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The linear quadratic regulator theory is applied to the active control of bridge vibration conduced by

traffic loads. As the bride-vehicle system is the time varying system, the stationary LQR control is not op­

timal control for the bridge vibration. In bridge vibration under traffic loads, uncertain factors such as the

vehicle number, the types of vehicle moving speed etc. exist, therefore, the control theory has to be con­

sidered these factors. Then, for these uncertainties, the robust control is expected. This study concerned

with the control of bridge vibration under a moving vehicle using by the sliding mode theory that has

robustness for the time-varying system. The effectiveness of sliding mode control theory is discussed by

the numerical simulations for active and hybrid control of bridge vibration.

1. INTRODUCTION

In recent years, it becomes a problem that traffic

vibration obstacle is caused in surrounding areas of a

urban highways under traffic loads. This problem is

caused as the follows. Vibration of bridge girders is

resonated under moving vehicles which is excited at

random road surface roughness. This vibration

transmit to the bridge pier and the ground, and

resonate buildings. This vibration gives a feeling of

unpleasantness to inhabitants. As one of measures to

this problem, passive control has been applied to the

bridge vibration by using TMD. Because the dynamic

characteristics of the bridge-vehicle system vary with

time, this system is called time-varying system. So ac­

tive controP) adding the control force directly to the

bridge girder is subjected to attention, and further­

more an application of hybrid controF) which has ef­

fectiveness of passive control is suggested.

In bridge vibration under traffic loads, natural fre­

quencies of the bridge change with time. The system

becomes time-varying system3) changing of the pa-
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rameter. Optimal regulator theory has been applied to

bridge vibration under moving vehicle. This theory

should be applied to stationary system that has a cons­

tant parameters. In this study, sliding mode theo­

ry3) 4) 5) that has robustness for the time-varying

system is applied to active and hybrid control of

bridge vibration under traffic loads.

Sliding mode theory is a new control ~method that

designs switching line on phase plane and slides

system response over this line. Because the switching

of control force has become easy by remarkable

development such as a personal computer and DSp6)

in recent years, sliding mode theory attracts attention

in the field of control electrical engineering. Sliding

mode theory has robustness in nonlinear system,

changes of the parameter value, time-varying system,

unknown parameter system and unknown external

force. Therefore, it is applied to buildings, elastic

rotors, brakes systems,vehicles and universe robots

etc.4) 7) 8) 9) 10) 11) 12) 13). In this study, sliding mode

theory having such characteristics is applied to the



222 Toshiaki KAGA, Takatoshi OKABAYASHI, Tadao NAKAMURA

bridge vibration that is the time-varying system, and

the effectiveness are discussed by the numerical

simulations.

displacement of road roughness, v is the speed of the

vehicle, u(t) is control force.

The bridge is considered up to 3th order vibration,

and the state variables is introduced as

Xa(to) =xao

Where Aa(f) is the system matrix of bridge-vehicle

system, Da (f) is the external force matrix which

define the locations of excitation, and Ba (t) is the con­

trol force matrix which define the locations of control

When the displacement of road roughness observed

from the vehicle is expressed in ret) and the time

derivative of r(t) is expressed in r(t), the variable vec­

tor of road roughness can be defined as

ret) = [ret) ret) JT. (6)

Using by these Eqs. (4) (5) (6), Eqs. (2) (3) can be

described with the state equation that is

xa(t) = Aa(t) Xa(t) +Da(t) r (f) +Ba(t) u (t)

2. CONTROL METHOD OF BRIDGE-VEHI­

CLE SYSTEM VIBRATION AND MODEL­

ING OF ROAD ROUGHNESS

(1) Active control

Active control of bridge-vehicle system vibration is

shown as Fig.l. A single vehicle modeled as one­

degree of freedom by the spring-mass system moves

with constant speed v on the simple span bridge that

contains road roughness. Active control is done by an

actuator fixed at x= b point of the bridge. When a con­

trol force u (t) is acted and bridge vibration modes are

considered up to n-th order, the equations of displace­

ment response in x point of the bridge, the normal

coordinate of bridge and the vehicle are given as

follows:

q (t) = [q 1 (t) q 2 (t) q 3 (t) JT
xa(t) = [q(t)T q(t)T Z(t) Z(t)JT

(4)
(5)

n

y(x, t) = ~ (/Jk(x) qk (t),
k= 1

iik(t) + 2hk Wk (b(t) +Wjqk(t) =

-Pkz (!>k(vt)i(t) +¢Jk(b)u(t)/mk (2)

(k= I, ''', n)'

"i.(t) + 2 how o{2: (t) -y(vt, t) -ret)}
(3)

+W Hz(t) -y(vt, t) -ret)} = 0

Where y (x, t) is the displacement of the bridge at x

point, ¢Jk(X) is the k th vibration mode of bridge, qk(t)

is the normal coordinate, z (t) is the vertical displace­

ment of the vehicle, Wk, Wo, hk and ho are the natural

circular frequencies and the damping constants of the

bridge and the vehicle respectively, Pkz is the mass

ratio of the mass of the vehicle, mo with the effective

mass of the bridge by k th vibration mk, ret) is the

---+ v

Fig. I Active control of bridge vibration

force.

(2) Hybrid control

Hybrid control of bridge-vehicle system vibration is

consisted of the model shown in Fig.2. The hybrid

controller, that is, a TMD drived by an actuator is fix­

ed at x=b point of the bridge from left support. When

a control force u (f) is acted to the mass of TMD and

the bridge vibration modes are up to n-th order, the

equations of normal coordinate of the bridge, the vehi­

cle and TMD are given as follows:

iik(t) +2hkWk (Ik(f) +w1 qk(t) =
.. (8)

- Pkz ¢Jk(vf)i(t) - PluJ(h(a)d(t) (k= 1, "', n)'

"i.(f) +2howo{z(f)-y(vt, f) -ret)}
(9)

+w 5{z(t) -y(vf, f) -ret)} = 0 '

(l(t) + 2 hdW d{d (t) - Y(a, tn
+wa{d(t) -yea, t)} =u(f) /md

where d(t) is the displacement of TMD, Wd, hd are

the natural circular frequencies and the damping con­

stants of TMD respectively, PM is the mass ratios of

the mass of TMD, md with the effective mass of the

bridge by k th vibration, mk.

On optimal design of TMD parameters of W d and hd ,

HtrlJJXl4) method is applied. Hmax method is a design

method to minimize the maximum of frequency

response function.

The state variables vector containing TMD are
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Fig. 2 Hybrid control of bridge vibration

defined by

q (t) = [q, (t) q2 (t) q3 (t) ] T, (11)

x(t) = [q(t) T q(t) T d(t) d(t) z(t) z(t)]T. (1~

Using by Eqs. (6) (12), Eqs. (8)(9) (10) can be

(1~

rewritten by state equations as follows:

x(t) =A(t)x(t) +D(t)r(t) +B(t)u(t)

x(to) =Xo

where A (t) is the system matrix of the bridge-TMD­

vehicle system, D(t) is the external force matrix

which define the locations of excitation, and B(t) is

the control force matrix which define the locations of

control force.

-1 '---------~----~------'
o 10 20 30 40

(m)

Fig. 4 Road roughness

3. CONTROL THEORY

(1) Optimal regulator theory

In this study, we adopted stationary optimal

regulator theory that feedback gain does not change

with time. The optimal value of control force u (t) in

Eq. (13) is designed to minimize the cost function

af = 4 Sr (w ) AW ,

Wk=W L+ (k-l/2)Aw, Aw = (w U-WL) 1m
where ak is normal random number with a mean value 0

and the standard deviation a k> ¥'k is the uniform ran­

dom number(O~21r). W Land W u are the bottom and

upper limit of frequency, m is the division number of

the frequency range.

An displacement example of road roughness ret)

composed by Eqs. (15) (17) is shown in FigA.

(3) Modeling of road roughness

When a vehicle moves on a bridge, each element of

variable vector in road roughness Eq. (6) causing ex­

ternal force is modeled by the normal stochastic pro­

cess having the specific power spectral density. The

power spectral density of road roughness transformed

by x = vt is approximated

SR(W)=SO(w 2 +P) (14)

where

So=21rvA, f'=21rva, A=0.0027(cm2Im), a=0.05.

Parameters of A and a were decided by the data at

Arakawa bridge in Nagasaki prefecture.

The power spectral density of road roughness at

Arakawa bridge, which is fitted by Eq. (14) is shown

in Fig.3. This power spectral density is used in

numerical simulations. By the power spectral density,

displacement r (t) of road roughness and the time

derivative ret) can be composed by the Fourier series

model which are

m

r(t) = 1: ak sin(wkf+¥'k),
k= ,

m

ret) = 1: Wk ak COS(Wkf+¥'k) ,
k= 1

(15)
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(1~

Where Qand R are weighting symmetric matrices con­

stituted the semi-definite value and the positive

definite value.

The optimal value of control force u (t) minimizing

the cost function can be written as

u(t) = -K,x(t).

The optimal feedback gain vector K r is given by

K r =R-l BTp. ~~

This matrix P is given to solve Stationary Riccati

Equation that is

PA+ATP-PBR-l BT P+Q= 0 ~1)

where A and B are the value in time t=Ll2v that the

vehicle reached midpoint of the bridge.

When the regulator theory is applied to the active

control, x(t) in Eq. (19) and A, B in Eqs. (20) (21)

become X a (t) , A a and Ba given by Eq. (7) .

(2) Sliding mode theory

Sliding mode theory is variable structure control

law that design, switching line on phase plane and con­

strains response to slide on this line. Therefore sliding

mode theory has robustness for the nonlinear system,

the parameter changed system, the time-varying

system, the unknown parameter system and the

unknown external force etc.4) 13) • In this study,

because the bridge-vehicle system is time-varying

system, the sliding mode theory is applied to the

bridge-vehicle system.

In the hybrid control Eq. (13), when x(t) is replac­

ed with x, switching function a giving a condition to

change the control force can be expressed by

a =Sx ~~

The incline of switching hyperplane about each

natural frequency can be designed by choosing vector

Sin Eq. (22). In decision of S, the pole arrangement

method, 1P theory, Hoo theory and fl synthesis method

etc.4)8) were examined. In this study, the method by

Stationary Riccati Equation is adopted. By the solu­

tion P of Stationary Riccati Eq. (21), the vector Scan

be obtained as

Next, we consider about the condition realizing a

state of sliding mode by letting displacement response

of the bridge arrive on the hyperplane and slide on the

intersections line of it. Some methods4) are done to

this purpose. In this study, Lyapunov function V for

switching function a is defined and the derivative

value iT is turned into minus number for the purpose

of letting the response arrive on the hyperplane bet­

ween limited time.

Lyapunov function V for switching function a is

given by

V=+a 2
•

When the control force of state feedback is written

by - K x , existence condition of sliding mode state

becomes

V=aSAx-aSBKx< o. ~$

By Eq. (25), each elements of feedback gain vector

K is switched and changed

where (SA)j is a component of j row of (SA).

The sliding mode theory causes high frequency

vibration called chattering, because the control force

causing nonlinear vibration has infinity switching fre­

quencies. It is impossible to provide such power by an

actual actuator. Some methods3)4) 11) are done to this

prevention method. In this study, Eq. (26) is renewed

as follows to let a change of the control force continue

smoothly, that is

1
k/ aXj>f.

kj= kr aXj<-f.

(k/-kr)axjI2f. + (kl +kr) 12 -f. <axj<f.

When the sliding mode theory is applied to the ac­

tive control, x(t), A and B in Eqs. (22)-(26) become

the vectors and matrices for the case of active control.

4. NUMERICAL SIMULATION

(1) Characteristics of the bridge, vehicle

and TMD

We consider numerical simulations to confirm the

vibration control effectiveness by sliding mode theory

in case of active and hybrid control. These results are

compared with results of the regulator theory.

Characteristics of the bridge, vehicle and TMD are

shown in Table I, Table 2 and Table 3. The speed of

vehicle is W(m/sec). The weight of TMD is 2(tonj)

which is 1150 of the bridge, so that TMD weight is to
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Table 3 Characteristics of the TMD

Table 2 Characteristics of the vehicle

Table I Characteristics of the bridge

be a realistic value. The natural frequency and damp­

ing constant are calculated by H max method.

(2) Case of the active control
Fig.5 shows comparison of sliding mode theory with

regulator theory in case of feedback by all state

variable vector of the bridge, vehicle and TMD. Fig.6

shows comparison in case of feedback by state

variable except the vehicle state which becomes im­

possible to measure in bridge-vehicle system. In these

figures, (a) shows displacement responses in mid­

point of the bridge, (b) shows control forces, and (c)

shows switching functions of the sliding mode theory.

The dotted line is the result without control, the solid

line is the result of sliding mode theory, and the dash­

ed line is result of the regulator theory. In this paper,

it is assumed that the vehicle moves on road

roughness from 40(m) before the bridge, and enters

the bridge.

As the results of numerical simulation, it is confirm­

ed that sliding mode theory is generally superior effec­

tive for vibration control to regulator theory according
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to the comparison of displacement response in Fig.5

(a) and Fig.6 (a). In this reason, the sliding mode

theory has robustness for the time-varying system. In

particular, sliding mode theory becomes good result

compared with the regulator theory in case of the feed­

back by state variables without the vehicle Fig.6 (a),

because this theory has such immutability character

for the external force. The straight response that is

one of characteristic in sliding mode theory is realized

in 2. 4----- 2. 8 (sec) (Fig.4 (a)), and 0-----0. 6 (sec), 2. 4

-----2.8 (sec), 3.6'""4.0 (sec) (Fig.5 (a)). Limited to

sliding mode theory, feedback by all state

variables (Fig.5 (a)) become inferior to feedback by

state variables without the vehicle (Fig.6 (a)) in the

first time 0'""0.7 (sec) and the latter time 3.5'""4.0

(sec). It is this reason that the Riccati Equation which

is applied to sliding mode theory is stationary equation

and we design the gain vector K fixed the vehicle in

midpoint of bridge with all period of time.

Fig.5 Cb) and Fig.6 (b) show the control force cor­

responding to displacement response. The solid line is

sliding mode theory, and dashed line is regulator

theory. For comparison of both theories in the control

effectiveness, a limit is added to the control force by

sliding mode theory, and the maximum is to become 2

(ton/) . The chattering that is the weak point in

sliding mode theory can be prevented, because the

control force changes continually by using the feed­

back gain Eq. (27).

Fig.5 (c) and Fig.6 (c) show the switching func­

tion (J of sliding mode theory corresponding to each

Fig. (a) (b). When this wave pattern exists in the

neighborhood of 0 point of vertical line, the state have

become to the state of sliding mode. With the period

of time when the displacement of Fig.5 (a) and Fig.6

(a) become straight lines, the wave pattern of these

switching functions exists in the neighborhood of 0

point, realization of sliding mode can be confirmed.

. .
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In this time, displacement response of the bridge

will slide on the intersection of hyperplane.

(3) Case of the Hybrid Control

Fig.7 and Fig.8 show comparison of sliding mode

theory with regulator theory in case of feedback by all

states variables and feedback by state variables ex­

cept the vehicle for the hybrid control. Fig. (a) shows

displacement response in midpoint of the bridge,Fig.

(b) shows control force, and Fig. (c) shows switching

function of sliding mode theory. As the simulation

results, sliding mode theory is generally superior to

the regulator theory according to Fig.7 (a) and Fig.8

(a), but the difference of both theories is smaller than

the active control. In O. 5~O. 8 (sec), 2. 5~2.8 (sec)

(Fig.6 (a)) and O~O. 5 (sec) (Fig.8 (a)), flat

responses are realized in sliding mode control. In

sliding mode theory, feedback by all state

variables (Fig.7 (a)) becomes inferior to feedback by

state variables except the vehicle (Fig.8 (a)) at the

first time and latter time response. This reason is that

the Riccati Equation which is applied to sliding mode

theory is stationary equation. Limited to sliding mode

theory, when hybrid control response are compared

with active control of Fig.5 and Fig.6, it can be con­

fermed that hybrid control becomes more effective.

Fig.7 (b) and Fig.8 (b) show the control force cor­

responding to displacement response. Same as the ac­

tive control, the parameter is designed to became the

maximum of control power to 2(tonf). So, in sliding

mode theory, the control force is limited. The chatter­

ing can be prevented, because the control force changes

continually by using the feedback gain Eq. (27) .

Fig.7 (c)and Fig.8 (c) show the switching function

(J of sliding mode theory corresponding to each

Fig. (a) (b). When the parts of displacement response

Fig. (a) are to be flat lines, the switching function (J

corresponding to these displacement shifts to around O.

Therefore, when the displacement response is to be

flat, the sliding mode is realized.

5. CONCLUSION

In this study, sliding mode theory was applied to ac­

tive and hybrid control, and we had confirmed the ef­

fectiveness of sliding mode theory.

The results are summarized as following.

(1) An example of road roughness had made from

power spectral density, and the modeling of bridge­

vehicle system in active and hybrid control have

been done. The expressions of sliding mode theory

for these control had made. The chattering which

became a problem in sliding mode theory have been

prevented.

(2) As the simulation results of the active control in

particular, it was confirmed that the sliding mode

theory has superior control effectiveness to the

regulator theory. It was not all period of time

because of external force acting continually, but

straight response that was one characteristic of

sliding mode theory had been realized.

(3) The feedback by all state variables has became in­

ferior to the feedback by state variables except the

vehicle in the first time and latter time of then

response. It was this reason that the Riccati Equa­

tion which was applied to sliding mode theory was

stationary equation.

(4) In comparison of the active control with hybrid

control by sliding mode theory, it has been confirm­

ed that the hybrid control was able to realize

superior control.

(5) From wave pattern of the control force, it has

been confirmed that the chattering was able to be

prevented because the control force changed con­

tinually.
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