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We consider a loss system with a buffer and a FIFO server. There are a green flow and a yellow flow in the

system. The system has two discarding thresholds corresponding to the types of flow. If an arriving packet

looks at the buffer contents exceeding over the discarding threshold, then the packet is discarded. We take the

fluid approach. Our aim is to present the upper bound of the partial queue length of the green flow.
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1 Introduction

Various communication services have been able to

run on TCP/IP networks by the development of com-

puter and network technology and the spread of the

Internet in recent years. In particular, real-time com-

munication services require guaranteeing QoS.

DiffServ 1) standardized a framework guaranteeing

QoS. Sato, Kobayashi, Pan, Tartarelli and Banchs

(2001)5) have provided configuration rule of DiffServe

parameters. However, the study has not considered the

increasing burstiness due to multiplexing4).

Our issue is the worst case evaluation for the par-

tial output burstiness (or almost equivalently the par-

tial queue length) of the green flow in the discrete-

time model introduced by 5). We take a fluid approach

for simplicity, so packetization is for feature works.

Our computation is based on deterministic network

calculus3, 2).

The remainder of the paper is organized as follows:

In Section 2, we introduce a loss FIFO system. The

partial queue length of the green flow is defined in the

section. Section 3 presents the upper bound of the par-

tial queue length. Conclusion and feature works are

given in Section 4.

2 Model

We consider a discrete-time queueing system. Any

indexes of time are integers. For simplicity, [s, t] rep-

resents a set of integers grater than or equal to s and

lesser than or equal to t.

A token bucket filter receives packets from the ex-

ternal of the network. The filter colors them into two

colors, green and yellow, which are labeled by G and
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Y, respectively. The green flow consists of the packets

keeping the service level agreement (SLA). The yel-

low flow consists of the packets violating the SLA. As-

sume that the packets are instantaneously transferred

from the filter to the dropper. For i = Y and G, āi(t)

denotes the amount of packets of type i arrives to the

clipper on flow i at time t. Āi(s, t) is the cumulative

function of sequence {āi(t)}t≥1 in interval (s, t], namely,

Āi(s, t) =
∑t

u=s+1 āi(u).

The queueing system consists of a dropper on flow

Y, a dropper on flow G, a buffer and a FIFO server.

The dropper on flow i discards type i packets if the

system is too crowded, it sends them to the queue oth-

erwise. The crowded state is defined that q(t) ≥ δi,

where q(t) denotes the queue length at time t, which

is the arrival time of the packets, and δi denotes the

threshold of type i flow for i = Y and G. We suppose

that δY ≤ δG. The discarding discipline is drop-tail.

For simplicity, we take a fluid approach, The packets

in the buffer are served in FIFO manner. If green pack-

ets and yellow packets arrive at the same time, then

the yellow packets try to join earlier than any green

packets. The assumption is required to determine the

service order, because FIFO does not define the ser-

vice order. Our service order gives the worst case for

the green flow. The FIFO server is a work conserving

server with a constant rate c. For i = Y,G, ai(t) de-

notes the amount of the survivals of type i at time t,

namely, they are defined by

aY(t) = min(āY(t), (δY + c − q(t − 1))
+), (1)

aG(t) = min(āG(t), (δG + c − q(t − 1) − aY(t))
+), (2)

where x+ = max(0, x). The amounts (δY+c−q(t−1))
+

and (δG + c− q(t− 1)− aY(t))
+ represent the free space

in the queue at time t. The loss of flow i at time t is

given by āi(t) − ai(t). Let a(t) = aY(t) + aG(t) and

A(s, t) =
∑t

u=s+1 a(u). The buffer contents q(t) is de-

fined as q(0) = 0 and q(t) = (a(t) + q(t − 1) − c)+ for

t ≥ 1, or equivalently,

q(t) = max
u∈[0,t]

(A(u, t) − c · (t − u)), (3)

for t ≥ 0.

In the view of Figure 1, the queueing system is a loss

system, however, it is a lossless system in the view of

Figure 2.

Let et denote the latest idle time before or just time

t. Let wt be the maximum value of arrival times of

packets completely served until time t. wt indicates the

arrival time index of the packet in service at time t.

Namely, they are defined by

et = max {u ∈ [0, t] |q(u) = 0 } , (4)

wt = max {v ∈ [et, t] |A(et, v) ≤ c · (t − et) } . (5)

It is easy to check e0 = w0 = 0 and et ≤ wt ≤ t. In

addition, q(t) = 0 if and only if et = wt = t. Because

(et, t] is a busy period when q(t) > 0, the cumulative

output in interval (et, t] is given by c · (t − et). Since

the system is a lossless and work conserving for the

input process from the dropper, The cumulative input

in (et, t] must be equal to the summation of the cumu-

lative output in (et, t] and the queue length at time t,

namely, A(et, t) = c · (t − et) + q(t) holds, or equiva-

lently,

q(t) = A(et, t) − c · (t − et). (6)

q(t) = 0 is not contradicting (6) by et = t. On the other

hand, wt tells us the following inequalities.

A(wt + 1, t) < q(t) ≤ A(wt, t), (7)

Let qi(t) be the partial queue length of type i pack-

ets. We need to represent qY(t) and qG(t) by the bi-

variate function A and c. We observe two scenarios in

Example 1 to understand the partial queue length.
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Figure.1 The loss system with two types of flow from a token bucket filter.
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Figure.2 A part of the system is a lossless system.

Table.1 The input process of Scenario 1

t 1 2 3 4 5 6 7 8

aY(t) 1 1 0 2 4 3 2 4

aG(t) 2 2 2 1 3 1 3 1

a(t) 3 3 2 3 7 4 5 5

Table.2 The input process of Scenario 2

t 1 2 3 4 5 6 7 8

aY(t) 1 1 0 2 3 4 2 4

aG(t) 2 2 2 1 1 3 3 1

a(t) 3 3 2 3 4 7 5 5

Example 1. Consider two scenarios given by Table 1

and Table 2 with c = 2, δY = δG = ∞ and t = 8. Notice

that (aY(5), aG(5), a(5)) and (aY(6), aG(6), a(6)) in Ta-

ble 1 are swapped in Table 2. Because type Y packets

enter earlier than tyep G packets if those arrival times

are same, the service order is alternative (see Figure 1

and Figure 2).

Time 0 is the last idle time, i.e., et = e8 = 0. In ad-

dition, wt = w8 = 4 in scenario 1 and wt = w8 = 5 in

scenario 2. Since A(0, 8) = 32 and c · (t − et) = 16,

q(t) = q(8) = 32 − 16 = 8. Since qY(t) and qG(t) are

the amount of type i packet in the queue, We obtain that

qY(8) = 9 and qG(8) = 7 in both cases by counting the

amounts of packets. It is coincidence that the partial

queue lengths of Scenario 1 equal to ones of Scenario

2.

For generality of counting the partial queue lengths,

notice that the queue consists of the packets arrived

(wt + 1, t] and ones arrived at wt + 1. Any packets ar-

rived (wt + 1, t] are still in the queue at time t. If

A(et,wt) + aY(wt + 1) ≤ c · (t − et),
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c · (t − et)q(t)

Figure.3 The service order of Scenario 1. The vertical and horizontal line boxes are type Y and type G packets, respectively.

c · (t − et)q(t)

Figure.4 The service order of Scenario 2. The vertical and horizontal line boxes are type Y and type G packets, respectively.

(see also Figure 3), then the size of type Y packets ar-

rived at wt+1 in the queue is 0, besides the size of type

G packets arrived at wt + 1 in the queue is

aG(wt + 1) − [c · (t − et) − A(et,wt) − aY(wt + 1)].

Otherwise, namely,

A(et,wt) + aY(wt + 1) ≥ c · (t − et),

(see also Figure 4), the sizes are

A(et,wt) + aY(wt + 1) − c · (t − et)

and aG(wt + 1), respectively. Hence, qY(t) is given by

AY(wt + 1, t)

+ (A(et,wt) + aY(wt + 1) − c · (t − et))
+ (8)

= max
[

AY(wt + 1, t),

AY(et, t) + AG(et,wt) − c · (t − et)
]

.

Furthermore, qG(t) is given by

AG(wt + 1, t)

+min(aG(wt + 1), A(et,wt + 1) − c · (t − et))

= AG(wt, t)

− (c · (t − et) − A(et,wt) − aY(wt + 1))
+ (9)

= min
[

AG(wt, t)

AG(et, t) + AY(et,wt + 1) − c · (t − et)
]

. (10)

3 Maximum Partial Queue length

and Envelope of Yellow flow

Theorem 1. Assume that

AG(s, t) ≤ r · (t − s) + b − r, ≤ ∀s ≤ ∀t.

Then the partial queue length of the green flow is

bounded as follows:

qG(t) ≤ b + (r/c) ∗ δY, ∀t ≥ 0.

Before the proof of Theorem 1, we require the enve-

lope function on the yellow flow.

Lemma 1. We have

AY(u, t) ≤ max
τ∈[u,t−1]

(−AG(u, τ) + c · (τ − u + 1) + δY).

(11)

Proof. (1) yields

aY(t)

≤ (c + δY − q(t − 1))
+

=

[

c + δY − max
u∈[0,t−1]

(A(u, t − 1) − c · (t − 1 − u))

]+

= min
u∈[0,t−1]

(−A(u, t − 1) + c · (t − u) + δY)
+ ,

or equivalently,

aY(t) ≤ (−A(u, t − 1) + c · (t − u) + δY)
+ ,
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for any u ∈ [0, t − 1]. Adding AY(u, t − 1) to the both

sides, we obtain the recursive inequality

AY(u, t) ≤ max
[

AY(u, t − 1),

− AG(u, t − 1) + c · (t − u) + δY
]

, (12)

for u ∈ [0, t − 1]. Substituting (12) to itself recursively,

we obtain (11). Namely,

AY(u, t) ≤ max
[

AY(u, t − 2),

− AG(u, t − 2) + c · (t − 1 − u) + δY,

− AG(u, t − 1) + c · (t − u) + δY
]

≤ · · ·

≤ max
[

AY(u, u),

− AG(u, u) + c · (u + 1 − u) + δY,

− AG(u, u + 1) + c · (u + 2 − u) + δY,

· · ·

− AG(u, t − 2) + c · (t − 1 − u) + δY,

− AG(u, t − 1) + c · (t − u) + δY
]

= max
τ∈[u,t−1]

(−AG(u, τ) + c · (τ + 1 − u) + δY),

where, in the last equation, max(AY(u, u), c + δY) =

c + δY is used. �

We are ready to show Theorem 1.

Proof. of Theorem 1. We have from (4) and (5) that

0 ≤ et ≤ wt ≤ t. From the inequalities, (10) yields

qG(t) ≤ max
v∈[0,t]

max
u∈[0,v]

min
[

AG(v, t),

AG(u, t) + AY(u, v + 1) − c · (t − u)
]

. (13)

Applying Lemma 1 to the right hand side of (13), qG(t)

is evaluated by

qG(t)

≤ max
v∈[0,t]

max
u∈[0,v]

min
[

AG(v, t), AG(u, t) − c · (t − u)

+ max
τ∈[u,v]

(−AG(u, τ) + c · (τ − u + 1) + δY)
]

= max
v∈[0,t]

max
u∈[0,v]

min
[

AG(v, t),

max
τ∈[u,v]

AG(τ, t) − c · (t − τ) + c + δY
]

.

Let Ψ(τ, t) = AG(τ, t) − c · (t − τ) + c + δY. Since

maxτ∈[u,v]Ψ(τ, t) is nonincreasing on u, the maximum

value in u ∈ [0, v] is maxτ∈[0,v]Ψ(τ, t). So,

qG(t) ≤ max
v∈[0,t]

min
[

AG(v, t), max
τ∈[0,v]

Ψ(τ, t)
]

= max
v∈[0,t]

max
τ∈[0,v]

min
[

AG(v, t),Ψ(τ, t)
]

= max
τ∈[0,t]

max
v∈[τ,t]

min
[

AG(v, t),Ψ(τ, t)
]

= max
τ∈[0,t]

min
[

max
v∈[τ,t]

AG(v, t),Ψ(τ, t)
]

= max
τ∈[0,t]

min
[

AG(τ, t),Ψ(τ, t)
]

.

Since min(AG(τ, t),Ψ(τ, t)) = AG(τ, t) + min(−c · (t −

τ) + c + δY), we have

qG(t) ≤ max
τ∈[0,t]

[

AG(τ, t) − [c · (t − τ) − c − δY]
+] (14)

In addition, we apply inequality AG(τ, t) ≤ r · (t − τ) +

b − r to (14).

qG(t)

≤ max
τ∈[0,t]

[

r · (t − τ) + b − r − [c · (t − τ) − c − δY]
+]

= max
x∈[0,t]

min
[

rx + b − r, (r − c)x + b − r + c + δY
]

= r ·

(

1 +
δY

c

)

+ b − r

= b +
r

c
δY.

Thus, the proof completes. �

The right hand side of (14) is represented as (AG l

SG)(t, t) in terms of network calculus where the decon-

volution operator l between bivariate functions F and

G is defined by

(F lG)(s, t) = max
u∈[0,s]

[F(u, t) −G(u, s)] ,

besides SG(s, t) is given by

SG(s, t) = [c · (t − s) − c − δY]
+.

We should consider the aggregate flow for the de-

lay evaluation, because delay effects both flows. In the

same way, the lossless condition is determined by the

total queue length, because qG(t) ≤ q(t) ≤ δG. Strictly,

we should evaluate the amount of loss āG(t) − aG(t).
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4 Conclusion and feature works

We studied a loss FIFO system with two drop-level

inputs introduced by 5). By the theory of deterministic

network calculus, we obtained the envelope function

on the yellow flow and the upper bound of the partial

queue length.

We did not give the envelope function of the raw in-

put Ā. The clipper on the yellow flow gave another

envelope of the modified input ĀY.

We can assume the envelope function of the raw in-

put. If the flows are colored by a double token buckets

mechanism, then the situation is natural. However, the

computation is hard very much.

Using the theory of stochastic network calculus, we

guess that we can evaluate the upper bound of the loss

probability with the significant level α percent.
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