
PRACTICAL IMPLEMENTATION OF A NETWORK-BASED STOCHASTIC
BIOCHEMICAL SIMULATION SYSTEM ON AN FPGA

Masato Yoshimi, Yuri Nishikawa,
Yasunori Osana, Akira Funahashi
Keio University, Yokohama, Japan
email: bio@am.ics.keio.ac.jp

Noriko Hiroi
EMBL-EBI,

Wellcome Trust Genome Campus, UK

Yuichiro Shibata, Hideki Yamada
Nagasaki University
Nagasaki, Japan

Hiroaki Kitano
Kitano Symbiotic Systems Project,
ERATO-SORST, JST, Tokyo, Japan

Hideharu Amano
Keio University
Yokohama, Japan

ABSTRACT

Stochastic simulation of biochemical reaction networks are

widely focused by life scientists to represent stochastic be-

haviors in cellular processes. Stochastic algorithm has loop-

and thread-level parallelism, and it is suitable for running on

application specific hardware to achieve high performance

with low cost. We have implemented and evaluated the FPGA-

based stochastic simulator according to theoretical research

of the algorithm. This paper introduces an improved ar-

chitecture for accelerating a stochastic simulation algorithm

called the Next Reaction Method. This new architecture

has scalability to various size of FPGA. As the result with

a middle-range FPGA, 5.38 times higher throughput was

obtained compared to software running on a Core 2 Quad

Q6600 2.40GHz.

1. INTRODUCTION

Stochastic simulations of biochemical models now play im-

portant roles in systems biology. However, it is widely known

that their numerical method, formally called a Stochastic

Biochemical Simulation Algorithm (SSA), is a quite CPU-

hogging application. As the size and complexity of target

simulation models increase every year, improvement of al-

gorithms and computer systems are hot issues.

The First ReactionMethod (FRM) and the Direct Method

(DM) proposed by Gillespie are well-known SSAs[1]. Their

algorithms are quite simple and have various levels of paral-

lelism since they are based on Monte-Carlo methods. Their

hardware accelerations are hopeful solutions, and FPGAs

are especially being focused for this aim by several research

*The project described was supported by Grant Number R01EB007511

from the National Institute Of Biomedical Imaging And Bioengineering.

The content is solely the responsibility of the authors and does not neces-

sarily represent the official views of the National Institute Of Biomedical

Imaging And Bioengineering or the National Institutes of Health.

groups, because they can accommodate dedicated modules

that are well-suited to target biochemical models[2][3]. How-

ever, as studies of stochastic algorithms advanced, now there

are several computationally-efficient SSAs with more com-

plex data flow. Our group works on an FPGA-based stochas-

tic biochemical simulator[4][5] that applies the Next Reac-

tion Method (NRM) [6], one of the improved SSAs. We es-

pecially aim to generate an accurate system without apply-

ing approximated algorithms, and achieve high throughput

at the same time by running multiple simulation threads.

This paper studies an implementation of an FPGA-based

data-driven biochemical simulator that applies NRM. By in-

troducing a hierarchical network structure, the design allows

a flexible adjustment of balance between resource utilization

and performance to fit to the amount of hardware resource

of the target FPGA device.

2. SSA : STOCHASTIC BIOCHEMICAL
SIMULATION ALGORITHM

2.1. NRM : Next Reaction Method

Stochastic biochemical simulation is performed by obtain-

ing time evolution of a stochastic “state” for a spatially ho-

mogeneous biochemical models. A biochemical model is

defined as a list of reactions and molecular species.

Simulation proceeds by a repetition of “reaction cycles”,

each of which includes the following two steps: 1. selection

of reactions, and 2. updating state of the model. In step

1, the current state of the model determines a single reaction

and its expected time of occurrence. Then in step 2, the state

is updated based on the selected reaction.

Gibson and Bruck proposed NRM in 2000[6]. Compu-

tational order of NRM is O(log(M)), where M represents

number of reactions in a model. NRM has more scalabil-

ity for large model than FRM and DM whose computational

orders are O(M). NRM is often adopted as a high-speed

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
663

stochastic algorithm in recent biochemical simulators such

as COPASI[7].

NRM introduced two data structures. First, the algo-

rithm employs a binary tree called an Indexed Priority Queue

(IPQ) to store “putative time” τj , which indicates a time

that reaction Rj(j : Reaction index : 1, 2, · · · , M) occurs.
Equation (1) is evaluated in only selected reaction at every

reaction cycle, and previous results of this equation are ob-

tained by referring to the IPQ.

τj = ln (1/r) /aj + t (1)

Here, r is a uniform random number in the range of (0, 1)
and t is the system time. aj is called a “propensity”, which

is the occurrence frequency of Rj . Propensity is calculated

from the number of reactants species and reaction constants

defined in the list of reactions.

The second data structure is a “dependency graph” (DG)

to represent dependencies among the reactions. The graph

is a list of reactions whose putative time τj,new needs to be

recalculated by occurrence of a certain reaction. τj,new is

obtained by Equation (2).

τj,new = aj,old(τj,old − t)/aj,new + t (2)

2.2. Studies to improve performance of SSA

Several challenges have been made to alleviate computa-

tional loads by refining numerical algorithms or by design-

ing high-speed simulator. In algorithm studies, there are

three major approaches to enhance computational efficiency:

improvement of calculation order, optimization of models[8],

and approximation with some loss of precision within allow-

able range[9]. Normally, simulations are executed on gen-

eral purpose PCs, but now there are several implementations

that focus on FPGAs and GPUs as simulation platforms[2][10].

Most of the approaches use FPGAs. They are based on

approximated algorithms which are executed on dedicated

hardware, and they are compiled whenever input models

change. On the other hand, our implementation uses em-

bedded memory. This gives two advantages; the amount of

logic resource is unaffected by (a) different orders of reac-

tion (ex. primary reaction, secondary reaction, etc.), and (b)

scale of biochemical models.

3. NRM IMPLEMENTATION ON AN FPGA

3.1. Design concept and previous implementation

Due to the characteristic of NRM, number of arithmetic op-

eration changes at every reaction cycle. Thus, deterministic

or static data flow scheduling is inefficient to accommodate

to dynamical changes of calculation type, number of its oc-

currence, and timing of requests. To address this problem,

we proposed an architecture that multiple threaded modules

(data sets of a simulation thread) access common shared

modules (calculation modules). Order of data transfer is dy-

namically controlled. This architecture is scalable, and can

be implemented on FPGAs of various capacity.

In previous implementations, we evaluated systems with

following network structure : use of simple multiplexer which

connects threaded and shared modules[4], and use of on-

chip routers to configure an NoC-based system[5]. How-

ever, the multiplexer-based system could not maintain oper-

ating frequency high when the number of threaded module

increased. In the NoC system, on the other hand, a large pro-

portion of logic resources were required for the interconnec-

tion, but a router had unused data-paths and useless Block-

RAMs. Thus NoC-based approach was not very efficient in

term of area and performance ratio.

3.2. NRM implementation with hierarchical connection

Considering our past experiences as state above, this work

also follows data-driven NRM implementation which can

make use of increasing logic capacity of FPGAs. Like pre-

vious implementations, threaded modules are connected to

shared modules with a data transfer network.

3.2.1. Data transfer network

Data packets with minimum flit size of 32-bit are transferred

between threaded and shared modules. The first header flit

contains routing information. The network is a hierarchi-

cal structure using specialized routers called “concentrators”

and “distributors” as shown in Fig. 1. Compared to the sim-

ple multiplexer[4], the concentrator has FIFOs to prevent

latency for packet transfer. This gives large flexibility to in-

terconnection network when transferring data packets with

variable length via common data path.

The concentrator checks requests from each input port,

and issues transfer requests to the arbiter. Each input port

has a small FIFO which stores a flit when the packet needs

to wait for the arbitration and transfer. Connection is re-

leased after transmitting a tailer flit, and then the concentra-

tor checks the next packet to transfer. The distributor refers

routing information in the header flit and connects its input

port to output port. This structure reduces logic resources

drastically compared to the on-chip router[5], since FIFO

uses 32-bits×4 registers instead of a 32-bits×512 Block-
RAM.

3.2.2. Threaded module

Fig. 2 shows the block diagram of the threaded module. The

threaded module has several data tables and a packet con-

troller. The controller manages the sending and receiving

of data packets[5]. The state of each thread is held in three

tables; the number of species (state), IPQ and propensity.

664

34x4 FIFO

34x4 FIFO

34x4 FIFO

34x4 FIFO

IREQ0
IRDY0

DIN0

IREQ1
IRDY1

DIN1

IREQ2
IRDY2
DIN2

IREQ3
IRDY3
DIN3

arbiter(4port)

2

32 OREQ
ORDY
DOUT

4-poprt
Multiplexer

SEL

HOLD
Priority

Register

RE

RE

RE

RE

(a) 4-port Concentrator (b) 4-port Distributor

IREQ
IRDY

OREQ0
ORDY0
DOUT0

OREQ1
ORDY1
DOUT1

OREQ2
ORDY2

DOUT2

OREQ3
ORDY3

DOUT3

Address
Shifter

DIN

Fig. 1. A block diagram of interconnecting modules

IREQ IRDY DIN

Packet
Controller

DOUT

Propensity Table Indexed Priority Queue

2

WE FULL

32
OREQ ORDY

2 32

EMPRE

Operation

32x1024
BlockRAM

42x1024
BlockRAM

Species Table

32x1024
BlockRAM

+

Input FIFO
32bits x 512words

Initial DINState DOUT

10x1024
BlockRAM

Fig. 2. A threaded module

IREQ0
IRDY0

DIN0

REQ
ACKDATA

IREQ1
IRDY1

DIN1

REQ
ACKDATA

IREQ2
IRDY2

DIN2

REQ
ACKDATA

IREQ3
IRDY3

DIN3

REQ
ACKDATA

Computational Core

FSUB

FDIV
FMUL

FADD

U6

arbiter(4port)

REQ
ACK

Priority Register

RDY

OREQ0
ORDY0

DOUT0

20x32 FIFO

32x32 FIFO

Output Controller

OREQ1
ORDY1

DOUT1

20x32 FIFO

32x32 FIFO

Output Controller

OREQ2
ORDY2

DOUT2

20x32 FIFO

32x32 FIFO

Output Controller

OREQ3
ORDY3

DOUT3

20x32 FIFO

32x32 FIFO

Output Controller

Fig. 3. A shared module (4 I/O ports)

These tables are stored in BlockRAMs to accommodate to

large-scale biochemical models with relatively small logic

resource consumption. The packet controller generates and

transmits request packets to shared modules by NRM algo-

rithm. It also reads incoming packets from the FIFO and

then performs the specified process.

3.2.3. Shared Module

In our previous implementation[5], the shared module was

pipelined, but only provided a set of I/O port. So, the pipeline

bubbles were generated corresponding to the number of flits

of a packet. To relax the congestion at the I/O port and re-

duce the bubbles in the pipeline, multiple I/O ports were

provided to shared modules.

Fig. 3 shows the structure of the shared module. This is a

4-port shared module which calculates Equation (2). When

a packet arrives, its routing address is stored into an address

FIFO at the output port, and the request to the computa-

tional core is asserted. The arbiter selects certain request

with the similar method as the concentrator, and the input

data is sent to the computational core. The result of compu-

tation is stored into the FIFO at the output port, and as soon

as the computation is finished, the data packet at the output

port is sent back to the threaded module.

3.3. NRM implementation

We implemented two types of simulator with four threaded

modules and 24 threaded modules. Fig. 4 shows an out-

line of connection between threaded modules and shared

modules. In 4-threaded version, all shared module has four

I/O ports which connect each threaded module with 7-port

distributor and 6-port concentrator as shown in Fig. 4(a).

In this case, the congestion is seen only when each packet

tries to acquire the right to access computational cores in-

side the shared modules. On the other hand, in Fig. 4(b),

Threaded group

T1

Shared group
U1

T2

T3

Tn

U2
U3

U4

U5

U6

(a) n=4
4-threaded version

(b) n=6 : 24-Threaded version

Threaded
Module

Threaded
Module

Threaded
Module

Threaded
Module

Threaded
Module

U1 : Tables that store update vector for each reaction
U2 : Tables that store dependency graph
U3 : Tables that store reactants to calculate propensity
U4 : Propensity calculator
U5 : putative time calculator (calculates Eq.1)
U6 : putative time modifier (calculates Eq.2)

7-port Distributor

6-port
Concentrator

Fig. 4. Examples of data-path between threaded group and
shared group : (a) NRM/FPGA/4T (b) NRM/FPGA/24T

24-threaded version has six threaded subgroups which inte-

grates four threaded modules in the same way as 4-threaded

version. This hierarchical structure can increase the number

of threaded modules with a small logic resource overhead,

while there is a waiting time for conflict resolution in the

network unlike 4-threaded version.

4. EVALUATION

4.1. Resource utilization

The evaluation environments are TB-5V-LX50T / LX110T-

PCIEXP, FPGA evaluation boards by Tokyo Electron De-

vice [11]. All modules are written in Verilog-HDL, and

contain several IP cores generated by Xilinx CORE Genera-

665

tor. Table 1 shows synthesis results for two configurations of

NRM implementation: 4-threaded version and 24-threaded

version. The network’s resource consumption only doubled

while the number of threaded modules increased by 6 times.

Both could fit in the target FPGA device, but operational fre-

quency of 24-configuration was degraded because of large

use of hardware resource. Long wiring delay is probably

due to lack of registers in the distributors. Overall, oper-

ational frequency depicted a slower declining curve as the

number of threaded modules increased compared to previ-

ous implementations[4]. However, each computational core

in the shared module can operate at around 170MHz. Thus,

the system may run at a higher operational frequency by im-

proving the wiring delay of the network, by such as adding

a FIFO in the input or output of the distributor.

4.2. Performance evaluation

Performance evaluation in this paper used an actual bio-

chemical model called a Heat-Shock Response(HSR), which

is a model that represents expression of E.coli when they are
exposed to elevated temperatures. HSR is a famous and rel-

atively large-scale model that involves 28 species in 61 reac-

tions. Cao adopts this model to analyze computational effi-

ciency of various SSAs, and StochKit[10], a stochastic sim-

ulation framework, also provides HSR as a sample model.

Table 2 is a throughput when HSR was run on StochKit

with Direct Method, hand-coded software of NRM written

in C++, and our current FPGA implementation. In FPGA

implementation, there was a stall at the I/O for subgroups of

threaded modules, so 24-thread version required 15% more

clock cycles to simulate one reaction cycle. We have found

in our previous evaluation that FPGA’s performance gain

versus microprocessors becomes large according to the the

size of biochemical models, because the model size mainly

effects the latency for updating the binary tree, and this pro-

cess is much more advantageous to execute on FPGA than

on microprocessors[5].

To achieve higher performance, we need to study the

congested portions in the network. The congestion is per-

haps seen at a shared module that generates more output flits

than input flits (ex. U2 in Fig. 4). The traffic may be sorted

out by placing several frequently-accessed modules.

Table 1. Resource utilization and operating frequency
Execution System NRM/FPGA/24T NRM/FPGA/4T

Device 5VLX110T 5VLX50T
FF1136-1 FF1136-1

Slice Registers 45040 (65.16%) 22005 (76.41%)

LUTs 64631 (93.51%) 25894 (89.91%)

BlockRAM/FIFO 133 (89.86%) 33 (55.00%)

DSP48Es 24 (37.5%) 24 (50.00%)

Op. Freq. 100.56 [MHz] 141.06 [MHz]

� Synthesis and placement and routing were done by ISE8.2i.

5. CONCLUSION AND FUTURE WORK

This paper studied the FPGA implementation and evaluation

of the stochastic biochemical simulator which is based on an

algorithm called NRM. Each module is categorized into two

groups called threaded modules and shared modules. By

modifying communication network between two groups, a

hardware design can be flexibly tuned to perform well on

the target FPGA device.

The evaluation result indicated that parallel execution

of NRM marked a throughput enhancement of about 5.38

times. As the future work, we are planning to verify the

efficiency of current design with various models using real

hardware.

6. REFERENCES

[1] D. T. Gillespie, “A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions,” J. Comput.
Phys., vol. 22, pp. 403–434, 1976.

[2] J. F. Keane et al., “A compiled accelerator for biological cell signaling
simulations,” in proc. of the 12th Intl. Symp. on FPGA, Feb. 2004, pp.
233–241.

[3] B. P. Thurmon et al., “Accelerating exact stochastic simulation using
reconfigurable computing,” in The 2005 International Conference on
Engineering of Reconfigurable Systems and Algorithms, 2005.

[4] M. Yoshimi et al., “FPGA Implementation of a data-driven Stochastic
Biochemical Simulator with the Next Reaction Method,” in proc. of
the 17th Intl. Conf. on FPL. IEEE, Aug. 2007, pp. 254–259.

[5] M. Yoshimi et al., “A framework for implementing a network-based
stochastic biochemical simulator on an fpga,” in proc. of the Intl.
Conf. on ICFPT’07, Dec. 2007, pp. 193–200.

[6] M. A.Gibson and J. Bruck, “Efficient exact stochastic simulation of

chemical systems with many species and many channels,” J. Phys.
Chem. A, vol. 104, no. 9, pp. 1876–1889, 2000.

[7] S. Hoops et al., “Copasi — a complex pathway simulator,” Bioinfor-
matics, vol. 22, no. 24, pp. 3067–3074, Dec. 2006.

[8] Y. Cao et al., “Efficient formulation of the stochastic simulation al-
gorithm for chemically reacting systems,” J. Chem. Phys., vol. 121,
no. 9, pp. 4059–4067, 2004.

[9] D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annual
Review of Physical Chemistry, vol. 58, pp. 35–55, May. 2007.

[10] H. Li, Y. Cao, L. R. Petzold, and D. T. Gillespie, “Algorithms and

software for stochastic simulation of biochemical reacting systems,”

Biotechnology Progress, vol. 24, no. 1, pp. 56–61, Sep. 2007.

[11] Tokyo Electron Device, “Virtex-5 LXT/SXT PCI Express Eval-

uation Platform Board,” http://www.inrevium.jp/eng/x-fpga-

board/hibiki.html.

Table 2. Performance evaluation for HSR model
NRM

StochKit�1 SW�1 FPGA/4T FPGA/24T

clocks/reaction N/A N/A 233.93 268.81

Throughput

[Mcycles/sec] 1.61 1.67 2.10�2 8.98�2

Gain 0.97 1.00 1.26 5.38

�1 Execution environment of software program is Core 2 Quad Q6600
2.40GHz, 4GB RAM, Linux 2.6.22-14, gcc-4.1.3 (-O3).

�2 Performances of FPGA is obtained by multiplying the number of
threads and average clock cycles per a reaction cycle.

666

