas such as the 102 

upwelling regions of the Southern Ocean and the eastern equatorial Pacific (e.g., Moore et al., 103 

2013). Zinc also plays a role in many metalloproteins such as alkaline phosphatase, carbonic 104 

anhydrase and the Zn form of superoxide dismutase (Zn-SOD). Cadmium is also known to be 105 

a cofactor in carbonic anhydrase, and can substitute for Zn in diatom growth pathways (Lane 106 

and Morel, 2000); it has been suggested that phytoplankton mistakenly import Cd through a 107 

non-specific divalent metal transporter in this process (Horner et al., 2013). Sunda and 108 

Huntsman (2000) demonstrated that Cd drawdown was accelerated under Fe-limited 109 

conditions. Nickel is associated primarily with urease and the Ni form of superoxide 110 

dismutase (Ni-SOD) (Dupont et al., 2008a, b). Manganese is an essential trace metal for 111 

phytoplankton growth because it is prominently involved in the oxygen-evolving complex of 112 

photosystem II and the Mn form of superoxide dismutase (Mn-SOD) (Wolfe-Simon et al., 113 

2005). However, limitation of Mn for phytoplankton growth has not yet been observed in the 114 

ocean. 115 
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In the open ocean, vertical distributions of Ni, Zn and Cd in dissolved fractions (< 0.2–116 

0.4 μm) are generally characterized by surface minima, rapid increases to maximum 117 

concentrations in the thermocline, and then relatively constant concentrations in deep water, 118 

similar to the distribution patterns of nutrients (e.g., Bruland et al., 1991). However, the 119 

vertical distributions of dissolved Mn and Fe differ from those of the above “nutrient-type” 120 

trace metals. Maximum Mn occurs in the surface water and decreases with depth, which is 121 

why Mn is called a “scavenging-type” trace metal (e.g., Bruland et al., 1991). Vertical 122 

profiles of Fe are often reported as nutrient-type or a combination of nutrient-type and 123 

scavenging-type elements; therefore, Fe is called as “hybrid-type” trace metal. Both Fe and 124 

Mn have short residence times relative to Ni, Zn and Cd (Chester and Jickells, 2012). In 125 

oxygenated seawater, the thermodynamically favored form of Fe is Fe(III), which is strongly 126 

hydrolyzed, and its removal is mainly constrained by complexation with natural organic 127 

ligands such as humic substances (Laglera et al., 2011). 128 

Recent studies have gradually revealed the distribution of Fe in the western Arctic 129 

Ocean (Chukchi Sea and Canada Basin). The reported ranges for the concentrations of 130 

dissolved Fe and total dissolvable Fe (i.e., the concentration of leachable Fe in acidified 131 

unfiltered sample, see section 2) have been extremely broad (0.36–33.1 nM and 0.8–89000 132 

nM, respectively), but the maxima of dissolved Fe concentration occurred consistently within 133 

the halocline layer (HL) with high concentrations of nutrients and dissolved organic matter 134 

(Nakayama et al., 2011; Cid et al., 2012 ; Nishimura et al., 2012; Aguilar-Islas et al., 2013; 135 

Hioki et al., 2014). Because high concentrations of trace metals have been observed in near-136 

bottom water in the shelf region, it has been suggested that sedimentary input is an important 137 

source of trace metals in the western Arctic Ocean. However, few studies of trace metals 138 

(especially Mn and Fe) in Chukchi Sea sediments have been performed (Naidu et al., 1997; 139 

Trefry et al., 2014). Naidu et al. (1997) investigated metal concentrations (Al, Fe, Mn, Cu, Cr, 140 

Co, Zn, Ni and V) in the seafloor muds of the Chukchi Sea in 1986, and found that the 141 
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concentrations of these metals were low relative to those of Arctic shelves of Russia, East 142 

Greenland and the Beaufort Sea. A more recent study also investigated concentrations of Fe, 143 

Al and selected trace metals (including Mn, Cd, Ni, Zn) in surface sediments from the 144 

Chukchi Sea collected in 2009 and 2010; although concentrations of each trace metal varied 145 

considerably with sediment texture (i.e., grain size), these metals were found to exist at 146 

natural background levels in most samples when normalized for Al concentration (Trefly et 147 

al., 2014). These studies suggest that Chukchi Shelf sediment is unlikely to have been 148 

significantly influenced by anthropogenic pollution. In addition to continental shelf sediments 149 

and remineralization of biogenic and/or mineral particles, river discharge and melting sea ice 150 

are also potential sources of trace metals (Nakayama et al., 2011; Nishimura et al., 2012; Cid 151 

et al., 2012; Hioki et al., 2014). The presence of these diverse sources is likely to influence 152 

the lateral transport of Fe in this region. Compared to Fe, there are relatively few data for 153 

distributions of Zn, Cd, Ni and Mn in the western Arctic Ocean (Yeats, 1988; Yeats and 154 

Westerlund, 1991; Cid et al., 2012). Yeats (1988) and Yeats and Westerlund (1991) 155 

investigated the distributions of total dissolvable Mn, Co, Ni, Cu, Zn and Cd and dissolved 156 

Mn in the Canada Basin near the Canadian Arctic Archipelago, and found that Ni, Zn and Cd 157 

concentrations tended to peak around the nutrient maximum in the halocline. More recently, 158 

Cid et al. (2012) investigated distributions of trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd 159 

and Pb) from samples collected in September 2000 and found that roughly all of these trace 160 

metals had concentration maxima in the HL, with the exception of Al. It was suggested that 161 

nutrient-type trace metals such as Ni, Cu, Zn and Cd were generally more dominant in the 162 

dissolved fractions (< 0.2 μm), whereas the other metals measured (Al, Mn, Fe and Co) 163 

were more dominant in the labile particulate fractions (i.e., the differences between dissolved 164 

and total dissolvable fractions) (Cid et al., 2012). However, the mechanism behind the 165 

transport of these trace metals from the Chukchi Shelf to the Canada Basin remains unclear. 166 
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The balance between input and removal of a trace metal controls its distribution in 167 

seawater. As discussed above, there are several potential sources of trace metals in the 168 

western Arctic Ocean, and the processes associated with each source and sink are likely to 169 

have different impacts on the concentrations of different trace metals that reflect their specific 170 

characteristics. Therefore, it is valuable to investigate the distributions of many trace metals 171 

simultaneously to elucidate geochemical cycling in this region. Furthermore, the climatic 172 

conditions of the Arctic Ocean have changed rapidly over the previous several decades, 173 

which have resulted in environmental impacts such as decreased summer sea-ice cover and 174 

increased air temperature (Wood et al., 2015). Indeed, in the summer of 2012, the area of the 175 

Arctic Ocean covered by sea ice was the smallest in recorded history (National Snow and Ice 176 

Data Center (NSIDC) (http://nsidc.org/data/seaice_index/)). For this study, the distributions 177 

of dissolved and total dissolvable trace metals (Mn, Fe, Ni, Zn and Cd) in the Chukchi Sea 178 

and Canada Basin were investigated to elucidate the transport of trace metals in the western 179 

Arctic Ocean in the late summer of 2012. 180 

 181 

 2. Methods 182 

 2.1. Study area and sample collection 183 

Seawater samples were collected from the western Arctic Ocean during the R/V Mirai 184 

(Japan Agency for Marine Earth Science and Technology – JAMSTEC) MR12-E03 cruise 185 

from September 15 to October 4, 2012 (Kikuchi, 2012; Fig. 1). The samples were obtained 186 

using acid-cleaned, Teflon-coated 10-L Niskin-X sampling bottles with a Teflon sampling 187 

spigot (General Oceanics) attached to a Conductivity Temperature Depth–Carousel Multiple 188 

Sampler (CTD-CMS, SBE 911 Plus and SBE 32 carousel water sampler, Sea-Bird 189 

Electronics, Inc.) and armored cable. All plastic apparatus used for this study were acid-190 

cleaned. Filtered (< 0.22 μm, Durapore cartridge Millipak 100, Millipore) and unfiltered 191 

seawater samples were collected to determine the concentrations of dissolved trace metals 192 

http://nsidc.org/data/seaice_index/
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(D-metals: D-Mn, D-Fe, D-Ni, D-Zn and D-Cd) and total dissolvable trace metals (TD-193 

metals: TD-Mn, TD-Fe, TD-Ni, TD-Zn and TD-Cd), respectively. Gravity filtration was 194 

performed for the filtered samples in a hangar deck of the ship immediately after recovering 195 

the Niskin-X sampling bottles. Since the seawater samples used for this study were obtained 196 

from the same Niskin-X sampling bottles at the same time as those used for previous Fe 197 

analyses (Hioki et al., 2014), the seawater samples were identical between two studies. All 198 

samples were collected in 125-mL low-density polyethylene (LDPE, Nalgene) bottles and 199 

acidified to pH 1.5-1.6 with 0.5-mL trace-metal-grade HCl (Tamapure AA100, Tama 200 

Chemical) in a class 100 clean air bench on board the research vessel. The acidified samples 201 

were stored at room temperature for over two years before the trace metals analyses were 202 

performed in a land-based laboratory. 203 

 204 

Fig. 1.  Sampling locations (black filled circles) during R/V Mirai MR12-E03 cruise.  Cross 205 

symbols indicate the locations that only hydrographic parameters and nutrients data were 206 

obtained. White dot-line indicates the location of ice edge during the observation. Dot-207 

arrows indicate the surface water currents directions in this region (pink: Beaufort Gyre 208 
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(BG), sand: Bering Shelf Anadyr Water (BSAW), cyan: Alaskan Coastal Water (ACW), 209 

green: Siberian Coastal Current (SCC)). 210 

  211 

 2.2. Trace metal analyses  212 

The concentrations of D-metals ([D-Mn], [D-Fe], [D-Ni], [D-Zn] and [D-Cd]) and TD-213 

metals ([TD-Mn], [TD-Fe], [TD-Ni], [TD-Zn] and [TD-Cd]) were determined using a 214 

chelating resin preconcentration and inductively coupled plasma mass spectrometry (ICP-215 

MS) method adapted from Sohrin et al. (2008). Preparation of all reagents and samples was 216 

carried out in a positive-pressure class 1000 clean room. All apparatus used for sample 217 

preparation were acid-cleaned before use. For preconcentration of each sample, Nobias 218 

Chelate-PA1 (Hitachi High-Technologies) resin was packed in a column of a 3-cm 219 

perfluoroalkoxy alkane tube with a 1.8-cm in diameter. Acetic acid - ammonium acetate 220 

buffer (pH of 6.0) was prepared by mixing trace-metal-grade NH4OH (Tamapure AA100, 221 

Tama Chemical) and glacial acetic acid (Optima, Fisher Chemical), where final concentration 222 

of acetic acid plus acetate was 3.6 M. A 0.05 M acetate buffer was prepared by diluting the 223 

3.6 M buffer solution. The Nobias Chelate-PA1 column was mounted in a manual 224 

preconcentration system. Fig. 2 illustrates the procedure for the sample preconcentration and 225 

extraction steps. Prior to the sample being loaded, the chelating resin column was cleaned 226 

using >35 mL of 2 M HNO3 (trace-metal-grade, Tamapure AA100, Tama Chemical) and 227 

conditioned using 35 mL of 0.05 M acetate buffer solution. Then each seawater sample (24.5 228 

mL) was delivered into the column with a peristaltic pump.  After the seawater sample was 229 

loaded, 17.5 mL of 0.05 M ammonium acetate buffer solution was passed through the column 230 

to remove sea salt in the column. The trace metals were then eluted with 6 mL of 2 M HNO3. 231 

The system used for this study had four parallel lines and could process four samples 232 

simultaneously. The flow rate was 3.5 mL/min for the sample, buffer solutions and acid for 233 

the cleaning column; the flow rate for the eluent (6 mL of 2 M HNO3) was 1.5 mL/min using 234 
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a Teflon syringe opposite the direction of sample loading. Consequently, each seawater 235 

sample was concentrated 4.1 times into 2 M HNO3. Concentrations of D-metals or TD-metals 236 

in the eluent were determined with a Thermo Scientific ELEMENT XR mass spectrometer 237 

using the medium resolution mode in a clean room; a calibration curve method was applied 238 

using a diluted metal standard solution (ICP-MS Multi-Element Solution, SPEX) prepared in 239 

2 M HNO3. The isotopes measured for the determinations were 55Mn, 57Fe, 60Ni, 68Zn and 240 

114Cd. Other isotopes for Fe (56Fe), Ni (61Ni and 62Ni), Zn (66Zn and 67Zn) and Cd (111Cd and 241 

112Cd) were also measured to cross-check the results. For this study, the detection limits, 242 

defined as three times the standard deviation of the blank seawater measurements (n = 4–8), 243 

were 0.012 nM, 0.25 nM, 0.091 nM, 0.19 nM and 0.095 nM for Mn, Fe, Ni, Zn and Cd, 244 

respectively. The standard seawater samples GEOTRACES GD and SAFe D2 (Johnson et al., 245 

2007) were run as quality control checks for the data (Table 1), and the results were within or 246 

near the ranges of the most recent consensus values (GEOTRACES website (2015): 247 

http://www.geotraces.org/science/intercalibration). 248 

http://www.geotraces.org/science/intercalibration
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 249 

Fig. 2.  Diagram of the preconcentration system of trace metals. White arrows mean the flow 250 

direction when seawater sample is introduced to the chelating resin column. Black 251 

arrows mean the one when eluent pass through the column. 252 

 253 

 2.3. Hydrographic data 254 

Temperature and salinity were measured with a CTD probe. Data for chlorophyll a and 255 

dissolved oxygen concentrations were obtained with a chlorophyll fluorometer and an oxygen 256 

sensor, respectively. The concentrations of nutrients (indicated with square brackets: [NO3
-], 257 

[NO2
-], [NH4

+], [PO4
3-] and [Si(OH)4]) were measured with a QuAAtro system by Marine 258 

Works Japan. Details of these analytical methods are provided in the cruise report for the R/V 259 

Mirai cruise MR12-E03 (Kikuchi, 2012). The report and data are available to the public 260 

through the JAMSTEC data website (http://www.godac.jamstec.go.jp/darwin/e). 261 

   262 

http://www.godac.jamstec.go.jp/darwin/e
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 3. Results 263 

 3.1. Hydrography 264 

Fig. 3 is a temperature–salinity diagram that shows the existence of several water 265 

masses in the study area, which is consistent with the findings of previous studies (Shimada 266 

et al., 2005; Codispoti et al., 2005; Wang et al., 2006; Cid et al., 2012; Aguilar-Islas et al., 267 

2013; Hioki et al., 2014). We divided these masses into four types based on salinity and 268 

potential density (σθ): (1) Pacific Summer Water (PSW), which extends from the surface to 269 

depths of ~ 10–75 m, and has salinity ≤ 32.0 and σθ ≤ 25.6; (2) the Upper Halocline Layer 270 

(UHL), which has salinity of 32.0–33.6 and σθ of 25.7–27.0; (3) the Lower Halocline Layer 271 

(LHL) with salinity of 33.6–34.5 and σθ of 27.1–27.7; and (4) Atlantic Water (AW) with 272 

salinity ≥ 34.6 and σθ ≥ 27.8. In this study, the UHL and LHL together are defined as HL. 273 

Note that the near-bottom waters at Stns. D1 and D2 were within the UHL in this study.  274 

Distributions of potential temperature, salinity, σθ, dissolved oxygen and nutrients are 275 

shown in Fig. 4. The surface area of sea ice covering the Arctic Ocean reached its lowest 276 

recorded extent in the summer of 2012 (National Snow and Ice Data Center (NSIDC) 277 

(http://nsidc.org/data/seaice_index/)) when our observations and sample collection were 278 

performed. Our sampling site was over 500 km from the nearest ice edge. However, sea ice 279 

persisted until September around Wrangel Island between the Chukchi Sea and East Siberian 280 

Sea in 2012, Nishino et al. (2016) found the large fraction of sea-ice meltwater relative to a 281 

more typical year in the Chukchi Sea using a calculated fraction of sea-ice meltwater (fSIM) 282 

from the relationship between potential alkalinity (total alkalinity + nitrate – ammonium) and 283 

salinity (Yamamoto-Kawai et al., 2009). In this study, salinity in the surface water (5-m 284 

depth) was generally low (25.1–28.2); the lowest value was observed from the offshore 285 

station (Stn. D5). Although inflows of meteoric fresh water and low-salinity Pacific-origin 286 

water through the Bering Strait are likely to influence the distribution of salinity in this study 287 

area (e.g., Shimada et al., 2005; Yamamoto-Kawai et al., 2008), the fSIM in the surface water 288 

http://nsidc.org/data/seaice_index/
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at Stn. D5 was higher (fSIM  = 0.06) than those at adjacent stations (fSIM  = 0.02–0.05) except 289 

for Stn. D1 (fSIM  = 0.08), suggesting that the surface water at Stn. D5 was relatively 290 

influenced by sea-ice melting (Japan Agency for Marine-Earth and Technology (2016) Data 291 

Research System for Whole Cruise information in JAMSTEC). These things indicate the 292 

presence of freshwater input from rivers and melting sea-ice via Ekman transport associated 293 

with the Beaufort Gyre (Proshutinsky et al., 2009).  294 

The cold halocline water forms a barrier to mixing of the Pacific-origin surface waters 295 

and underlying Atlantic waters. All nutrients analyzed had maxima in the UHL, although the 296 

patterns of their vertical profiles were variable among them. In the PSW, dissolved inorganic 297 

nitrogen (DIN, sum of NO3
-, NO2

- and NH4
+) was largely depleted relative to PO4

3- at all 298 

stations, which suggests that phytoplankton growth may be limited by nitrogen in this area; 299 

this finding is consistent with previous studies of this region (Codispoti et al., 2005; Wang et 300 

al., 2006; Brown et al., 2015). Indeed, chlorophyll a concentration never exceeded 0.5 μg/L 301 

at all stations; its maximum was observed at 10–20-m depths at Stns. D1, D2 and D3, 50-m 302 

depth at Stn. D4 and 100-m depth at Stn. D5 (Table 2). Because a subsurface chlorophyll 303 

maximum exceeding 1 μg/L was found over the Chukchi Shelf region in August (Hill et al., 304 

2005; Wang et al., 2006), a decline in phytoplankton blooming during our observational 305 

period can be presumed. Below the PSW, [NO3
-] increased to as high as 16 μM in the UHL, 306 

and then decreased to ~ 13 μM in the AW. Contour plots of [NO2
-] and [NH4

+] in 2D 307 

sections revealed that these nutrients had clear maxima in the UHL near the shelf and slope 308 

regions of the Chukchi Sea. In particular, [NH4
+] frequently accumulated (> 1 μM) in the 309 

UHL, as reported in previous studies (Codispoti et al., 2005; Connelly et al., 2014; Brown et 310 

al., 2015). Brown et al. (2015) investigated the stable isotopes of oxygen (16O and 18O) and 311 

nitrogen (14N and 15N) of NO3
-, which suggested that the main source of the accumulated 312 

NH4
+ near the bottom water in the Chukchi Sea shelf region was sedimentary input, not the 313 

degradation of organic matter in the water column. In contrast with DIN, both PO4
3- and 314 
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Si(OH)4 were replete in the study area. There were clear maxima in the UHL for both [PO4
3-] 315 

and [Si(OH)4], and the highest values were observed in the UHL at Stn. D3 where dissolved 316 

oxygen concentration was low. Interestingly, [Si(OH)4] in the PSW at Stns. D4 and D5 were 317 

lower than those at Stns. D1, D2 and D3, whereas other nutrients, such as PO4
3-, did not show 318 

this trend. Tovar-Sánchez et al. (2010) reported that concentrations of total phosphorus and 319 

nitrogen in Arctic sea ice were ~ 24% and ~ 70% of those in surface seawater, respectively, 320 

whereas the concentrations of Si(OH)4 were only ~ 5% of those in the surface water. These 321 

results also reflect the influence of sea-ice melting at the Canada Basin stations (Stns. D4 and 322 

D5) during our observations. 323 

Fig. 4 also shows the 2D section of N*, which is a commonly used metric to assess the 324 

degree of deficiency or excess of nitrogen in a water mass relative to phosphorus, originally 325 

defined as N* = ([NO3
-] − 16[PO4

3-] + 2.9) × 0.87 (Gruber and Sarmiento, 1997). Because 326 

DIN includes NO2
- and NH4

+ in addition to NO3
-, we adopt a definition where N* = ([DIN] − 327 

16[PO4
3-] + 2.9) × 0.87 for the western Arctic Ocean (Nishino et al., 2005). A negative N* 328 

indicates DIN loss or PO4
3- input for a region, whereas a positive N* indicates DIN input or 329 

PO4
3- loss. Consequently, a water mass with a high N* value generally has high nitrogen 330 

input through nitrogen fixation, and one with a low N* value is generally nitrogen deficient 331 

from sedimentary and/or water column denitrification. In the study area, N* was negative in 332 

the PSW and HL (Hioki et al., 2014), which is consistent with the findings of previous 333 

studies of the Chukchi Sea (e.g., Nishino et al., 2005; Connelly et al., 2014); in fact, the 334 

Chukchi Shelf is considered to be have some of the lowest N* values globally (Deutsch and 335 

Weber, 2012). N* in the UHL was lower than in other water masses, and the lowest N* was 336 

observed near the bottom at the shelf break station (Stn. D2). Because dissolved oxygen 337 

concentrations in the study area were too high to enable denitrification in the water column, 338 

the low N* suggests that the water mass was influenced by sedimentary denitrification and/or 339 
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anammox. In contrast, however, N* in the AW was found to show positive values, which 340 

reflects the difference between Pacific- and Atlantic-origin waters in this area.  341 

 342 

Fig. 3.  Temperature - salinity diagram from the sampling sites in this study. 343 
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 344 

Fig. 4.  Upper 500 m vertical sections from Stns. D1 to D5 for (a) potential temperature (P-345 

temp), (b) salinity, (c) potential density (σθ ), (d) dissolved oxygen (DO), (e) 346 

Si(OH)4, (f) NO3
-, (g) NO2

-, (h) NH4
+, (i) PO4

3- and (j) N*. N* was calculated from 347 

the following equation; N* = ([DIN] - 16[PO4
3-] + 2.9) × 0.87 (see text). 348 

 349 

 3.2. Dissolved trace metals (D-metals) in the Chukchi Sea and Canada Basin 350 

The spatial distributions of D-metals are shown in Figs. 5 and 6, and the corresponding 351 

datasets are given in Table 2. The [D-Fe] ranged from 0.78 to 8.26 nM. In the PSW, [D-Fe] 352 

was high, with an average of 1.52 ± 0.42 nM (n = 13) including the samples from the Canada 353 

Basin (Stn. D4). The [D-Fe] reached its peak in the surface water (5-m depth) at all stations 354 
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except for Stn. D5, where [D-Fe] could not be determined because of contamination; the 355 

highest surface [D-Fe], 2.65 nM, was found at the Chukchi Sea shelf slope (Stn. D3). Below 356 

the surface, [D-Fe] decreased to minima near the subsurface chlorophyll maximum layers at 357 

Stns. D1, D2 and D3, which suggest Fe consumption by phytoplankton (Table 2). Then, [D-358 

Fe] began to increase with depth in the UHL, and an especially high [D-Fe] of over 6 nM was 359 

found only near the bottom in the Chukchi Sea. The highest [D-Fe] was observed near the 360 

bottom in the vicinity of the Chukchi Sea shelf break (Stn. D2). It was also recognized based 361 

on the relationship between [D-Fe] and salinity that the highest [D-Fe] was observed around 362 

salinity of ~ 33.6, which occurred at the boundary between the UHL and LHL (Fig. 7). This 363 

trend was also observed in the relationships between nutrients such as [PO4
3-] and salinity 364 

(Fig. 7), although the relationship between [D-Fe] and salinity was more complex. Within the 365 

UHL, [D-Fe] gradually decreased with distance from the shelf (see section 4.3); the peak of 366 

[D-Fe] in the UHL was no longer apparent at Stn. D5 (Fig. 6). In the AW, the [D-Fe] ranged 367 

from 0.78 to 2.34 nM, and there was no clear trend in the distribution patterns between 368 

stations. 369 

The [D-Mn] covered a broad range from 0.34 to 81.4 nM (Figs. 5, 6 and Table 2), 370 

which fall within the range determined in a previous study of the western Arctic (Cid et al., 371 

2012). Except for Stn. D1, the vertical distribution of [D-Mn] had 2 peaks: one in the surface 372 

water and a second in the UHL. In the surface water (5-m depth), the [D-Mn] ranged from 373 

8.21 to 15.0 nM with a mean of 10.81 ± 3.46 nM (n = 5); concentrations over 10 nM were 374 

observed at Stns. D2 and D3. The maximum [D-Mn] occurred in the surface water at all 375 

stations except for Stn. D1. The bottom depth was shallow (30 m) at Stn. D1; therefore, the 376 

decreasing trend of [D-Mn] with depth could not be observed. A maximum [D-Mn] at the 377 

surface is typical and well-recognized across the world ocean, including in the Arctic Ocean 378 

(Campbell and Yeats, 1982; Yeats, 1988; Middag et al., 2011). This trend can be attributed 379 

not only to riverine and atmospheric inputs, but also to photochemical reduction of Mn 380 
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oxides and light inhibition of microbial Mn oxidation (Sunda and Huntsman, 1988). Below 381 

the surface water, [D-Mn] tended to decrease with depth through the PSW. In the UHL, [D-382 

Mn] began to increase with depth to a sharp peak in the UHL. The highest [D-Mn] (81.3 nM) 383 

was found in the near-bottom water at Stn. D2. A [D-Mn] over 57 nM was also found in the 384 

UHL at Stn. D3. The depths of [D-Mn] subsurface maxima generally correspond to the 385 

depths of [D-Fe] peaks in the UHL. As was noted for [D-Fe], the [D-Mn] in the UHL also 386 

gradually decreased with distance from the shelf break (Fig. 6, see section 4.3). In the AW, 387 

[D-Mn] began to decrease with depth with features of the scavenging-type distribution. The 388 

lowest value was observed in the deepest sample (500-m depth) in the AW at Stn. D5, which 389 

is consistent with expectations because it is the station farthest from the shelf break, and 390 

therefore farthest from the source of Mn in the study area. 391 

The ranges of the [D-Ni], [D-Zn] and [D-Cd] were 2.66–9.28 nM, 0.58–6.04 nM and 392 

0.11–0.99 nM, respectively (Figs. 5, 6 and Table 2); which also are values consistent with the 393 

previously reported values for this area (Cid et al., 2012). The relationships detected between 394 

salinity and [D-Ni], [D-Zn], [D-Cd] or [PO4
3-] indicate that the maxima of [PO4

3-] and the 395 

nutrient-type trace metals occurred in the UHL (Fig. 7). The ranges of [D-Ni], [D-Zn] and 396 

[D-Cd] within the UHL were similar between the Chukchi Shelf region and the Canada Basin, 397 

and correspond to the range of [PO4
3-]. However, there were several disagreements with 398 

[PO4
3-] distribution in the [D-Zn] and [D-Ni] data. In the PSW of the Canada Basin (Stn. 4), 399 

[D-Zn] and [D-Ni] had peaks near the surface (5-m depth), but this feature was not found in 400 

the [D-Cd] or [PO4
3-]. In particular, [D-Ni] values in the PSW were generally high (6.37 ± 401 

0.91 nM, n = 17) and similar to those in the UHL (7.46 ± 0.77 nM, n = 14). In the AW, [D-402 

Ni], [D-Zn] and [D-Cd] were relatively uniform with depth, and there were no significant 403 

differences between sampling stations. Interestingly, [D-Ni] in the AW was considerably 404 

lower than in the other water masses, which was not the case for [D-Zn] and [D-Cd]. 405 
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 406 

Fig. 5. Upper 500 m vertical sections of trace metal concentrations from Stns. D1 to D5; (a) 407 

D-Fe, (b) D-Mn, (c) D-Ni, (d) D-Zn, (e) D-Cd, (f) TD-Fe, (g) TD-Mn, (h) TD-Ni, (i) 408 

TD-Zn and (j) TD-Cd.   409 

 410 
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 411 

Fig. 6. Vertical distributions of trace metals for dissolved (filled square) and total dissolvable 412 

(open circle) fractions in each sampling station.  Gray areas indicate the HL 413 

(combination of the UHL and LHL).  Bottom depths at Stns. D1 and D2 are 30-m and 414 

55-m, respectively. 415 

 416 
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 417 

Fig. 7. Relationships between salinity and (a) [PO4
3-], (b) [D-Fe], (c) [D-Mn], (d) N*, (e) [D-418 

Ni], (f) [D-Zn] or (g) [D-Cd].  The water masses were divided into 4 groups (PSW, 419 

UHL, LHL and AW) using salinity (see text). Gray areas indicate the HL (combination 420 

of the UHL and LHL).  Broken lines indicate the boundary between the UHL and LHL. 421 

 422 

3.3. Total dissolvable trace metals (TD-metals) in the Chukchi Sea and Canada Basin 423 

The vertical distribution patterns were generally similar between D-metals and TD-424 

metals, the maxima of which were also observed in the UHL (Figs. 5, 6, and Table 2). 425 

However, the behaviors of the dissolved and total dissolvable fractions were different 426 

between trace metals. In the case of Fe, the [TD-Fe] was much higher than [D-Fe] and varied 427 

substantially with depth (Fig. 6, Table 1); [TD-Fe] ranged from 1.47 to 3276 nM, and the 428 

ratio of dissolved to total dissolvable Fe fractions ([D-Fe]/[TD-Fe]) dramatically changed 429 

(0.003–0.841). Exceedingly high [TD-Fe] values were found from Stns. D1 and D2 (1173 430 

and 3276 nM, respectively), and the [D-Fe]/[TD-Fe] ratios for these waters were low (0.003–431 

0.005). In addition, [TD-Fe] as high as 253 nM was found in the UHL at Stn. D3 with low 432 

[D-Fe]/[TD-Fe] (0.02). In contrast, at Stn. D5, the maximum [TD-Fe] in the UHL decreased 433 

to 5.87 nM at 200-m depth, with a [D-Fe]/[TD-Fe] ratio for the sample increased to 0.21. 434 

These results suggest that Fe in the study area existed mainly in labile particulate form (LP-435 
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Fe, [LP-Fe] = [TD-Fe] – [D-Fe]) in seawater with high Fe concentrations. [TD-Mn] ranged 436 

from 2.28 to 115 nM, and [D-Mn]/[TD-Mn] was also variable with depth at the same stations 437 

(0.082–0.99). The [TD-Mn] maxima were observed within the UHL at all stations except for 438 

Stn. D5, as was the case for [TD-Fe]. At Stn. D5, the highest [TD-Mn] was observed near the 439 

surface (5-m depth). The [TD-Mn] in the UHL decreased with distance from the shelf break 440 

from 115 nM (Stn. D2) to 6.26 nM (Stn. D5). Within ~ 270 km of the Chukchi Sea shelf 441 

break, both [TD-Fe] and [TD-Mn] in the UHL decreased dramatically by factors of ~ 480 and 442 

~ 27, respectively. Near the bottom of the Chukchi Sea shelf break station (Stn. D2), where 443 

all of trace metals concentrations reached their maxima, the [D-metal]/[TD-metal] ratio of 444 

Mn (0.707) was much higher than that of Fe (0.003).  445 

The maxima of [TD-Ni], [TD-Zn] and [TD-Cd] were also found in the UHL. Although 446 

the [D-metal]/[TD-metal] ratios ranged widely in this study (0.72–1.4 for Ni, 0.32–1.3 for Zn 447 

and 0.29–1.2 for Cd), the distribution pattern of [TD-Ni], [TD-Zn] and [TD-Cd] were similar 448 

to those of the respective dissolved fractions. These results indicate that at the time of the 449 

study, Ni, Zn and Cd mainly existed in dissolved forms in the western Arctic Ocean, which 450 

are consistent with the findings of Cid et al. (2012). Low [D-metal]/[TD-metal] ratios were 451 

observed near the bottom water and/or around subsurface chlorophyll maxima, which suggest 452 

that trace metal concentrations are affected by suspended sedimentary and/or biogenic 453 

particles. At some depths, [D-metal]/[TD-metal] ratios were higher than 1.0 (Table 1), which 454 

imply that recovery of these metals from unfiltered samples may not be sufficient. 455 

 456 

 4. Discussion 457 

Our results show that both the dissolved and total dissolvable fractions of trace metals 458 

(Mn, Fe, Ni, Zn and Cd) had concentration maxima in the UHL in the western Arctic Ocean, 459 

and that especially high concentrations of Fe and Mn were observed in the Chukchi Sea 460 

continental shelf region (Figs. 5 and 6). These trends are generally consistent with the 461 
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findings of previous studies of this area (Nakayama et al., 2011; Nishimura et al., 2012; Cid 462 

et al., 2012; Aguilar-Islas et al., 2013; Hioki et al., 2014). However, we found that the 463 

concentrations of [D-Fe] from our samples were higher than those of Hioki et al. (2014), 464 

whose seawater samples were collected on the same cruise (section 4.1). In the following 465 

sections, we discuss the sources of trace metals (section 4.2), offshore transportation (section 466 

4.3) and the implications of these trends in the Chukchi Sea and Canada Basin (section 4.4). 467 

 468 

 4.1. Comparison of Fe concentration results with previous study results 469 

Reported [D-Fe] and [TD-Fe] values from previous studies of the western Arctic Ocean 470 

have varied widely: 0.36–33.1 nM and 0.8–89000 nM, respectively (Nakayama et al., 2011; 471 

Nishimura et al., 2012; Cid et al., 2012; Aguilar-Islas et al., 2013; Hioki et al., 2014). Our 472 

dataset for both [D-Fe] and [TD-Fe] fall within these ranges, although the concentration we 473 

report are higher than those of Hioki et al. (2014) (Fig. 8). As mentioned in the method 474 

section, the seawater samples analyzed for this study and those analyzed by Hioki et al. 475 

(2014) were obtained from the same sampling bottles simultaneously. However, values of 476 

[D-Fe] in this study are 1.6 ± 0.5 (n = 37) times higher than those of Hioki et al. (2014) (Fig. 477 

8). The chelating resin preconcentration and ICP-MS method (adapted from Sohrin et al., 478 

2008) was used to measure trace metals simultaneously in this study, whereas Hioki et al. 479 

(2014) used an automated Fe analyzer with a combination of chelating resin preconcentration 480 

and a luminol–hydrogen peroxide chemiluminescence detection method (Obata et al., 1997). 481 

Nonetheless, the Fe detection methods of both studies were applied successfully with 482 

reference seawaters, such as the SAFe and GEOTRACES standard waters. The profiles 483 

produced by both studies are not erratic but oceanographically consistent. We believe that 484 

both datasets represent the chemically-labile dissolved fractions of Fe in seawater. However, 485 

the sample preservation periods and degree of acidification were significantly different 486 

between these two studies; the seawater samples used in this study were stored for over two 487 
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years at pH 1.5–1.6, whereas the samples used by Hioki et al. (2014) were stored at pH 1.7–488 

1.8 for three months prior to analyses. Based on the low [D-Fe]/[TD-Fe] ratios determined in 489 

this study, there may be abundant colloidal particles in the western Arctic Ocean, especially 490 

in the Chukchi Sea continental shelf/slope region. Previous studies also observed higher 491 

concentrations of TD-Fe compared to D-Fe (Nakayama et al., 2012; Cid et al., 2012; 492 

Aguilar-Islas et al., 2013; Hioki et al., 2014). Because the preservation period for seawater 493 

samples was much longer for this study, some chemically labile components were released 494 

from colloidal particles in the filtered seawater samples over that two-year period. Further 495 

research is required to evaluate the impact of sample preservation periods on trace metal 496 

concentrations, especially for samples from coastal shelf regions such as the Chukchi Sea. 497 

 498 

Fig. 8. Comparison of [D-Fe] in the western Arctic Ocean between Hioki et al. (2014) and 499 

this study.  A solid line indicates 1:1 ratio. 500 

 501 

4.2. Sources of trace metals in the western Arctic Ocean 502 

Our results show that all of the analyzed trace metals (Fe, Mn, Ni, Zn and Cd) had 503 

characteristic distributions in the western Arctic Ocean in the late summer of 2012, and 504 

generally these trace metals were present at high concentrations; halocline water was the 505 
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most enriched in Mn, Ni, Zn, Cd, Fe and nutrients. The trends in the relationships between D-506 

metals and PO4
3- concentrations reflect the distinct properties of each trace metal in the ocean 507 

interior (Fig. 9). [D-Ni], [D-Zn] and [D-Cd] were more strongly correlated with [PO4
3-] than 508 

were [D-Fe] or [D-Mn], which suggest that the distributions of D-Ni, D-Zn and D-Cd were 509 

generally controlled by the internal biogeochemical cycles of the ocean interior that also 510 

affect PO4
3-, whereas the distributions of D-Fe and D-Mn were more strongly influenced by 511 

external sources and/or removal of trace metals from the water column. Similar properties 512 

were also suggested based on studies of other continental shelf regions such as the central 513 

California Current System (Biller and Bruland, 2013).  514 

Iron is well-known as a controlling factor of phytoplankton stocks in a wide range of 515 

oceanic environments (e.g., Moore et al., 2013). However, the growth of phytoplankton in 516 

this study area is generally recognized as limited by nitrogen during the summer, as discussed 517 

above. Our results suggest that [D-Fe] in the PSW in the western Arctic Ocean was generally 518 

higher than those in other Arctic basins, such as the Nansen Basin and the Amundsen Basin 519 

(Klunder et al., 2012a), but similar to those of adjacent areas such as the northern Bering Sea 520 

shelf (Nishimura et al., 2012). In the central Arctic Ocean, Klunder et al. (2012b) found 521 

minima of [D-Fe] near the surface, which suggest depletion of D-Fe by phytoplankton 522 

growth. For this study, we calculate an index Fe* (Fe* = [D-Fe] – 0.47 [PO4
3-]) to quantify 523 

the degree of Fe limitation on phytoplankton growth relative to [PO4
3-] (Parekh et al., 2005). 524 

Positive Fe* generally implies adequate [D-Fe] to support the complete biological utilization 525 

of PO4
3-, while negative Fe* indicates a Fe deficit relative to PO4

3- (Parekh et al., 2005). In 526 

this study, Fe* in all samples had positive values (0.32–7.21, n = 39), which suggest that Fe 527 

was replete for phytoplankton growth even relative to PO4
3- in the western Arctic Ocean 528 

during late summer 2012. Furthermore, among the water masses considered in this study, Fe* 529 

was lowest in the AW, which emphasizes the importance of the Pacific-origin waters that 530 

pass over the continental shelf as a major source of Fe in the western Arctic Ocean. 531 



 27 

Previous studies of this region have suggested several potential external sources of 532 

trace metals: re-suspension of sediment particles from the shelf, sea-ice melting, river 533 

discharge and water inflow from the Bering Strait (Nishimura et al., 2012; Cid et al., 2012; 534 

Aguilar-Islas et al., 2013; Hioki et al., 2014). As discussed above, Hioki et al. (2014) have 535 

demonstrated a scheme of the sources and processes responsible for lateral transport of Fe in 536 

the western Arctic; the cold and dense waters that characterize the UHL have high levels of 537 

Fe, nutrients and dissolved organic matter from interaction with shelf sediment and from 538 

brine production by the formation of sea ice in the fall and winter. Because there is a positive 539 

correlation between [D-Fe] and [D-Mn] in the UHL (Fig. 10), similar processes may also 540 

operate in D-Mn distribution, especially in the UHL. Among the potential external sources 541 

mentioned above, sedimentary input was the most important source of all trace metals, 542 

especially Fe and Mn. In the bottom layer over the sea floor, D-Fe and D-Mn are expected to 543 

be supplied in their reduced forms, Fe(II) and Mn(II), from the suboxic and/or anoxic 544 

sediments. Reduced Fe(II) is then oxidized to the less soluble Fe(III) in the oxic water 545 

column, and some are complexed with the natural organic ligands such as humic substances 546 

(Lohan and Bruland, 2008). Recently, many studies have further indicated that the release of 547 

Fe(II) from reducing continental shelf sediments may be an important source of Fe in coastal 548 

waters (Pakhomova et al., 2007; Noffke et al., 2012; Chever et al., 2015). However 549 

compared to Fe(II), reduced Mn(II), is more slowly oxidized to insoluble Mn(III) and Mn(IV) 550 

oxides in oxic seawater (Millero et al., 1987; Sunda and Huntsman, 1987, 1990; von Langen 551 

et al., 1997; Santana-Casiano et al., 2005; Morgan, 2005). The positive correlation between 552 

[D-Fe] and [D-Mn] in the UHL suggests that the binding of Fe with organic ligands and the 553 

removal of remaining Mn occur at similar time scales in the UHL. The removal and 554 

transportation processes will be discussed in section 4.3. 555 

In the PSW, the inflow of low-salinity Pacific-origin water from the Bering Strait and 556 

local fresh water inputs such as sea-ice meltwater and river water may be important sources 557 
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of trace metals in the study area in addition to the upward inputs from sediment. For Fe, 558 

although [D-Fe] and [TD-Fe] in the Canada Basin PSW were lower than those in the Chukchi 559 

Sea shelf and slope regions, they were still higher than those of other typical oceanic regions, 560 

such as subarctic North Pacific (e.g., Kondo et al., 2012) and the central Arctic basins (e.g., 561 

Klunder et al., 2012a). Over the last 20 years, the freshwater discharge from major Arctic 562 

rivers has increased (Doxaran et al., 2015 and references therein), the accumulation of 563 

significant amount of freshwater has been observed in the Beaufort Gyre of the Canada Basin 564 

(e.g., Morrison et al., 2012).  According to the calculated fractions of meteoric water and sea-565 

ice meltwater in the surface water, the fraction for meteoric water was higher (6-18%) than 566 

that for sea-ice meltwater (2-8%).  It suggests that the meteoric water was the major source of 567 

freshwater in this study area.  In this region, there are several large rivers that can affect the 568 

properties of water in the Chukchi Sea region, including the Mackenzie River and the Yukon 569 

River. The Mackenzie River, which is the largest and longest river that flows into the 570 

Beaufort Sea, has a water discharge of 249–333 km3/year; its river water is rich in suspended 571 

material (Dittmar and Kattner, 2003). Cid et al. (2012) reported that the concentrations of all 572 

trace metals in the Mackenzie Trough in 2002 were higher than those in the Canada Basin for 573 

both the dissolved and total dissolvable fractions. The Yukon River flows from British 574 

Columbia through Alaska and into the northeastern Bering Sea shelf with an average water 575 

discharge of ~ 198 km3/year that varies seasonally (Wickland et al., 2012), which could 576 

account for ~ 8% of the freshwater input into the Arctic Ocean (Aagaard and Carmack, 1989). 577 

Nishimura et al. (2012) observed high [D-Fe] in low-salinity surface water in the Yukon 578 

River estuarine region (> 10 nM) and the Bering Strait (~ 5–10 nM). Moreover, there are 579 

several large rivers in the Siberian shelves of the Arctic Ocean, such as the Lena River and 580 

Kolyma River. The input of fresh water from the Lena River could strongly impact Mn input 581 

in the Laptev Sea estuary (Middag et al., 2011). The Kolyma River is located in northern 582 

Siberia with a mean water discharge of 122 km3/year (Rachold et al., 2004).  Although the 583 
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concentrations of trace metals are unknown, it has been reported that this river contains vast 584 

reserves of carbon in Pleistocene-aged permafrost soils (Griffin et al., 2011). Not only the 585 

meteoric water, but also sea-ice melting also strongly influences trace metal distributions in 586 

the western Arctic. In late summer 2012, the surface area of ice covering in the Arctic Ocean 587 

reached its lowest extent in recorded history (Wood et al., 2015), resulting that significant 588 

portion of sea-ice meltwater was found in the PSW in this study area. Previous studies have 589 

suggested that melting sea ice is a plausible source of Fe in the Arctic (Measures, 1999; 590 

Tovar-Sánchez et al., 2010), as well as in the Sea of Okhotsk (Kanna et al., 2014), the Bering 591 

Sea (Aguilar-Islas et al., 2008) and the Antarctic (e.g., Noble et al., 2013). Measures (1999) 592 

reported that the concentrations of Fe and Al in surface seawater in the Arctic Ocean were 593 

elevated near large masses of sea ice that contained entrained sediments. Tovar-Sánchez et al. 594 

(2010) determined the concentrations of trace metals (Fe, Mo, Ni, Zn, V, Cu and Co) and 595 

nutrients in seawater and multilayered ice along the Greenland current and the Fram Strait 596 

and showed that the sea ice was more enriched in these trace metals relative to the surface 597 

waters. Noble et al. (2013) investigated the distribution of trace metals (Mn, Fe, Al, Co, Cu 598 

and Cd) under the McMurdo Sound seasonal ice beneath in the Ross Sea and found that the 599 

all metals except for Cd had extremely high concentrations in the shallowest samples. In the 600 

present study, we also observed increases in both [D-metals] and [TD-metals] in the surface 601 

water at the northernmost station (Stn. D5), with the exception of Cd. These findings suggest 602 

that sea ice near the continental margins in particular could supply these trace metals to the 603 

water column via melting. Because our study area covers a shelf region, and because the 604 

PSW was most likely strongly influenced by meteoric water and inflow from the Bering 605 

Strait and the Chukchi Sea continental shelf, sea ice in this area presumably contained 606 

terrestrial materials. Indeed, the [D-Fe]/[TD-Fe] ratio in the surface water (5-m depth) was 607 

low (0.07–0.38), which suggests that the particulate form was the dominant fraction of Fe in 608 

the surface water. Therefore, these sources of freshwater input from rivers and Pacific inflow 609 
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are inferred to have significant influence on trace metal distributions in the western Arctic via 610 

the Beaufort Gyre and/or the formation of sea-ice in the fall and winter. Altogether, the 611 

existence of various sediment-rich input sources likely sustained the high surface 612 

concentrations of trace metals observed in the western Arctic Ocean.  613 

 614 

 615 

Fig. 9. Relationships between [PO4
3-] and (a) N*, (b) [D-Fe], (c) [D-Mn], (d) [D-Ni], (e) [D-616 

Zn] or (f) [D-Cd]. 617 
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 618 

Fig. 10. Relationships between [D-Fe] and [D-Mn].  A broken line indicates the regression 619 

line in the UHL.  620 

 621 

4.3. Transport of Fe and Mn within the HL in the western Arctic Ocean 622 

Within the HL, concentration maxima were identified for both D-metals and TD-metals 623 

of all five trace metals included in this study. For Fe and Mn, their subsurface maxima in the 624 

UHL were distinct from those in other Arctic basins (i.e., the Nansen, Amundsen and 625 

Makarov Basins) and shelf regions (the Barents, Kara and Laptev Seas) (Middag et al., 2011; 626 

Thuróczy et al., 2011). The relationships between the distance from the shelf break (Stn. D2) 627 

and the natural logarithm of [D-metals] or [TD-metals] in the HL reflect the characteristics of 628 

transport of each trace metal (Fig. 11). In this study, the concentrations of Fe and Mn (for 629 

both the dissolved and total dissolvable fractions) decreased logarithmically with increasing 630 

distance from the shelf break in both the UHL and LHL, whereas the change in [PO4
3-] was 631 

small. This relationship suggests that scavenging processes within the UHL controlled the 632 

transports of Fe and Mn. The [TD-Fe] decreased dramatically with distance compared to [D-633 

Fe] in this layer, which indicates that labile particulate Fe was preferentially removed from 634 
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the water column. In contrast, [TD-Mn] decreased more slowly than [TD-Fe], but [D-Mn] 635 

decreased faster than [D-Fe] (Fig. 11). To evaluate the phase distributions of Fe and Mn 636 

during lateral transportation, we calculated [LP-Fe]/[D-Fe] and [LP-Mn]/[D-Mn] ratios in 637 

seawater, where [LP-Mn] = [TD-Mn] – [D-Mn] (Fig. 12). The [LP-Fe]/[D-Fe] ratio in the 638 

UHL decreased logarithmically against distance from the shelf break, whereas the [LP-639 

Mn]/[D-Mn] ratio gradually increased with distance. These results reflect the differing 640 

behavior of Fe and Mn in the transport processes of this region. For Fe, the [TD-Fe] 641 

decreased quickly via removal of LP-Fe from the water column, whereas the [TD-Mn] 642 

decreased more slowly through the transformation of D-Mn to LP-Mn. Fig. 11 also shows 643 

that [D-Fe] and [D-Mn] in the UHL would decrease to the levels observed in the AW within 644 

~ 350 km and ~ 390 km north of Stn. D2, respectively. The accumulation of [NH4
+] in the 645 

UHL was also observed, and there were positive correlations between [NH4
+] and [D-Fe]/[D-646 

Mn] (data not shown). Brown et al. (2015) investigated the stable isotopes of oxygen (16O 647 

and 18O) and nitrogen (14N and 15N) of NO3
- in the Chukchi Sea shelf region, and the results 648 

suggested that the main source of the NH4
+ accumulated in the near-bottom water was 649 

sedimentary input, not degradation of organic matter in the water column. Therefore, the 650 

observed increases in [NH4
+] in the near-bottom water were most likely derived from the 651 

sediments of the Chukchi Sea continental shelf; the time scale for its removal from the water 652 

column was similar to those for D-Fe and D-Mn during our observational period. 653 

Considering the dispersion of the slopes for D-Mn and D-Fe (Fig. 11), there were no 654 

significant differences between D-Mn and D-Fe. A similar result was also calculated for D-655 

Fe from the dataset of Hioki et al. (2014). These results further suggest that the elevated D-Fe 656 

and D-Mn levels were removed within the similar scales of time. It has been suggested that 657 

Fe(II) is oxidized rapidly within minutes to hours in oxygenated water (Santana-Casiano et 658 

al., 2005), whereas the oxidation of soluble Mn(II) by Mn-oxidizing bacteria proceeds at was 659 

much slower rate on a scale from hours to days (Sunda and Huntsman, 1988). Our results do 660 
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not follow the general chemical properties of Fe and Mn with respect to the oxidation kinetics 661 

described above, which suggest the existence of moderate scavenging mechanisms for Fe(III) 662 

in the study area. In this case, we can propose that a high [D-Fe] was sustained in the HL 663 

because of the presence of organic ligands such as humic substances. It has been 664 

demonstrated that humic substances are important sources of organic ligands in coastal areas 665 

(e.g., Laglera et al., 2011). Hioki et al. (2014) investigated the distribution of humic-like 666 

fluorescent dissolved organic matter (humic-FDOM) as an index for humic substances, and 667 

found that the maxima of humic-FDOM occurred in the HL in the western Arctic Ocean. 668 

Furthermore, Yamada et al. (2015) investigated the distribution of transparent exopolymer 669 

particles (TEP) using a 0.4-μm pore-size polycarbonate filter with samples collected during 670 

the same cruise as the samples in the present study and observed that the ratios of TEP carbon 671 

to total particulate organic carbon (POC) were generally high in the shelf and slope regions in 672 

the study area. This finding suggested that particles containing large amounts of TEP were 673 

produced in the shelf region and transported offshore. Furthermore, because TEP is produced 674 

through flocculation of marine biogenic polysaccharides, which are also recognized as 675 

organic ligands for Fe (Stolpe and Hassellöv, 2010), this finding indicates that the organic 676 

ligands for Fe may also be supplied from the sediment and biological production on the 677 

Chukchi Shelf and transported offshore. In the western Arctic Ocean, Aguilar-Islas et al. 678 

(2013) also demonstrated the relationship between the natural logarithm of Fe concentration 679 

and the distance from the shelf in halocline waters based on observations made in the summer 680 

of 2010, and reported the resulting equation: Ln[D-Fe] = -0.0026 × [distance from 100-m 681 

isobaths (km)] + 0.9836. Although the averaged absolute value of the slope from this study 682 

was slightly higher than that reported by Aguilar-Islas et al. (2013), there was no significant 683 

difference when the unevenness of [D-Fe] in the UHL in our study was considered (Fig. 11). 684 

In late summer 2012, it was reported that northwesterly winds flowing in the northern part of 685 

an extended Siberian High transported oligotrophic water into the Beaufort Gyre, which 686 
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circulated it toward our study area (Watanabe et al., 2015). An unusually large warm-core 687 

eddy (~ 100 km in diameter) had been observed in the Canada Basin in late summer 2010 688 

(Nishino et al., 2011), which suggested that the offshore transports of nutrients and Fe could 689 

have been enhanced by the eddy (Nishino et al., 2011; Aguilar-Islas et al., 2013). However, 690 

because our sampling sites were located too far to the east of the study area of Aguilar-Islas 691 

et al. (2013) to investigate the effects of this eddy, further research is still required to evaluate 692 

the impacts of hydrographic and meteorological changes to the transport of Fe in the western 693 

Arctic Ocean. 694 

695 

Fig. 11.  Logarithmic changes in concentrations of (a) D-Fe, (b) D-Mn, (c) PO4
3-, (d) TD-Fe 696 

and (e) TD-Mn in the UHL (closed circles) and LHL (open circles) against the distance 697 

from Stn. D2.  Each broken line indicates the regression line in the UHL. The dotted 698 

line indicates the average concentration of each trace metal in the AW. 699 

700 
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701 

Fig. 12. Changes in the ratio between labile particulate and dissolved concentrations for Fe 702 

([LP-Fe]/[D-Fe]) or Mn ([LP-Mn]/[D-Mn]) in the UHL against the distance from 703 

Stn. D2.   704 

705 

4.4. Implications of nutrient-type trace metal behaviors in the western Arctic 706 

Ocean 707 

Our results suggest that the elevated Ni, Zn and Cd concentrations in the HL may 708 

extend across the Canada Basin from the Chukchi Sea shelf break area. The relationships 709 

between salinity and D-metals/PO4
3- indicate that the maximum concentrations of both PO4

3-710 

and D-metals were observed in the UHL (σθ ≈ 26.5) (Fig. 7). The trends in the relationships 711 

between concentrations of D-metals and PO4
3- reflect the distinct properties of each trace 712 

metal in the ocean interior (Fig. 9). As discussed in section 4.3, the variation in [PO4
3-] within 713 

the UHL was small over the study area (Fig. 11). Similarly small variations were also 714 

observed in [D-Zn], [D-Ni] and [D-Cd] (data not shown). It has been suggested that most of 715 

the regeneration of organic matters occurs over the Chukchi Sea shelf and slope regions and 716 

in the shelf sediments, whereas abyssal regeneration in the Canada Basin was minor 717 

(Codispoti et al., 2005). This trend would imply that Ni, Zn and Cd accumulated on the 718 

Chukchi Sea shelf in the UHL with nutrients and could be transported northward offshore via 719 
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the UHL at least as far as ~270 km north of the shelf break while maintaining high 720 

concentrations. Indeed, previous studies have found that the concentration maxima of Ni, Zn, 721 

and Cd occurred in the HL of the Canada Basin near the Canadian Arctic Archipelago (Yeats, 722 

1988; Yeats and Westerlund, 1991), which support the interpretation that the elevated Ni, Zn 723 

and Cd concentrations in the HL extend across the Canada Basin from the Chukchi Sea shelf 724 

break area. [D-Ni], [D-Zn] and [D-Cd] correlate more strongly with [PO4
3-] than [D-Fe] or 725 

[D-Mn], which suggest that, like PO4
3-, the distributions of D-Ni, D-Zn and D-Cd were 726 

generally controlled by internal biogeochemical cycles of the ocean interior. This behavior 727 

has also been proposed for other continental shelf regions such as the central California 728 

Current System (Biller and Bruland, 2013). However, there were differences in the strengths 729 

of the correlations between [PO4
3-] and [D-Ni], [D-Zn] and [D-Cd]. [D-Cd] showed the 730 

strongest correlation with [PO4
3-], and [D-Ni] the weakest correlation, with [D-Zn] in the 731 

middle. 732 

The high [D-Cd]/[TD-Cd] ratio and positive correlation between [D-Cd] and [PO4
3-] 733 

suggest that the distribution of Cd was most likely to be controlled by internal 734 

biogeochemical cycles in the study area, which is consistent with the findings of Cid et al. 735 

(2012). The strong positive correlation between [D-Cd] and [PO4
3-] was also reported by 736 

Yeats and Westerlund (1991), who investigated trace metal (Cd, Zn, Cu and Ni) distributions 737 

near the Canadian Arctic Archipelago in the Canada Basin. Cd can act either as a nutrient or 738 

as a toxin; therefore it influences phytoplankton growth. Especially in the coastal areas in 739 

industrialized regions, rivers are thought to be the most important source of Cd after 740 

atmospheric input (Lambelet et al., 2013 and references therein). Our results indicate the [D-741 

Cd] in the PSW ranged from 0.11 to 0.47 nM, which are similar level to those in the coastal 742 

seas of the Siberian Shelf (0.02–0.46 nM) (Lambelet et al., 2013). Off the coast of central 743 

California, similar [D-Cd] has been reported (0.05–0.87 nM) (Biller and Bruland, 2013). 744 

Overall, the [D-Cd] in the surface water of the western Arctic Ocean was high relative to 745 
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those in the oligotrophic open oceans such as the North Pacific (~0.002 nM) (e.g., Bruland, 746 

1980), but it is similar to [D-Cd] in coastal areas. Cullen (2006) suggested that preferential 747 

uptake of Cd in surface seawater under Fe limitation could cause a ‘kink’ in the relationship 748 

between [D-Cd] and [PO4
3-] that results in a lower [D-Cd]/[PO4

3-] ratio (e.g., < 0.21 × 10-3). 749 

In the present study there was no kink in this relationship, which is consistent with our 750 

discussion of Fe* in section 4.3 where it was explained that [D-Fe] was replete in the surface 751 

water in this area. The [D-Cd]/[PO4
3-] ratios were higher than 0.34 × 10-3 at all stations (the 752 

minimum coefficient of determination was 0.93), which are similar to the values for that ratio 753 

in the eastern North Pacific (Bruland, 1980). 754 

The ranges of both [D-Zn] and [TD-Zn] in this study were similar to those in the 755 

earlier study in the western Arctic Ocean (Cid et al., 2012). It has previously been reported 756 

that the [D-Zn] correlates more strongly with [Si(OH)4] (i.e., correlation coefficient = 0.996) 757 

than with [PO4
3-] or [NO3

-] in the ocean (e.g., Bruland, 1980). In the western Arctic Ocean, 758 

[D-Zn] and [Si(OH)4] were generally correlated, but the correlation coefficient was relatively 759 

poor: [D-Zn] (nM) = 0.10 [Si(OH)4] (μM) + 1.19 (R2 = 0.801) (Fig. 13). The slope value 760 

(Zn/Si, 0.10) was higher than those reported from the North Atlantic (0.058) (Roshan and Wu, 761 

2015), North Pacific (0.054–0.067) (Kim et al., 2015 and references therein) and Bering Sea 762 

(0.078) (Fujishima et al., 2001). The Zn/Si ratio of the Bering Sea was slightly higher than 763 

those of the North Pacific. Based on the influence of the Pacific-origin water entering through 764 

the Bering Strait into the western Arctic Ocean, the Zn/Si slope was likely modified during 765 

the process of transport from the Bering Sea to the Chukchi Sea shelf region. We found that 766 

both [D-Zn] and [TD-Zn] were elevated in near-bottom water at Stns. D1 and D2, where Fe 767 

and Mn also reached their maxima. In these samples, the [TD-Zn] values were especially 768 

high; the concentrations of labile particulate Zn (LP-Zn, [LP-Zn] = [TD-Zn] − [D-Zn]) near 769 

the bottom at Stns. D1 and D2 were 2.88 nM and 7.64 nM, respectively. As a result, the [D-770 

Zn]/[TD-Zn] ratios for these samples were as low as 0.45–0.56. Although the [D-metal]/[TD-771 
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metal] ratios for Zn were generally higher than those of Fe and Mn, they tended to be lower 772 

than those of Ni and Cd in the study area. Trefly et al. (2014) reported the concentrations of 773 

trace metals (including Fe, Mn, Ni, Zn and Cd) in surface sediments in the northeastern 774 

Chukchi Sea; the Zn/Fe and Zn/Mn ratios in these surface sediments were calculated to be 775 

approximately 0.0021 and 0.17, respectively. These values were similar to the [LP-Zn]/[LP-776 

Fe] ratios (0.0023–0.0024) and [LP-Zn]/[LP-Mn] ratios (0.23–0.31) of the near-bottom 777 

waters at Stns D1 and D2. These results indicate that not only Fe and Mn, but also Zn were 778 

supplied to near-bottom water from continental shelf sediment in the Chukchi Sea. The [LP-779 

Zn]/[LP-Fe] and [LP-Zn]/[LP-Mn] ratios in the UHL increase with distance from the shelf 780 

break (Stn. D2), which suggest faster removal of LP-Fe and LP-Mn from the water mass 781 

compared to LP-Zn. In addition to sedimentary input, the influences of fresh water inputs 782 

such as melting sea-ice and river waters may also be a reason for the weak correlation 783 

between [D-Zn] and [Si(OH)4], as well as the high slope value. Both [D-Zn] and [TD-Zn] had 784 

peaks near the surface in the Canada Basin (Stns. D4 and D5). Because sea ice is not the 785 

source of the Si(OH)4 in seawater in the Arctic Ocean (Tovar-Sánchez et al., 2010), the 786 

increase in Zn concentration in the PSW was likely derived from the sea-ice melting over the 787 

summer. 788 

Ni is classified as a nutrient-type trace metal and has high [D-Ni]/[TD-Ni] ratios in our 789 

dataset. However, the relationship between [D-Ni] and [PO4
3-] showed more scattering 790 

compared to those between [D-Cd] or [D-Zn] and [PO4
3-] (Fig. 9), which suggests that 791 

phytoplankton uptake and remineralization of settling particles have only minor effects on the 792 

distribution of D-Ni in the study area. It is likely that the high [D-Ni] in the PSW (6.19 ± 0.56 793 

nM, n = 13) relative to other areas, such as the North Pacific (Bruland, 1980; Fujishima et al., 794 

2001) and the central California Current system (Biller and Bruland, 2013), caused the 795 

scattering in the relationship between [D-Ni] and [PO4
3-]. The concentration of Ni in the sea 796 

ice has been reported to be higher than that of the surrounded seawater, as have the 797 
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concentrations of other trace metals such as Fe, Mn, Co, Cu and Zn (Tovar-Sánchez et al., 798 

2010; Noble et al., 2013). Therefore, the [D-Ni] has remained high in the PSW of the Canada 799 

Basin. Furthermore, similar [D-Ni] values were observed in the Bering Sea and its shelf area, 800 

including in the Bering Strait (Fujishima et al., 2001; Cid et al., 2011, 2012). Therefore, high 801 

[D-Ni] in the Chukchi Sea PSW may be derived from the supply of the Pacific-origin water 802 

that passes through the Bering Strait. Interestingly, we found that the [D-Ni] was inversely 803 

proportional to N* (Fig. 14); the coefficient of determination for this relationship (R2 = 0.812) 804 

was higher than those for relationships between N* and the macro-nutrients PO4
3-, NO3

- and 805 

Si(OH)4, whereas no linear relationships were observed between N* and the other trace 806 

metals in the study. Accumulations of D-Ni and NH4
+ were observed in negative N* waters 807 

where the influence of sedimentary denitrification and/or anammox was strong. These 808 

observations were consistent with those of previous studies that reported elevated [NH4
+] in 809 

near-bottom water in the Chukchi Sea shelf and slope regions (Codispoti et al., 2005; 810 

Connelly et al., 2014). Because water column denitrification only occurs when dissolved 811 

oxygen concentration is below 2–4 µM (e.g., Devol, 1978), the negative N* values in this 812 

study likely indicate the influence of sedimentary denitrification and/or anammox or the 813 

preferential release of PO4
3- from the sediment. These findings imply that D-Ni in near-814 

bottom water was supplied during early diagenesis of the surface sediment and transported 815 

offshore within the HL. In biological metabolism, Ni is associated primarily with Ni-SOD 816 

and urease (Dupont et al., 2008a, b). Urease is an amidohydrolase with Ni in the active site 817 

that catalyzes the dissociation of urea into NH4
+ and carbon dioxide, which provides a source 818 

of nitrogen for the organism. Most phytoplankton, including cyanobacteria, coccolithophores, 819 

dinoflagellates, cryptophytes and prasinophytes, use urease (Dupont et al., 2010). 820 

Furthermore, metagenomic analysis has revealed that Arctic archaea and small prokaryotes 821 

possess the urease gene in high abundance, which suggests that their nitrification and 822 

autotrophic growth may be fueled by urea in the Arctic Ocean (Alonso-Saez et al., 2012). 823 
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Connelly et al. (2014) reported that major microbial incorporation of nitrogen shifted from 824 

NH4
+ in the summer to urea in the winter during sea-ice formation. Although the reason why 825 

the [D-Ni] and N* show a strong linear relationship remains unclear, the presence of high [D-826 

Ni] can sustain the organisms’ use of urea in this study area. Further study is required to 827 

elucidate the role of Ni in the nitrogen cycle in the western Arctic Ocean. 828 

829 

Fig. 13. Relationship between [Si(OH)4] and [D-Zn]. 830 
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 831 

Fig. 14. Relationship between [D-Ni] and N*.  The color of each point indicates [NH4
+].  The 832 

[NH4
+] accumulation was only found in high [D-Ni] and low N*. 833 

 834 

5. Conclusions 835 

Our results indicate that the concentrations of trace metals (Mn, Fe, Ni, Zn and Cd) 836 

were generally high in the Chukchi Sea continental shelf and slope regions, particularly 837 

within the UHL. The HL contributes to the unique distribution patterns of trace metals in the 838 

western Arctic Ocean. In this region, not only does the Pacific-origin inflow water from the 839 

Bering Strait contain high concentrations of trace metals, but there are also various additional 840 

sources of trace metals that may contribute to this enrichment, such as continental shelf 841 

sediments, river water discharge, melting sea ice and remineralization of organic matter. It is 842 

likely that the trace metals-rich halocline water is transported offshore and mixed with 843 

ambient water masses. Nonetheless, it is important to identify and evaluate the differences in 844 

each vertical profile for different trace metals. For Fe and Mn, the balance between major 845 
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benthic input and rapid removal by scavenging must be considered to understand their 846 

patterns of distribution. In contrast, the elevated Ni, Zn and Cd, which existed as mainly 847 

dissolved forms, were transported further offshore from the Chukchi Sea shelf break to 848 

Canada Basin within the UHL. In this study, we also explored the possibility of dissociation 849 

of refractory colloidal Fe during the long-term preservation of our samples; this issue is 850 

important for estimation of the Fe budget in the Arctic Ocean. 851 
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  1106 
 
 
 
Table 1. Values for SAFe D2 and GEOTRACES intercalibration 2009 GD samples for Mn, Fe, Ni, Zn and Cd in this 
study. 
Sample   Mn Fe Ni Zn Cd 

D2 This study 
0.39 ± 0.07 
(n=3) 0.81 ± 0.11 (n=3) 8.47 (n=1) 7.53 (n=2) 1.10 ± 0.10 (n=3) 

 
Consensus value 0.35 ± 0.05 0.93 ± 0.02 8.63 ± 0.25 7.43 ± 0.25 0.99 ± 0.02 

GD This study 0.25 (n=2) 1.14 (n=2) 4.07 (n=2) 2.25 (n=1) 0.30 (n=2) 
  Consensus value 0.21 ± 0.03 1.00 ± 0.10 4.00 ± 0.10 1.71 ± 0.12 0.271 ± 0.001 
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Table 2. 
Concentrations of dissolved trace metals (D-Mn, D-Fe, D-Ni, D-Zn and D-Cd), total dissolvable trace metals (TD-Mn, TD-Fe, TD-Ni, TD-Zn 
and TD-Cd) and chlorophyll a (Chl a) in the western Arctic Ocean. 

Station 
Depth 
(m) 

[D-Mn] 
(nM) 

[D-Fe] 
(nM) 

[D-Ni] 
(nM) 

[D-Zn] 
(nM) 

[D-Cd] 
(nM) 

[TD-Mn] 
(nM) 

[TD-Fe] 
(nM) 

[TD-Ni] 
(nM) 

[TD-Zn] 
(nM) 

[TD-Cd] 
(nM) 

Chl a 
(μg/L) 

D1 5 8.31 1.48 5.52 2.75 0.34 12.8 8.35 5.66 3.19 0.38 
 (72.00,02' N, 10 8.91 1.11 5.63 2.50 0.40 17.6 9.67 5.65 3.49 0.45 0.43 

159.99,72' W) 20 34.9 6.00 6.52 3.69 0.65 44.1 1173 6.97 6.57 0.70 0.32 

            D2 5 14.2 1.82 6.35 2.62 0.25 24.0 20.5 5.40 4.01 0.35 
 (72.49,98' N, 10 11.3 1.64 5.12 1.16 0.11 24.5 21.2 5.54 1.58 0.36 0.41 

158.79,88' W) 20 8.61 1.19 6.62 2.62 0.34 10.8 7.26 5.88* 2.17* 0.46 0.42 
30 5.14 1.78 7.84 2.57 0.61 18.1 17.5 6.63* 2.64 0.75 

 40 33.0 5.25 8.12 4.82 0.75 39.2 240 6.84* 4.79* 0.92 0.24 
46 81.4 8.26 8.76 6.18 0.86 115 3276 11.46 13.8 1.12 

            D3 5 15.0 2.65 5.94 1.62 0.38 37.8 36.0 7.85 2.56 0.41 
 (72.86,53' N, 10 13.1 1.17 5.47 1.35 0.22 36.6 30.6 7.21 2.24 0.39 0.50 

157.96,47' W) 30 6.09 1.37 5.96 2.19 0.54 22.9 65.8 N.D. 2.83 0.54 0.48 
50 7.38 2.12 6.77 2.77 0.76 25.8 74.2 7.16 3.56 0.65* 0.05 
75 12.0 3.72 7.57 4.69 0.92 23.4 57.9 7.59 5.62 0.99 0.03 
100 42.6 5.09 7.42 4.58 0.99 67.6 254 8.59 6.54 0.98* 0.06 
125 57.3 5.39 6.69 4.61 0.79 83.5 179 7.61 6.23 1.31 0.05 
150 13.2 3.12 5.26 3.12 0.51 33.7 79.1 5.29 4.02 0.47* 0.01 
200 1.08 1.99 3.90 2.36 0.34 6.00 24.1 4.12 4.42 0.40 0.00 
300 0.69 1.33 3.21 2.14 0.28 8.45 56.3 3.54 3.72 0.38 
400 0.53 0.95 3.00 1.69 0.24 2.37 7.84 3.07 1.77 0.23* 
500 0.42 1.52 3.37 1.76 0.24 2.98 13.5 3.18* 2.90 0.31 

N.D. = not determined. 

* Recovery of trace metals from the unfiltered sample may not be sufficient. 1107 
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Table 2. continued. 
           

Station 
Depth 
(m) 

[D-Mn] 
(nM) 

[D-Fe] 
(nM) 

[D-Ni] 
(nM) 

[D-Zn] 
(nM) 

[D-Cd] 
(nM) 

[TD-Mn] 
(nM) 

[TD-Fe] 
(nM) 

[TD-Ni] 
(nM) 

[TD-Zn] 
(nM) 

[TD-Cd] 
(nM) 

Chl a 
(μg/L) 

D4 5 8.36 1.66 6.62 3.12 0.20 9.48 4.38 6.59* 3.46 0.18* 0.09 
(73.49.22' N 10 7.65 1.04 6.34 1.52 0.12 10.21 4.11 6.89 4.83 0.21 0.09 
156.41.15' W) 25 5.96 1.41 7.55 1.37 0.23 6.57 2.11 6.66* 1.61 0.22* 0.08 

 
50 4.90 1.78 6.17 0.62 0.20 5.49 N.D. 6.81 1.43 0.25 0.15 

 
75 2.83 N.D. 8.86 2.18 0.29 2.86 2.25 6.15* 1.70* 0.37 0.10 

 
100 1.52 2.71 7.85 3.16 0.51 3.61 7.06 7.73* 3.88 0.79 0.02 

 
150 13.61 2.84 7.76 4.40 0.60 22.3 18.2 7.62* 4.03* 0.63 0.00 

 
200 17.89 3.35 7.64 5.91 0.68 32.4 56.6 8.36 6.47 0.83 0.01 

 
250 1.02 1.53 4.42 3.11 0.31 5.10 18.6 4.54 3.84 0.65 

 
 

300 0.74 1.36 3.37 2.32 0.22 4.00 12.9 4.16 4.45 0.30 
 

 
400 0.52 1.17 3.78 2.06 0.18 2.81 5.68 3.50* 2.09 0.20 

 
 

500 0.56 5.00 4.17 2.37 0.12 2.68 5.38 3.49 2.65 0.25 
 

             D5 5 8.21 N.D. N.D. N.D. 0.25 9.70 3.13 6.83 3.53 0.34 
 (74.49.87' N, 10 7.71 N.D. 6.58 N.D. 0.23 10.3 2.91 7.20 1.84 0.34 0.06 

154.00.40' W) 25 5.48 N.D. 5.91 1.05 0.29 7.59 2.72 7.30 2.70 0.30 
 

 
50 3.86 N.D. 5.91 0.76 0.25 4.82 1.47 7.25 0.71* 0.40 0.09 

 
75 1.82 1.52 5.83 1.82 0.40 3.21 1.80 7.03 2.81 0.58 0.15 

 
100 1.10 1.40 5.33 3.02 0.48 3.51 2.25 7.26 4.59 0.66 0.22 

 
150 2.04 1.81 6.65 3.81 0.65 5.89 5.38 7.94 4.52 0.71 

 
 

200 1.99 1.20 6.79 4.83 0.69 6.26 5.87 8.66 5.44 0.69 
 

 
250 0.89 1.34 4.65 3.42 0.48 4.21 6.80 5.80 3.79 0.57 

 
 

300 0.67 2.34 3.41 N.D. 0.37 2.99 4.99 4.12 7.55 0.33* 
 

 
400 0.44 1.18 2.84 2.08 0.26 2.45 7.50 3.71 2.73 0.28 

   500 0.34 0.78 2.72 1.62 0.26 2.28 5.54 3.73 2.20 0.30   
N.D. = not determined. 

           * Recovery of trace metals from the unfiltered sample may not be sufficient. 1108 
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