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Abstract
Background: Genetic association studies have been used to map disease-causing genes. A newly
introduced statistical method, called exhaustive haplotype association study, analyzes genetic
information consisting of different numbers and combinations of DNA sequence variations along a
chromosome. Such studies involve a large number of statistical calculations and subsequently high
computing power. It is possible to develop parallel algorithms and codes to perform the
calculations on a high performance computing (HPC) system. However, most existing commonly-
used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the
cutting-edge technology of grid computing and its packages to conduct non-parallel genetic
statistical packages on a centralized HPC system or distributed computing systems. In this paper,
we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux
cluster for our genetic statistical studies.

Results: Analysis of both consecutive and combinational window haplotypes was conducted by the
FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26
loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-
nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–
18.6 times faster compared to the accumulated computation duration.

Conclusion: Execution of exhaustive haplotype analysis using non-parallel software packages on a
Linux-based system is an effective and efficient approach in terms of cost and performance.
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Background
Genetic association studies are a gene-discovery strategy
that compares the frequency of genetic variation at a chro-
mosomal position (locus) between cases and controls to
assess whether they contribute to the disease phenotypes.
Association studies are categorized into ether population-
based or family-based with case-control studies being the
former. The family-based association test (FBAT) is an
extension of the case-control study to family trios consist-
ing of a father, a mother and an affected child [1]. A
unique feature of FBAT, which is one of the most com-
monly used statistical genetic packages, is that the control
group is defined by the set of genetic variants that are not
inherited by the offspring [2]. The recently developed
Unphased program [3] extends the FBAT method using
likelihood models. Conventional association studies con-
duct pair-wise comparisons at each individual locus.
Alternatively, haplotype association analysis, which uses
information from groups of multiple loci (haplotypes),
can effectively narrow the disease gene location with
greater power. FBAT implements haplotype analysis by its
interactive command hbat, while Unphased implements
them by both command-line options or graphical user
interface written in Java. Haplotypes describe the linear
relationship of a series of loci along the chromosome
strand and are user defined by the number of loci (i.e.,
window size) and either consecutive or combinational
windows (see figure 1). Consecutive window haplotypes
(ConsWH), known as sliding window haplotypes, consist
of different sets of contiguous loci at various sliding posi-
tions. Combinational window haplotypes (CombWH)
consist of all possible loci combinations in a given win-
dow size. In comparison to ConsWH, CombWH can
obtain greater signal-to-noise ratio by removing nuisance
loci that do not distinguish cases from controls. One of
disadvantage of CombWH is that larger window sizes can
yield divergent results, hence failing to narrow the disease
gene location. The method to analyze all ConsWH or
CombWH in any window sizes are called exhaustive win-
dow haplotype analysis. This method is thought to opti-
mally extract information by identifying disease-
associated haplotypes [4].

Exhaustive window haplotype analysis requires high com-
putational power because of the larger number of haplo-
types and window sizes. Indeed, the number of
haplotypes in ConsWH and CombWH analysis for the
window size n are:

respectively. Unfortunately, most of commonly-used soft-
ware packages for statistical genetics are not written in par-

allel code and rewriting them for parallel analysis requires
the reliability testing of the new code. To circumvent these
obstacles and still achieve higher performance, we used a
queuing system to sequentially submit jobs in a parallel
manner on a Linux cluster.

Results and discussion
Results
The FBAT and Unphased programs were utilized to ana-
lyze both ConsWH and CombWH (see table 1). To evalu-
ate the performance, we defined fold acceleration as
elapsed duration divided by accumulated duration, and
acceleration linearity indexing the ratio of fold accelera-
tion to the ideal linear acceleration as fold acceleration
divided by number of compute-nodes (22, except only
five were used for Unphased CombWH analysis). For
ConsWH analysis using both FBAT and Unphased, fold
acceleration and acceleration linearity were 13.0–18.6
and 59.1%–84.5%, respectively. On the other hand, for
CombWH analysis, fold acceleration and acceleration lin-
earity were 1.1–15.9 and 22.0%–72.3%, respectively. For
Unphased ConsWH analysis, the -certain option was
compared with the -uncertain option. The -certain option
includes only data that is known, while the -uncertain
option estimates the values of uncertain haplotypes by
calculation the probability of each possibility and in
doing so, requires intensive computing power.

FBAT ConsWH analysis for window sizes consisting of
11–26 loci did not locate the disease gene position with
any better precision because some haplotype frequencies
were too low to be informative. Acceleration for FBAT
CombWH analysis was 15.9 times higher, whereas
Unphased CombWH analysis were only 1.1 times higher.
This was because only five of 22 compute-nodes were
used to run five Unphased processes to avoid excess over-
heads caused by large number of jobs that take very short
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Consecutive and combinational window haplotypesFigure 1
Consecutive and combinational window haplotypes. 
Examples of consecutive and combinational window haplo-
types for four loci. Each column of squares indicates loci, and 
each row indicates haplotype windows.

window size 1 2 3 4

consecutive

window

haplotypes

combinational

window

haplotypes
Page 2 of 5
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 6):S10 http://www.biomedcentral.com/1471-2105/9/S6/S10
time to finish. Furthermore, to observe the performance
of each process using the Unphased CombWH with the -
uncertain option, we compared elapsed times in different
window sizes (see figure 2). Each Unphased process ana-
lyzed every haplotype. However, for window sizes of 1–3,
haplotypes sharing the same window size were analyzed
by single processes to avoid overheads. Analysis duration
for each haplotype increased exponentially by window
sizes, and the completion of some haplotypes took
extremely long times.

Discussion
Because we used programs written in non-parallel code,
we adopted the process-based parallelization approach.
This lower parallelization granularity is problematic when
each single process takes a very long time to finish. The
performance during the Unphased ConsWH analysis with
the -uncertain option demonstrates the limitation of a
process-based parallelization approach. Possible solu-
tions are using higher power compute-nodes or paralleliz-
ing the code. Even though some analysis required very
little time (e.g., CombWH analysis for small window
size), the summation of the amount of time required to
detect process termination by Grid Engine and fork a new
process by the Linux kernel was not negligible when high
numbers of processes were involved. Therefore,
Unphased-CombWH-uncertain analyses sharing smaller
window sizes 1, 2, or 3 were bundled into single proc-
esses. The Unphased-CombWH analysis of short win-
dows, comprised by all possible combinations of 1–5 loci
out of 26 total, involves > 80,000 haplotypes and results
in a large number of output files. Combining analyses of
all combinations for each window size made data man-
agement much more efficient, resulting in only five files,
albeit with lower acceleration. Analysis with larger win-
dow sizes may require file compression, file archiving or
database management softwares to optimize acceleration.
Although our HPC cluster system consists of retired PCs
and regular network appliances, the system was sufficient
to meet our substantial statistical genetics demands. This

may explained by the minimal memory required and the
low network traffic between nodes by either program.

Conclusion
The small-scale cluster developed in this study effectively
accelerated the efficiency of statistical genetic analysis,
saving years of time. Today, the necessity of intensive
computational power is increasing at the individual and
small group level. Here we show that at minimal cost, off-
the-shelf hardware, open source software, and existing

Elapsed time for Unphased processesFigure 2
Elapsed time for Unphased processes. Diversity of 
Unphased computation duration for each window size. For 
window size 1–3, haplotypes sharing same window size were 
analyze in single processes. For window size 4–17, each hap-
lotype was analyzed by each single process. The x-axis indi-
cates sizes of consecutive windows. The y-axis indicates 
common logarithms of elapsed seconds. A boxplot indicates 
first quantile (bottom of a box), third quantile (top of a box), 
median (a bold line in a box), smallest non-outlier (a lower 
whisker), largest non-outlier (a upper whisker), and outliers 
(circles) defined as data far from more than 1.5 fold of a box 
size.
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Table 1: Computation Performance. Computation performance in each method. Analyzed haplotype window types were consecutive 
window haplotypes (ConsWH) and combinational window haplotypes (CombWH). Fold acceleration is defined as actual elapsed time 
divided by accumulated time for each process. Acceleration linearity is defined as fold acceleration divided by number of used 
compute-nodes. 22 nodes are used for analysis except five nodes for the Unphased CombWH analysis.

program option analyzed haplotype window size elapsed time accumulated time fold acceleration acceleration linearity

FBAT -e ConsWH 1–26 2.2 min 31.7 min 14.4 65.5%

FBAT -e CombWH 1–5 1.9 min 30.3 min 15.9 72.3%

Unphased -uncertain ConsWH 1–17 69.9 day 909.0 day 13.0 59.1%

Unphased -certain ConsWH 1–26 13.8 min 256.1 min 18.6 84.5%

Unphased -certain CombWH 1–5 6.5 day 7.2 day 1.1 22.0%
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non-parallel statistical packages can be configured to
bring HPC into the realm of small groups.

Methods
Cluster system
The Linux HPC cluster was build using the Rocks Cluster
Distribution http://www.rocksclusters.org/ version 4.3
with the SGE roll for supporting the Grid Engine job
queuing system http://gridengine.sunsource.net/. The
cluster consisted of one PC for frontend-node, and 22 PCs
for compute-nodes. All the computers had Intel Pentium
4 (1.7 GHz) CPUs. The frontend-node and each compute-
node was connected each other by 100BASE-T network
through a switching hub.

Dataset and statistical genetics softwares
Whole blood samples were collected from 277 extended
families (546 nuclear families, 1484 persons). Subse-
quently, DNA was extracted from these samples, and
genetic variations of single nucleotide polymorphisms
(SNPs) at 26 genetic loci were characterized for each indi-
vidual. The results obtained 172k-byte pedigree data file
for following analysis. For the FBAT program, the original
Linux executable was installed on the cluster. The hbat -e
interactive command of FBAT was used for ConsWH and
CombWH analysis, and the -e option was implemented to
account for the bias introduced by studying multiple
members from the same family. For the Unphased pro-
gram, its version 3.0.10 source code was recompiled with
the GNU C compiler with the option -march = pentium4
-O2 for the CPU-specific optimization. Unphased was
used with -uncertain and -certain options from the com-
mand-line instead of its graphical user interface written in
Java. The former option includes ambiguous genetic data
to increase the sensitivity, whereas the later option evalu-
ates only known genetic data, resulting in much quicker
analysis.

Array job submission and execution
Haplotype analysis was separated into multiple processes
and submitted into a Grid Engine queue as array jobs to
distribute each compute-node. Figure 3 shows the
sequence of array job submission and execution is the fol-
lowings. Array jobs were submitted to the Grid Engine job
queue by the command qsub -t start: end submitter.sh,
whereupon the Grid Engine assigned sequential array job
IDs to the SGE_TASK_ID environment variable using the
range defined by start and end. Subsequently, Grid Engine
invoked the shell script submitter.sh to initiate the FBAT
and Unphased statistical packages. For FBAT, submitter.sh
invoked the expect command, which automatically pro-
vides commands according to the expect script in interac-
tive manner, a requirement of FBAT. The expect script
invoked FBAT and inputs the run interactive command to
read a FBAT batch file. The FBAT batch file containing

hbat interactive commands indicating the subject haplo-
types were prepared by a Ruby script. To avoid memory
allocation problems, we restricted the number of hbat
commands for a FBAT process to 500. For Unphased, sub-
mitter.sh read a line indicated by SGE_TASK_ID from a
text file seed.txt. The seed.txt file prepared by a Ruby script
contained command lines for Unphased indicating hap-
lotypes to analyze. FBAT and Unphased output their
results into the Unix standard output. Grid Engine redi-
rected them into the directory indicated in submitter.sh
with the filename applying the rule of
"results.ojob_ID.array_job_ID ".

Optimization of analysis parameters
The window sizes for CombWH analysis were limited to
1–5 loci because the results of larger window sizes were
divergent. The maximum number limit of array jobs
(max_aj_jobs) was changed from default 75000 to zero by

Array job execution schemeFigure 3
Array job execution scheme. Scheme of array job execu-
tion using the Grid Engine for FBAT (A) and Unphased (B). 
The Grid Engine assigns array job ID to an environmental 
variable SGE_TASK_ID. Then, script execution is cascaded.
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the qconf -mconf command. To increase the efficiency of
job distribution, the flush time of Grid Engine
(reporting_params/flush_time) was also optimally
decreased by the the qconf -mconf command from default
15 sec to 5 sec.
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