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Effect of Viscous Dissipation on Fully Developed Laminar Heat
Transfer of Power-Law Non-Newtonian Fluids in Plane
Couette-Poiseuille Flow

by

Ganbat DAVAA*, Toru SHIGECHI**
and Satoru MOMOKI**

Fully developed laminar heat transfer of a non-Newtonian fluid flowing between two parallel plates with one moving
plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying the velocity profile ob-
tained for the plane Couette-Poiseuille laminar flow, the energy equation with the viscous dissipation term was exactly
solved for the boundary conditions of constant wall heat flux at one wall with the other insulated. The effects of the rela-

tive velocity of a moving plate, flow index and Brinkman number on Nusselt numbers at the plate walls were discussed.

1. Introeduction

Problems involving fluid flow and heat transfer with an
axially moving core of solid body or fluid in an annular ge-
ometry can be found in many manufacturing processes,
such as extrusion, drawing and hot rolling, etc. In such
processes, a hot plate or cylindrical rod continuously ex-
changes heat with the surrounding environment. For such
cases, the fluid involved may be Newtonian or non-
Newtonian and the flow situations encountered can be
either laminar or turbulent.

In the previous study, fully developed laminar heat
transfer of a Newtonian fluid flowing between two parallel
plates with one moving plate was analyzed taking into ac-
count the viscous dissipation of the flowing fluid.

In the previous report”, an exact solution of the momen-
tum equation was obtained for fully developed laminar flow
of a non-Newtonian fluid flowing between two parallel
plates with one moving plate. The constitutive equation (i.e.,
the shear stress-shear rate relation) for a non-Newtonian
fluid is described by the power-law model most frequently
used in non-Newtonian fluid flow and heat transfer.

In this report, fully developed laminar heat transfer of a
non-Newtonian fluid flowing between two parallel plates

with one moving plate was analyzed taking into account the
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viscous dissipation of the flowing fluid. Applying the velo-
city distribution obtained for the plane Couette-Poiseuille
laminar flow, the energy equation with the viscous dissipa-
tion term was exactly solved for the boundary conditions of
constant wall heat flux at one wall with the other insulated.
The effects of the relative velocity of a moving plate, flow
index and Brinkman number on Nusselt numbers at the

plate walls were discussed.

Nomenclature
Br Brinkman number
Cp specific heat at constant pressure
F parameter
f friction factor
k thermal conductivity
L. dimensionless location at the

maximum velocity

(see the previous report®)

m consistency index

n flow index

Nu Nusselt number

P pressure

q wall heat flux

Re’ Generalized Reynolds number
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T temperature
u axial velocity of fluid
U average velocity of fluid
u* dimensionless velocity = u/u,,
U axial velocity of the moving plate
U’ relative velocity of the moving plate
y coordinate normal to the fixed plate
y dimensionless coordinate = y/L
F4 axial coordinate
Greek Symbols
4 density
T shear stress
7 dimensionless temperature
Subscripts
B bulk
7 7 =L for Case A, j =0 for Case B
L moving plate
0 fixed plate
2. Analysis

The physical model for the analysis is shown in Fig. 1.
The lower plate is axially moving at a constant velocity. The
assumptions used in the analysis are :

1. The flow is incompressible, steady-laminar, and
fully developed, hydrodynamically and thermally.

2. The fluid is non-Newtonian and the shear stress may
be described by the power-law model, and physical
properties are constant.

3. The body forces and axial heat conduction are ne-

glected.

2.1 Fluid Flow
The governing momentum equation together with the as-

sumptions described above is
gr - _4f (1)

The boundary conditions are :

{u:Oaty—O (@)

|

u = U at y = L
The shear stress on the left hand side of Eq. (1), 7, is given

by the power-law model.

du

* du
ralr (3)

T=—m dy

The friction factor, f, and generalized Reynolds number,

Re’, are defined as

Fixed plate
N
2 Fluid Flow
y u L
D ——
Moving plate U

Fig.1 Schematic of parallel plates with one
moving plate

- L dapP
r= (%) W
Re' = P (2L) (5)
m

The average fluid velocity, u,, is defined as
1 [ ud (6)
== 6
“=1 ,/; Y

Three kinds of velocity profiles across the parallel plates’
passage may be assumed. The three cases are, respectively,
referred to as Case I , Case Il and Case 1II.
® Case I : The fluid maximum velocity exists between the

parallel plates.
® Case Il : The fluid maximum velocity exists always on

the moving plate.
® Caselll : Velocity profiles with concave shapes.

The Case I occurs practically. Hereafter the velocity pro-

Case I <

Case IT U'> 0

Case III y*, 2
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files for Case I will be examined. The velocity distributions

for Case I were given in the previous report®.

2.2 Heat Transfer

The energy equation is written as

T __(du\_,  dT,
ne L f(dy) poru 4L (7)

The following two types of the thermal boundary conditions
are specified :
Case A (constant heat flux at the moving plate with the

fixed plate insulated) :

8T

—k=— = 0aty =0
;;’% (8)
W = q, at y = L

Case B (constant heat flux at the fixed plate with the mov-

ing plate insulated) :

aT

2T _ g aty = 0

g% B (9)
k-é—;:Oaty:L

where the wall heat fluxes, ¢, and g,, are taken as positive
into the fluid.

Ty is the bulk temperature defined as

[ [, wTdA
[/ udA

dTy/dz is evaluated, from an energy balance, for the par-

- du)
LAY
T, _ 4, |, lr(dy 7 o
dz  pcu,L q

T = (10

allel plates, as

Introducing the dimensionless temperature, 8, defined as
0=T/lg,L/k] (iP)
The energy equation and the boundary conditions may be

expressed in dimensionless form as

d20 1 du' n+l du' n+l
— : . “_ 13
dy =" +Br, {{/0‘ dy dy }u dy- ] a3
50 = 0 a y* =0
Case A : Y (14)
46 . at y* =1
dy" Yy
:116 = —1a y* =0
CaseB : o4 (15
a6 _ 0 a y* =1
dy* y
Br; is Brinkman number, defined as
Br,= [Mm-] )
L’g,

Where 7 =A for Case A and j =B for Case B.

The Nusselt number, Ny, , is defined as

J(T—Ts)]2L 2

Nu. = [ql/ ( J B — 17

U, A = )

where the dimensionless bulk temperature, 6g, is defined as
05 =Ty/[q,L /k] (18

(6, —6g) is calculated as
1
6,05 = / u (6, — 0)dy* 19
0

Solving Eq. (13 together with Eq. (4) or Eq. (5}, 6, —6; is ob-

tained. The details of the results are given in Appendix.

3. Results and Discussion

Representative dimensionless temperature profiles be-
tween the parallel plates are shown in Figs. 2 and 3 for
Cases A and B, regarding to the effects of viscous dissipa-
tion (0 < Br < 1.0) and relative velocity [/ "=—1.0, 0.0, 1.0
forn = 0.5.

In Figs.4 and 5, dimensionless temperature difference
between wall and bulk are shown respectively for Cases A
and B, regarding to the Brinkman numbers, the flow index
(n = 0.1~1.5) and relative velocity U = —1.0, 0.0, 1.0.
The temperature difference, 6, — 60y, decreases with increas-
ing relative velocity, U", for Case A. For Case B the tem-
perature difference, 6, —05, increases with increasing rela-
tive velocity, U".

In Figs. 6 and 7, Nusselt numbers are shown respectively
for Case A and Case B. It is seen from these figures that
Nusselt numbers, Ny, change sharply depending on the
values of Brinkman number, B,, and the relative velocity
of the moving plate, U", for Case A. Whereas for Case B
Nusselt number, Nu,, decreases gradually with an increas-
ing Brinkman number, Bry. The effect of viscous dissipa-
tion on Nusselt number appears more strongly in Case A
than in Case B. This is due to that for Case A, the viscous
dissipation effect becomes strong near the moving plate ow-
ing to the velocity profile deformed by the moving plate.
Nusselt number, Ny, increases with increasing relative ve-
locity U~ for Case A. However, for Case B, Nusselt number,
Nu,, decreases with increasing relative velocity {J". Inci-
dentally, such behavior of Nusselt numbers, Ny, or Nu,, is
predicted by the temperature differences, 6, — 6 , which is
inversely proportional to the Nusselt number, as defined by
Eq.(A-1) and Eq.(A-8). The effect of flow index, n, on
Nusselt number is seen more strongly for Case A than Case
B.



100 Ganbat DAVAA, Toru SHIGECHI and Satoru MOMOKI

4. Conclusions References

The plane Couette-Poiseuille flow of power-law non- 1. T. Shigechi, et al., “Effect of viscous dissipation on
Newtonian fluid was analyzed. The present study showed fully developed heat transfer of plane Couette-Poiseuille
that : laminar flow” Reports of the Faculty of Engineering,

1. The dimensionless temperature difference, 6, — 0, Nagasaki University, vol . 29, No. 53, 153-156 (1999).
(Case A) decreases with increasing values of n for the 2 . Ganbat Davaa, et al., “Plane Couette-Poiseuille flow of
case of U’ >0, whereas 6,—0g, (Case B) increases power-law non-Newtonian fluids” Reports of the Faculty
with increasing values of n. of Engineering, Nagasaki University, vol . 30, No. 54, 29-

2. Ny, (Case A) increases with increasing values of Br 36 (2000).

and n for U® > (0 whereas Nw, (Case B) decreases

with increasing values of By and n.
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Fig.2 Dimensionless temperature profiles for Case A
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Fig.3 Dimensionless temperature profiles for Case B
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Fig.5 Dimensionless temperature difference (#,—6g) for Case B
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Appendix : Nuselt number, Ny, and Ny,
Case A with CASE I Velocity Profile :

1 Lo 1
0, — 0y =/0' w (6, —0)dy = — [f; ua‘(ﬁa_ﬂL)dy""’/I; u;(ﬂb_ﬂL)dy‘] (A-1)

Integrating Eq.(A-1), we have

0L—6B=_(nf:_1)F;[SA1+SA2] (A’Z)

where S,, and S,, are

SA,=—<27;;:11)(1_%)14’;;""“_%(1_%)2“:#
+Wf3,m)<1 L) +F D, a3
Sw=BrF " [{1=U'(1- L)) D+ D] )
D, and D,, are
Du=(A7) {‘ 3(3nng;(1£;(37l1;§;)1 T3) L+ ( al ) (- L)L
L e R
2(2ni(f)n(2322n&21+1) (1-Lo) " L
S TES RSV ETEs (1‘1"5“)%"11 | (a-s)
Dr=(g,%7) [zg; e i v YA (e § [ S N
(oL L ey 10 a6

The Nusselt number on the moving plate, Nu., is obtained as

2

Nu, =
)F*[Su+ Sl

(n+1

Fixed plate 0, q,

Fixed plate

y Non-Newtonian
Fluid Flow___}_.__.¥ Smex .. Y4 0 u
— y Non-Newtonian * a
u u, Fluid Flow___|... 9 Loasc ...
Moving plate q 0, —- u u,
L
Moving plate 0,
Fig.A-1 Temperature profile assumed in this Fig.A-2 Temperature profile assumed in this

analysis (Case A with Case I ) analysis (Case B with Case I )
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Case B with CASE [ Velocity Profile

1 L 1
o-t,= u-(ao—a)dy~=—[ [T w6.-oay+ f%u;(o.,—e‘,)dy'] (A-8)
0 .

Integrating Eq. (A-8), we have

1
b0=05 = = (327 ) F* [Su+ Sl (A-9)

where Sg, and Sp, are

e l@nt1) ]
Se, = ‘“Wl‘m -(1- Lmaz)Lmax +( )(1 Lmax) Lmax+F Dm (A-10)
Se = BroF " [{(1= U’ (1= L,1.)} Dgy + Das) (A-11)

Dy, and Dy, are

(. m \[_ n(32n°+39n*+15n+2) D R =
DB‘—(n+1)[ 2(2n+1)(3n+1)(4n+1)(5n+2)L""" 9 L"'“

i o
+ g () (L) ™ L = (A7)0 Lo) ¥ L
2<2nﬁ(f)"<§ﬂ"n+(il+1) (I_L':“)“"HLJ:E)—W%%,TE(I—L;“)¥ (A-12)

Du=(g351) [_ R m e R ¢ (LS

_%<3’;111)(1 AR A (1 L) L —(-L) " L

G L e 0 ] (a13
The Nusselt number on the fixed plate, Nu,, is obtained as
N = —(nil )F2%[SBI+SBZ] (A-14)




