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BUCKLING OF AN ANNULAR SECTOR PLATE
SUBJECTED TO IN-PLANE MOMENTS

By Kazuo TAKAHASHI*  Yoshihiro NATSUAKI**, Yasunori KONISHI***
and Michiaki HIRAKA WA****

Buckling of an annular sector plate subjected to equal and opposite moments at the radial
edges is examined. The governing differential equation of the plate is solved by a Galerkin
method, Buckling moments and buckling modes are obtained for the annular sector plate
with simply-supported radial edges and arbitrary boundary conditions along the circum-
ferential edges.

Numerical results are shown for various geometrical parameters and three different
boundary conditions. Moreover, the buckling properties of an annular sector plate are
compared with those of a rectangular plate and a circular beam.
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1. INTRODUCTION

It is well known that plate structures subjected to in-plane time varying loads will execute violent
out-of-plane vibrations, although the amplitude of the excitation is much less than the corresponding static
critical load”. This phenomenon is called parametric excitation or dynamic instability, It is necessary to
examine the vibration and buckling properties of the target structures previous to dynamic stability
analysis,

Although many researchers have studied bending and vibration of an annular sector plate, investigations
on the buckling problem have been rather scanty. Rubin? has considered an annular sector plate subjected
to constant in-plane forces along the radial and angular directions. Srinvasan et al. ¥ have presented the
buckling of an annular sector plate subjected to uniform forces along the circumferential edges, Harik? has
presented the buckling of an annular sector plate with clamped radial edges compressed with a uniformly
distributed load. Chu® and Mikami et al.® have studied the local buckling of the web plate of a circular
curved beam with an I-section subjected to in-plane moments, axial and shearing forces. However, the
buckling properties of an annular sector plate subjected to in-plane moments are not clear for various
boundary conditions,

In this paper, the buckling of an annular sector plate with simply supported radial edges and arbitrary
boundary conditions along the circumferential edges subjected to in-plane moments along the radial edges is
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analyzed. The governing differential equation, whose solution is expressed as an expansion in terms of free
vibration modes, is solved by applying a Galerkin procedure.

After the convergence study of the present analysis, the influence of the in-plane forces on the buckling
eigen-value is examined. Numerical results are shown for various geometrical parameters and three
different boundary conditions along the circumferential edges. The buckling properties of an annular

sector plate a1e also compared with those of a rectangular plate and a circular beam subjected to in-plane
moments,

2. GOVERNING EQUATION AND BOUNDARY CONDITIONS

Fig. 1 shows an annular sector plate with the opening (subtended) angle «, outer radius ¢ and inner
radius 5. The polar co-ordinates (7, §) are taken in the neutral surface of the plate.

Fig.1 Geometry and co-ordinates.

When the equal and opposite moments act along the radial edges, in-plane forces N,, N, and N,, due to
in-plane moments are given by using a two-dimensional problem of elasticity” :

__AM (a’t* a, . T N e,
N=—435( = IS QAT P2 ) oo (1)
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where N =(g?— b?*—4 a?b*(In (a/ b)) is constant and N,, N,and N,, are functions of independent variable
T.

The governing differential equation in the present problem can be written as®
1 2 ow 1 'w _
TW(rNra’r> r’Naw—O ............ (4)
where D=Ed?®/{12 (1— v?)} is the bending stiffness, E is Young’s modulus, y is Poisson’s ratio, w is the
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plate deflection and V _<87'2+ o 8’r+ 7 28"
For simply-supported radial edges, the boundary conditions along §=0 and a are as follows :
'LU=M3=0 ................................................................................................................ (5)

where M, is the bending moment in the angular direction.

DVtw—

> is a Laplacian operator in the polar co-ordinates.

The following three boundary conditions along the circumferential edges (=5 and g) are considered in
the present analysis

case ] : simply-supported edges;

E ey B | R L T P P PP P PP R P P PP PP PRSP R P TR P PRPIPPPPPR ( 6 )
case [[ . clamped edges;
T T T LRy TCIRTTRPIT: (7)
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case [[I : free edges;
T L T P P T P T R P P PP PP PRI PPRTTEPRPPRPER ( 8 )

where M, is the bending moment in the radial direction and V, is the equivalent shearing force.
By denoting £=1r/q, equation (4) can be expressed in the non-dimensional form

iM [?a—g[ff‘(f) } fz( ) 802]——0 ................................................. (9)

L(w)= +—
where N=(1—/5’ y —4,32 (In /8, Al —(ﬂ/f PIn(1/8)+1n §+8°In(8/¢), filé)=—8/§In(1/8)+
In é4+48*In(B/&)+1—p* and B=b/a is the ratio of inner to outer radii (the radius ratio),

3. METHOD OF SOLUTION

Taking these boundary conditions into account, we can express the solution of equation (9) as an
expansion in terms of the free vibration modes. That is,

w=zs; @enWisrl €, B)+++rererermereertten ettt (10)

in which @, is an unknown constant and W, is the eigen-function of the following equation

VA W= FAn Wi < vvr s rmeessmmmm e ettt ettt et (11)
where kg, is the eigen-value of free vibrations. Here, 5 is the half-wave number in the angular direction,
The eigen-function is defined as”

W= Rsn(f) STIL @ rveremrrereer e et s (12)
where R o= Asndan(ksné)+ BonYarlkn)+ Conlan(ksnf)t DsnKanlksné), in which A, Bs, Csn and D,
are constants of integration dependent on the boundary conditions, Ja, and Ya, are Bessel functions, Ia,
and K¢, are modified Bessel functions and a,=nr/a.

Substituting equations (10) and (11) into equation (9) and applying a Galerkin procedure, one has

where p=1, 2, N
Performing integrations of equation (13) and considering the orthogonality property of the eigen-
function W,, as shown in Appendix A, we obtain a set of equations for the unknown constant @, as follows,

k:mImLapn_(M /D)Zs: asnIsmzo .................................................................................... (14)

where L= fﬁ ' Rede, Isp,,:% fﬁ l[éfl( ddig"d%g’"“" fz(S)RmRm]dE.

Equation (14) may be written in the following matrix form

[I]{X}=(M/D)[G]{X} ................................................................................................ (15)
where {Xl={a,nQ2 - and" is the column vector, [J] is the unit matrix and [G] is the square matrix.

By introducing the notation A.,=M /D, equation (15) can be transformed into an eigen-value problem
with respect to the matrix [G] :

[G] {X}=A{X} ............................................................................................................ (16)
where A=1/2A,,.

The geometrical parameters in the present analysis are the opening angle ¢ and the radius ratio g. In
order to compare the buckling properties of an annular sector plate with those of a rectangular plate, it will
be better to define the aspect ratio of an annular sector plate which denotes the ratio of the mean arc length
I=(a+ b)a/2 to the loaded edge length ¢ as

I a(l+p)

= c =3 (1 —ﬂ) ........................................................................................................ (17)
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4. NUMERICAL RESULTS

(1) Convergence study

Fig. 2 shows the convergency of the present solution for the annular sector plate with the radius ratio 8
=(.5. In this figure, the notations case-a and case-b correspond to the buckling eigen-values of the
annular sector plate subjected to positive and negative moments, respectively. The solution of case-a is
obtained for the opening angle a=7/10 in which the solution is close to the minimum buckling eigen-values
of cases T and ]I, while the solution of case-b is obtained for a= /2. The five-term solutions for cases
I and [I and the two-term solutions for case [l converge for both case-a and case-b as shown in Fig. 2.
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Fig.2 Convergency of buckling eigen-values.! §=0.5.

Table1 Comparison of present solution with previous solutions : =0.5.

case present solution Mikami et al.® Chu?
I-b (a==/2) —26.1 —26 —26.2
I-b (e=n/2) —56.9 —57
I-a (e=#/10) 43.5 43
I-a (a=7/10) 71.0 70

Table 1 shows the comparison of the present solution with the previous solutions obtained by Chu?®
(based on the Ritz method) and Mikami et al.® (based on the power series method). In this table, the
solutions of Mikami et al. are taken from the figures in reference® (Fig. 9 through Fig. 12). The present
solutions agree well with the previous solutions as shown in Table 1.

Consequently, it is shown that the present solution converges rapidly and its accuracy is good. The
present method is useful to clarify the buckling problem of the annular sector plates with arbitrary
boundary conditions,

(2) The influence of in-plane forces (N,, N;) on buckling eigen-values

Fig. 3 shows the variation of the maximum in-plane forces Ny, N, and N, with the radius ratio g for the
annular sector plate subjected to the in-plane positive moment. The in-plane force N, in the radial direction
is compressive when the applied moment is negative (case-b). The maximum in-plane forces N,, and N,
rapidly increase with a decrease of the radius ratio 8.

In order to examine the influence of in-plane forces on the buckling eigen-values, the annular sector plate
neglecting either in-plane force N, or N, is analyzed for #=0.5 as shown in Fig, 4. In this figure, the
buckling curves neglecting the in-plane force N, or N, are shown by thin lines. Thicker lines correspond to
the exact buckling curves which consider both in-plane forces. Moreover, chain lines and solid lines
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Fig.4 Influence of in-plane forces on the buckling eigen-value ; §=0.5.

indicate case-a and case-b, respectively. Of course the eigen-value of case-b is negative.

For cases ] and ]I, the in-plane force N, influences the buckling eigen-values as pointed out in
reference?. In the case of buckling curves neglecting N,, the buckling curves due to the positive moment
(case-a) lie below those due to the negative moment (case-b) in contrast with the exact buckling curves,
The buckling curves considering only the effect of N, are monotonic curves and coincide with the exact
buckling curves in relatively large aspect ratio 4 as shown in Fig. 4, although N, is less than 25 % of Ny,
(see Fig. 3).

On the other hand, N, influences the buckling eigen-values of case [I. The exact buckling curves
coincide with the buckling curves considering only the effect of N, because there are no restraints along the
circumferential edges where N, has a maximum value.

(3) Buckling properties of the annular sector plate

Fig. 5 through Fig. 8 show the variation of the buckling eigen-value A., with the aspect ratio yx for the
annular sector plates with radius ratios §=0.8, 0.6, 0.4 and 0. 2. Inthese figures, the notation n denotes
the falf-wave number in the angular direction,

The buckling curves for §=0. § shown in Fig, 5 are similar to those of the rectangular plate®. That is,
the buckling curves of case | or case ]| have the same minimum eigen-value which is independent of the
half-wave number 7, and the buckling eigen-values of case [ decrease monotonically with increase of 4.

Since the in-plane force N, grows with a decrease of g8, the difference in buckling curves between case-a
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Fig.7 Variation of buckling eigen-value with aspect ratio : g=0. 4.

74s



Buckling of an Annular Sector Plate Subjected to In- Plane Moments 97

100 T T T T
\
Rer "\ Y O O
80 - .\-\ A‘\ N ,case D-a +ML ) (* ()' M
N\ R e e =:  case-a case-b
3
T R — case [ -a
case I-b
3 case I -b
N,
N,
case m-a\.\,‘_l __________ T - case M -b |
0 1.0 2.0 (a=T) 3.0 " 4.0

Fig.8 Variation of buckling eigen-value with aspect ratio : 8=0.2.

and case-b become larger for each case. Moreover, the buckling curves of case ] -b and case J[-b
transfigure into the monotonic curves. Thus, the buckling properties of the annular sector plate are
dependent on the radius ratio g.

Fig. 9 shows the buckling modes of an annular sector plate with ¢=7/3 and §=0. 2 subjected to positive
and negative moments. The deflection of the compressive force region is larger than that of the tensile
force region. The buckling modes are the local elastic deformation shapes except for case [[-a, in which

the mode consists of rigid body deformation. Therefore, the buckling eigen-values of case [[[-a are less
than those of case [I-b.

Item

case case-a mode case-b mode

casel

casell

Fig. Buckling modes due to positive and negative moments : case | and case [ with $=0.2 and a=n/3.

(4) Comparison of cases I and II with a rectangular plate

Fig. 10 summarizes the relation between the minimum buckling eigen-value A, and the radius ratio g for
an annular sector plate whose buckling curves are the same pattern as that of a rectangular plate, The
buckling coefficients of a rectangular plate having the same boundary and loading conditions are also shown
in Fig. 10. The minimum buckling eigen-values of cases T and ]| are different from that of the rectangular
plates with a decrease of radius ratio 8. It is impossible to estimate the buckling moments of an annular
sector plate by using the rectangular plate analogy when the radius ratio g is less than (.8.

(5) Comparison of case I with a circular beam

An annular sector plate with a very large radius ratio may be regarded as a circular beam. The
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Fig.10 Variation of minimum buckling eigen-value with radius ratio.

bending-torsional buckling moment of a circular beam, which consists of the rectangular cross-section
(thickness d, height ¢) and Poisson’s ratio y=(.3, is given by

rorm Ichr=l.i§9 ix/@iﬁ)’_,_l_%s (%)2 ................................................................... (18)

where »/=(1+8)/{2(1—8)

Fig. 11 shows a comparison of the buckling eigen-values between the present solution for case [l with 2
=(). 6 and the bending-torsional buckling eigen-value of a circular beam calculated by equation (18). The
buckling eigen-value of the annular sector plate subjected to a positive moment (case-a) can be estimated
by the beam theory as shown in Fig. 11 even when the plate has such high cross-section as §=(. 6. On the
other hand, the solution of the beam theory is different from that of the thin plate theory for case-b with x4
<2.0. This may be because the buckling mode of an annular sector plate subjected to a positive moment
(case-a) consists of a rigid body deformation the same as a circular beam based on the beam theory (see

Fig.9).
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beam theory (case-b) 4
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Fig.11 Comparison of buckling eigen-value for case I with beam theory solution : =0.6.

5. CONCLUSIONS

In the present paper, the buckling problem of an annular sector plate subjected to in-plane moments along
the radial edges is analyzed, The conclusions are as follows.

(1) In the case of an annular sector plate simply-supported or clamped along the circumferential
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edges, the buckling eigen-value due to the negative moment is smaller than that due to the positive moment
under the influence of an in-plane force in the radial direction.

(2) Itisimpossible to estimate the buckling moment of an annular sector plate with simply-supported
or clamped edges by using a rectangular plate analogy when the radius ratio is less than (. 8.

(3) The buckling eigen-value of an annular sector plate, free along the circumferential edges, is
influenced by an in-plane force in the angular direction.

(4) The buckling eigen-value of an annular sector plate with the free edges subjected to a positive
moment agree well with the bending-torsional buckling moment of a circular curved beam when the radius
ratio is greater than (.6.

APPENDIX A : Integrations involved in a Galerkin procedure

(1) Orthogonality property of the eigen-function of the annular sector plate

1 =0 (s#p)
[ RoaRmtas (o—p) (A1)
(2) Definite integral
1
['LL (e L) Rtz = | a0 2 R |- [ et S e g
B ) Ron ARy A
=— f fl df df LT L RLLTILIILIR I PEPRPREEEEeD ( -2)
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