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Abstract
The gram-negative anaerobic bacterium Porphyromonas gingivalis is a major causative agent of chronic

periodontitis. Porphyromonas gingivalis strains have been classified into virulent and less-virulent strains
by mouse subcutaneous soft tissue abscess model analysis. Here, we present the whole genome sequence
of P. gingivalis ATCC 33277, which is classified as a less-virulent strain. We identified 2090 protein-coding
sequences (CDSs), 4 RNA operons, and 53 tRNA genes in the ATCC 33277 genome. By genomic compari-
son with the virulent strain W83, we identified 461 ATCC 33277-specific and 415 W83-specific CDSs.
Extensive genomic rearrangements were observed between the two strains: 175 regions in which
genomic rearrangements have occurred were identified. Thirty-five of those genomic rearrangements
were inversion or translocation and 140 were simple insertion, deletion, or replacement. Both strains con-
tained large numbers of mobile elements, such as insertion sequences, miniature inverted-repeat
transposable elements (MITEs), and conjugative transposons, which are frequently associated with
genomic rearrangements. These findings indicate that the mobile genetic elements have been deeply
involved in the extensive genome rearrangement of P. gingivalis and the occurrence of many of the
strain-specific CDSs. We also describe here a very unique feature of MITE400, which we renamed
MITEPgRS (MITE of P. gingivalis with Repeating Sequences).
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1. Introduction

Periodontal disease, the major cause of tooth loss in
the general populations of industrial nations,1,2 is a
chronic inflammatory disease of the periodontium
that leads to erosion of the attachment apparatus
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and supporting bone for teeth3 and is one of the most
frequently occurring infectious diseases in humans.4

Recently, a number of epidemiological studies have
shown significant relationships between periodontal
diseases and cardiovascular diseases.5–8 Several peri-
odontal pathogens, including Porphyromonas gingiva-
lis, have been found in atherosclerotic plaques.9,10

Porphyromonas gingivalis is a gram-negative anaero-
bic bacterium that is classified in the genus
Porphyromonas, family Porphyromonadaceae, order
Bacteroidales, class Bacteroides, phylum Bacteroidetes.11

The bacterium, which is often found in deep periodon-
tal pockets of humans, is asaccharolytic and highly
proteolytic. Porphyromonas gingivalis produces a
broad array of potential virulence factors involved in
tissue colonization and destruction as well as host
defense perturbation. Potential virulence factors of
P. gingivalis have been extensively described in several
reviews.12–14 Among these, fimbriae (FimA fimbriae
and Mfa1 fimbriae), which are responsible for attach-
ment of bacterial cells to host cell surfaces, and pro-
teolytic enzymes such as Arg-gingipain (Rgp) and
Lys-gingipain (Kgp), which degrade various host pro-
teins, have been studied in detail.15–17 However, no
systematic analysis of P. gingivalis virulence factors
has yet been carried out.

Using the mouse subcutaneous soft tissue abscess
model, P. gingivalis strains are divided into virulent
and less-virulent strains. Virulent strains such as
W83 typically induce a necrotic lesion at the site of
injection within 24 h. An extending gangrene-like
necrosis spreads, secondarily along fascial planes
into the abdominal and thoracic areas between 24
and 48 h, producing a foul-smelling and bloody
exudate under the animal’s skin. Sloughing and scab
formation from necrosis of the epidermis, weight
and hair loss, and animal death from microbial
sepsis also are common clinical features. Less-virulent
strains such as ATCC 33277 produce only a localized
abscess 3 days after subcutaneous inoculation.18

W83 has already been genome-sequenced.19 Strain
ATCC 33277 is the type strain of P. gingivalis and
has been widely used for characterization of patho-
physiological features of the microorganism. We
have used molecular genetic techniques to study
P. gingivalis and have constructed a number of
mutants from strain ATCC 33277 to investigate the
roles of various genes in the pathogenicity of P. gingi-
valis.20–25 In the present study, we determined the
whole genome sequence of strain ATCC 33277 and
performed a genomic comparison of ATCC 33277
and W83. Our findings showed that extensive
genome rearrangements have taken place between
the two strains. Transposable elements appear to
have played central roles in the generation of
these genome rearrangements, which have in turn

created many strain-specific genes, including several
potentially virulence-related genes.

2. Materials and methods

2.1. Genome sequencing
Porphyromonas gingivalis ATCC 33277 was

obtained from the American Type Culture Collection
(ATCC) and has been kept for more than 20 years.
Porphyromonas gingivalis W83 was obtained from
Dr M. J. Duncan (Department of Molecular Genetics,
The Forsyth Institute). Porphyromonas gingivalis
GAI7802 was obtained from Dr E. Hoshino (Niigata
University School of Dentistry), TDC60, TDC117,
and TDC275 were obtained from Dr K. Ishihara
(Tokyo Dental College), and SU63 was obtained
from Dr M. Yoneda (Fukuoka Dental College). For
preparing the genomic DNA, a single colony of each
P. gingivalis strain was grown at 378C anaerobically
(10% CO2, 10% H2, 80% N2) in brain heart infusion
broth (BD Bioscience, San Jose, CA, USA) sup-
plemented with 5 mg of hemin and 0.5 mg of mena-
dione per ml.

The genomic DNA was randomly sheared by
Hydroshear (GeneMachines) and used for genomic
library construction. We prepared two pTS1-based
random genomic libraries with insert sizes of 1–2 kb
or �10 kb. Sequencing was carried out using BigDye
v3.1 chemistry on ABI 3700 or ABI 3730 sequencers
(Applied Biosystems) or ET chemistry on MegaBACE
4500 sequencers (GE Healthcare). The whole
genome sequence was obtained by assembling
36 394 reads (9.5-fold coverage) from both shotgun
libraries. The Phred/Phrap software package26 was
used for base-calling, quality assessment, and
sequence assembly. Assemblies were visualized for
counting-based variations and detecting misassembly
using Consed software.27 Numbers and lengths of the
NotI fragments of the ATCC 33277 chromosome pre-
dicted from the determined nucleotide sequence
agreed well with those observed in pulsed field gel
electrophoresis analysis of NotI-digested ATCC
33277 genomic DNA.28

2.2. Sequence analysis
Protein-coding sequences (CDSs) were identified by

using the combination of GENOME GAMBLER v1.51,29

CRITICA,30 GENEHACKER,31 and GLIMMER v2.0 pro-
grams.32 The sequences of 30 terminal regions of all
16S ribosomal RNA genes in W83, and ATCC 33277
were identical to that of Bacteroides fragilis
(AGAAAGGAGG, the accession number M61006).
Each CDS was thus reviewed manually for the pre-
sence of a start codon (ATG, TTG, or GTG) and a
potential ribosome-binding sequence that should be
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related to a part of the AGAAAGGAGG sequence.
Functional annotation of the CDSs was made on the
basis of results of homology searches against public
protein (nr) database from NCBI (http://www.ncbi.
nlm.nih.gov/) by the BLASTP program.33 tRNA genes
were identified by the tRNAscan-SE program.34 All-
to-all BLASTP analysis of CDSs was performed
between W83 and ATCC 33277 to identify conserved
and strain-specific CDSs. Since each genome con-
tained a number of multi-copied CDSs such as trans-
posase genes, we first grouped these multi-copied
CDSs in each genome using BLASTCLUST33 (The
threshold used was �90% amino-acid sequence iden-
tity.). The largest CDS in each multi-copied CDS group
was used as the representative of each group for the
identification of conserved and strain-specific CDSs.
In the present study, we defined conserved CDSs as
ones that had 60–140% of the length of a query
sequence and showed �90% sequence identity in
bidirectional best-hit analysis. The MUMmer
program35 was used to define conserved genomic
regions, inversions, and translocations between the
two genomes. The Pip Maker program36 was also
used for DNA sequence alignment.

2.3. PCR analysis
The total genomic DNA of ATCC 33277 and two

pairs of PCR primers (CTnPg1-left and CTnPg1-right,
CTnPg1-up and CTnPg1-down, Supplementary Table
S1) were used to detect the excision of a conjugative
transposon (CTn), CTnPg1. These primer pairs were
designed to amplify the attP and attB regions for
CTnPg1, respectively. PCR amplification was per-
formed by using 100 ng of the genomic DNA and
LA Taq (Takara Shuzo, Tokyo, Japan) in the following
setting: preheating (948C for 1 min) and 30 cycles
of DNA denaturation (948C for 20 s), primer anneal-
ing (558C for 30 s) and DNA extension (688C for
2 min). The amplified fragments were subjected to
direct sequencing to determine the nucleotide
sequences of the attP and attB sites.

2.4. RNA isolation and real-time PCR
Porphyromonas gingivalis cells were grown to the

mid-exponential phase. Total RNA was isolated from
the harvested cells using an RNeasy Mini Kit (Qiagen
Sciences, Valencia, CA, USA) and reverse-transcribed
in a reaction mixture containing a random primer
(Promega Co., Madison, WI, USA), dNTP mixture,
RNase inhibitor (Wako Pure Chemical Industries,
Ltd., Osaka, Japan), dithiothreitol, Superscript II
(Invitrogen, Carlsbad, CA, USA), and DEPC-treated
water. Real-time quantitative PCR was performed
using Full Velocity SYBR Green QPCR Master Mix
(Stratagene, La Jolla, CA, USA) according to the

manufacturer’s instructions. Primer sequences for
the real-time PCR are listed in Supplementary Table
S1. PCR amplification was performed in the following
setting: preheating (958C for 5 min) and 30 cycles of
DNA denaturation (958C for 10 s), and primer
annealing/DNA extension (608C for 30 s). The
expression level of each targeted gene was normalized
to that of the 16S rRNA gene. The comparative cycle
threshold method37 was used for relative
quantification.

2.5. Nucleotide sequence accession numbers
The fully annotated genome sequence of P. gingivalis

strain ATCC 33277 has been deposited in GenBank/
EMBL/DDBJ databases under the accession number
AP009380. Nucleotide sequences of the glucose
kinase-encoding genes (glk) of five P. gingivalis strains
have been deposited under the accession numbers
AB293447 (strain TDC60), AB293448 (TDC117),
AB293449 (TDC275), AB293450 (SU63), and
AB293451 (GAI7802).

3. Results and discussion

3.1. General features of the ATCC 33277 genome
The genome of ATCC 33277 comprised a single cir-

cular chromosome of 2 354 886 bp with an average
G þ C content of 48.4% (Fig. 1). The size was almost
the same as that of W83 (2 343 476 bp). The ATCC
33277 genome contained 2090 CDSs (PGN No.)
with an average size of 970 bp, covering 86.1% of
the whole chromosome sequence. It contained 4
RNA operons (rrn, 5S rRNA-23S rRNA-tRNAAla-
tRNAIle-16S rRNA) and 53 tRNA genes that provide
specificity for all kinds of amino acids. The numbers
of rrn operons and tRNA genes were identical to
those of W83. By the x2 analysis, we identified 13
regions with atypical nucleotide composition on the
ATCC 33277 chromosome (Fig. 1, 8th circle). Many
genes in the regions exhibited higher similarity to
the genes in other bacterial species such as B. fragilis
than those in strain W83, suggesting that they have
been introduced to ATCC 33277 by horizontal gene
transfer.

3.2. Strain-specific CDSs
To more precisely compare the CDS sets encoded

on the ATCC 33277 and W83 genomes, we reanno-
tated CDSs on the W83 genome by the same criteria
as those used for ATCC 33277. We detected 114 CDSs
(PGa No.) in the W83 genome that had not been
annotated by Nelson et al.19 They included many
fragments of transposases of insertion sequences
(ISs) but at least 27 function-assignable genes, such
as those for translocase SecE subunit, pseudouridine
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synthases, and lysine-specific cysteine proteinase
(Supplementary Table S2). In total, we identified
2023 CDSs in W83.

ATCC 33277 and W83 genomes had a number of
multi-copied CDSs such as those for IS transposases.
ATCC 33277 and W83 contained 53 and 32 multi-
copied CDS groups, respectively; the gene products
of each group exhibited �90% amino-acid sequence
identity (Supplementary Tables S3 and S4). In bidirec-
tional best-hit analysis to identify conserved CDSs
between the two strains, we used the largest CDS in
each multi-copied CDS group as the representative
of each group. By the analysis, we identified 1490
conserved CDSs, 461 ATCC 33277-specific CDSs,
and 415 W83-specific CDSs. The strain-specific CDSs
are listed in Supplementary Tables S5 and S6,
respectively.

Most of the strain-specific CDSs encoded hypotheti-
cal proteins of unknown functions, but function-
predictable W83-specific CDSs included several
genes that may be related to the higher virulence of
the strain, such as those for glycosyltransferase

(PG0110), a protein required for capsular polysac-
charide biosynthesis (PG0111), sensor histidine
kinase (PG0719), surface antigen PgaA (PG0742),
and thiol protease (PG1055). The two strains
encoded different sets of DNA restriction-modifi-
cation system proteins.

3.3. CTn and transposon
ATCC 33277 contained a variety of mobile genetic

elements. We found four copies of CTns that were
absent in W83 (Fig. 2). CTnPg1-a is 44.3 kb in size
and encodes 50 CDSs (PGN_0046 to PGN_0095),
including a set of genes for conjugative transfer
and integration as well as those for an Naþ-driven
multi-drug efflux pump. Several genes showed moder-
ate sequence homologies to the genes of CTns
of Bacteroides species.38–40 CTnPg1-b, which is
9.7 kb in size and encodes 15 CDSs (PGN_1281 to
PGN_1295), is identical to a part of CTnPg1-a
(PGN_0046 to PGN_0060). One end of CTnPg1-b
has been disrupted by multiple IS insertions. We
identified two additional CTns, CTnPg2 and CTnPg3,
but both were also truncated and highly degraded
by multiple IS insertions.

We identified two identical copies of a novel com-
posite transposon (Tn) named TnPg17-a and
TnPg17-b in the ATCC 33277 genome. TnPg17 is
16.8 kb in size and has ISPg3 at both ends. Target
site duplications of 4 and 7 bp were found for
TnPg17-a and TnPg17-b, respectively. TnPg17
carries genes for a tetR family transcriptional regula-
tor, ABC transporter ATP-binding proteins, and a
carboxyl-terminal processing protease.

3.4. IS and miniature inverted-repeat transposable
element

A total of 93 IS elements (including 38 partial
copies) and 48 miniature inverted-repeat transposa-
ble elements (MITEs) (including 18 partial copies)
were found in ATCC 33277 (Table 1). The IS elements
identified were classified into six types, ISPg1–ISPg6,
all of which are also present in W83.19 MITEs com-
prise a group of small mobile genetic elements and
are massively amplified often in plants.41 They do
not encode transposases by themselves but have
terminal inverted repeats (TIRs) that are the same as
or very similar to those of some IS elements, and
they are thus transposable by the action of transpo-
sase provided in trans by the cognate IS element. In
ATCC 33277, we identified three types of MITEs,
MITE239, MITE700, and MITE464, all of which have
also been identified on the W83 genome.19 The struc-
ture of MITE239 was well conserved between the
copies, 239 bp in length and with the same TIR as

Figure 1. Circular map of the chromosome of P. gingivalis strain
ATCC 33277. From the outside, the first and second circles
show CDSs on the plus and minus strands, respectively. CDSs
conserved in strains ATCC 33277 and W83 are indicated in
red and ATCC 33277-specific CDSs in blue. The 3rd to 5th
circles show IS elements (orange, ISPg1; light green, ISPg2;
magenta, ISPg3; cyan, ISPg4; brown, ISPg5; blue, ISPg6), MITEs
(magenta, MITE239; black, MITEPgRS; cyan, MITE700), CTns,
and Tns (blue, CTnPg1-a, CTnPg1-b, CTnPg2, and CTnPg3; red,
TnPg17), respectively. The 6th and 7th circles show rrn
operons and tRNA genes, respectively. The 8th circle shows the
result of x2 analysis of nucleotide composition. Regions
exhibiting values of .600 are indicated in red and those of
,600 are indicated in blue. The G þ C skew and G þ C
content are shown in the 9th and 10th circles, respectively.
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that of ISPg3. However, MITE700 and MITE464 exhib-
ited highly variable structures, and their structural
features have not been described in detail in the pre-
vious report.19 Therefore, we first determined the
structural features of these two MITEs by comparing
the sequences of all of the MITE700 and MITE464
copies identified in ATCC 33277.

MITE700 also contains the same TIRs as those of
ISPg3, but its internal sequence is not related to that
of MITE239. We identified 14 copies of MITE700
(including seven partial copies) in ATCC 33277.
Multiple sequence alignment analysis revealed that
MITE700 is �720 bp in length but exhibits a high
sequence variation due to internal deletions/
insertions. The sequence of a region located just
downstream of the left TIR is highly variable
between the copies. We identified three subtypes of
MITE700 based on the sequence variation in this
region (Supplementary Fig. S1).

Figure 2. Novel CTns and Tn identified in the ATCC 33277 genome. (A) Structures of CTnPg1-a, CTnPg1-b, CTnPg2, and CTnPg3. (B)
Structure of TnPg17. CDSs are depicted by arrows and IS elements by open boxes (vertically striped arrow, tra or mob genes; thin
arrow in box, IS transposase; black arrow, partial transposase; hatched arrow, other functionally annotated CDS; white arrow,
hypothetical protein). Black triangles in CTnPg1-a and CTnPg1-b indicate direct repeat sequences, and black boxes in TnPg17 MITEs.
The regions of CTnPg1-a and CTnPg1-b indicated by gray shading have an identical sequence.

Table 1. IS elements and MITEs on the ATCC 33277 and W83
genomes

Mobile
genetic
element

Strain

ATCC 33277
Number of intact copies
(number of fragments)

W83a

Number of intact copies
(number of fragments)

ISPg1 31 (18) 11 (40)

ISPg2 2 (4) 5 (3)

ISPg3 22 (7) 4 (5)

ISPg4 0 (2) 10 (0)

ISPg5 0 (4) 10 (1)

ISPg6 0 (3) 1 (2)

ISPg7 0 (0) 1 (0)

MITE239 12 (2) 5 (0)

MITEPgRS 11 (9) 14 (7)

MITE700 7 (7) 7 (2)
aDetermined based on the reannotated W83 data.
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MITE464 has the same TIRs as those of ISPg1. We
found that its internal sequence consists of three
types of repeat sequences (referred to as Repeats A,
B, and C) (Fig. 3 and Supplementary Fig. S2).
Repeats A and B exist just inside both TIRs, constitut-
ing a direct-repeat-like structure. Between the two
Repeat A/B regions, multiple Repeat C regions exist
in tandem, but the number of Repeat C regions
varies between MITE464 copies, up to 14 repeats.
Since no such repeating structure has been found in
any MITEs described so far, we propose a new name
for this MITE, MITEPgRS (MITE of P. gingivalis with
Repeating Sequences).

On the basis of the structural features of each MITE,
we rescreened IS elements and MITEs on the W83
genome, and we identified 93 IS elements (including
51 partial ones) and 35 MITEs (including nine partial
ones) (Table 1 and Supplementary Table S7). The
total numbers of IS elements and MITEs of the two
strains were very similar, but the compositions
showed a significant difference. In ATCC 33277,

ISPg1, ISPg3, and MITE239 have been significantly
expanded, whereas no intact copies of ISPg4 and
ISPg5 are present. A previous study also showed that
the numbers of copies and insertion sites of ISPg1
(formerly IS1126) markedly varied among P. gingiva-
lis strains.42 The composition of IS elements and
MITEs may be an important feature to distinguish
strains of P. gingivalis.

3.5. Genome rearrangement
Whole genome sequence alignment analysis by

using the MUMmer program revealed that extensive
genomic rearrangements have taken place between
ATCC 33277 and W83 (Fig. 4). A number of
X-shaped structures were observed, indicating that
symmetrical inversions repeatedly occurred around
the replication axis. We identified a total of 175
genomic regions in which genomic rearrangements
took place in either strain. Inversions or translocations
were observed in 35 regions, and simple insertions,

Figure 3. MITE in P. gingivalis with Repeating Structure (MITEPgRS). (A) Schematic presentation of the consensus structure of MITEPgRS and
the structures of 20 copies of MITEPgRS identified in the ATCC 33277 genome are shown. Three kind of repeat sequences, Repeats A, B,
and C, are depicted by colored boxes. Red triangles indicate IR sequences and a black thick line in MITEPgRS_08 a unique nucleotide
sequence. (B) Consensus sequences of Repeats A, B, and C are shown.
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deletions, or replacements were observed in 140
regions. Remarkably, about two-thirds of these
genomic rearrangements were associated with the
presence of mobile genetic elements (IS, MITE, Tn,
CTn, and a not well-defined large mobile element of
W83). Large inversions or translocations have
occurred between two rrn operons, duplicated DNA
regions coding for a histone-like family DNA-binding
protein (PGN_0614 and PGN_1407), a hypothetical
protein (PGN_0615 and PGN_1406), elongation
factor P (PGN_0616 and PGN_1405), two identical
11 bp sequences (TAATCATAATA), and two similar
12/13 bp sequences (TTTTC(GCC/AATG)AAAA).
DNA sequences similar to the 12/13 bp sequences
were also present in the att sites for CTnPg1 described
in the following section. These rearrangements
appear to be deeply involved in the generation of
strain-specific CDSs: 60% of ATCC 33277-specific
CDSs and 68% of W83-specific CDSs were created by
these genomic rearrangements.

ATCC 33277 and W83 both contain four rrn
operons of identical nucleotide sequences, but chro-
mosomal locations of the four rrn operons differ
markedly between the strains. By comparing the rrn

operon-flanking regions in the two strains, we found
that an inversion had taken place between rrn1 and
rrn4 (see Supplementary Fig. S3). Additional
genomic rearrangements that have occurred in the
genomic loci other than rrn operons further altered
the relative locations of the four rrn operons on the
two genomes. We analyzed the structures of rrn
operon-flanking regions in five other strains of P. gin-
givalis (TDC60, TDC117, TDC275, SU63, and
GAI7802) using a set of orientation-specific primer
pairs, and we found that all of the rrn operon-flanking
regions of these five strains have the same structures
as those of ATCC 33277 (Supplementary Fig. S3).
This result suggests that inversions between rrn1
and rrn4 have taken place specifically in the W83
strain lineage among the strains tested.

The genomic regions for the biosynthesis of cell
surface molecules have also significantly diverged
between the two strains. They included the regions
for FimA fimbrilin, Mfa1 fimbrilin, capsular polysac-
charides, RagA and RagB antigens, and glycosyl
transferase.42–45 Among these, the difference in the
locus for capsular polysaccharide biosynthesis (GP1
locus) is particularly important because capsular

Figure 4. The DNA sequence identity plot of P. gingivalis ATCC 33277 and W83 chromosomes. The dnaA gene is located at the left and
bottom corner. Black circles indicate mobile genetic elements (CTn Tn, IS, MITE, or a not-well-defined large mobile element of
W83). The chromosomal locations of other genetic elements that mediated inversions or translocations are shown in the right: rrn
operons (black squares), duplicated regions coding for a histone-like DNA binding protein, a hypothetical protein and elongation
factor P (open squares), 12/13 bp repeat sequences (black triangle), and 11 bp repeat sequences (open triangle).
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polysaccharide is known to be one of the major viru-
lence factors of P. gingivalis. The GP1 locus of ATCC
33277 (PGN_0223-PGN_0236) is identical to that
reported for strain 38143 except that one nonsense
mutation was found in the PGN_0223-homolog of
strain 381 (Supplementary Fig. S4).

The clustered regularly interspaced short palindro-
mic repeats (CRISPR) locus also exhibits notable struc-
tural difference between the two strains. The numbers
of repeats in the repeat/spacer region of the CRISPR-
30-36 locus are 120 in ATCC 33277 and 23 in
W83 (Fig. 5). The nucleotide sequences of the
repeats are identical, but there is no homology in
the spacer regions. A part of the CRISPR-associated
gene (cas) encoding region has been replaced by
very different sequences. Of interest is that the gene
organization of the cas-encoding region of ATCC
33277 is nearly identical to that of B. fragilis
YCH46 but very different from that of W83. The
gene products also exhibit a high level of similarity
of amino-acid sequences to those of B. fragilis
YCH46. These results suggest that these genes may
have been horizontally transferred between P. gingiva-
lis and B. fragilis.

Among the bacterial species so far sequenced,
Bacteroides species are phylogenically most closely
related to P. gingivalis. However, two sequenced B. fragilis
strains show no such extensive genomic rearrangement
as seen in P. gingivalis.40,46 Shigella flexneri, a pathogen
for dysentery, contains a large number of IS elements
and the bacterium has induced extensive genomic
rearrangements among strains, which may create

differences in virulence and epidemicity.47,48 In P. gingi-
valis, the genomic rearrangements induced by IS and
other mobile genetic elements may also have been
involved in the generation of strain-to-strain difference
in virulence. In this context, a recent finding that treat-
ment of P. gingivalis cells with H2O2 induces expression
of the ISPg1 transposase gene is noteworthy.49 The
fact that the number of copies of ISPg1 varies among
P. gingivalis strains and the fact that ISPg1 is frequently
associated with genome rearrangements suggest that
oxidative stress-induced expression of the ISPg1 transpo-
sase gene results in transposition of ISPg1 that may
mediate genomic rearrangements in P. gingivalis, and
such rearrangements may contribute to the adaptation
of P. gingivalis strains to an oxygen concentration-
changeable environment in the gingival crevice.

3.6. Excision of CTnPg1
We could not exactly determine the attachment

(att) site of CTnPg1 by comparing the genome
sequences of ATCC 33277 and W83 because inte-
gration of CTnPg1-a has induced a genomic
rearrangement and half of CTnPg1-b has been
deleted. We therefore examined whether CTnPg1
can be excised from the chromosome and form a cir-
cular intermediate. By PCR analysis of the chromoso-
mal DNA of ATCC 33277 using two primers
targeting the left and right ends of CTnPg1 (Fig. 6A),
we obtained a PCR product of 1500 bp in size
(Fig. 6B). We further investigated whether a cast-off
genome can be generated by the excision of CTnPg1

Figure 5. Comparison of CRISPR-30-36 regions of P. gingivalis and B. fragilis. Locations and directions of CDSs (arrows) and repeat regions
(black rectangles) are drawn to scale. Homologous CDSs are indicated by gray shading, and their amino-acid sequence identities are also
shown. CDSs for IS transposases are indicated by black arrows, cas genes by vertically striped arrows, other functionally annotated CDSs
by hatched arrows, and CDSs for hypothetical proteins by white arrows. The identity between PGN_1964 and PG2016 is 15.7%.
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using two PCR primers targeting the CTnPg1-a-flank-
ing regions, and we obtained a PCR product of
1000 bp in size (Fig. 6A and B). By comparing
the sequences of the two PCR products with the
genome sequence of ATCC 33277, we identified
the core sequence of the att site for CTnPg1,
ATTTTCA(CA/TT)GAAAA (Fig. 6C). The same
sequence was also found at one end of CTnPg1-b.

3.7. Glucose kinase-encoding gene
Disability of saccharolysis is one of the major

characteristics of P. gingivalis. Consistent with
this, the glucose kinase-encoding gene (glk)
(PG1737) has a nonsense mutation in strain W83
(Supplementary Fig. S5). Nelson et al.19 suggested

that the defect of glk accounts for asaccharolysis of
P. gingivalis. In ATCC 33277, the glk gene
(PGN_0380) has also been disrupted by an
insertion of MITE239 but contains no nonsense
mutation. Therefore, we analyzed the glk genes of
other P. gingivalis strains to know which type of
genetic defect is generally observed in P. gingivalis.
Unexpectedly, however, the glk genes of five strains
examined (strains TDC60, TDC117, TDC275, SU63,
and GAI7802) were all intact. We detected no non-
sense mutation or MITE239 insertion although a
few amino-acid substitutions were observed in these
glk genes (Supplementary Fig. S5B). To determine
whether the glk gene is expressed in the five strains,
we quantified the mRNA of the glk gene using the

Figure 6. Excision of CTnPg1-a. (A) Schematic presentation of the structure of CTnPg1-a and the strategy to detect the excised circular
intermediate and cast-off chromosome. Locations of PCR primers are indicated by black arrow heads. CDSs on CTnPg1 are depicted
by black arrows and other CDSs by open arrows. Open triangles indicate att regions of CTnPg1. (B) Agarose gel electrophoresis of
PCR products obtained by the primer pairs CTnPg1-right/CTnPg1-left (lane 1) and CTnPg1-up/CTnPg1-down (lane 2). (C)
Sequence alignment of attP, attB, attL, and attR regions of CTnPg1. The 14 bp core sequence is indicated by a box.
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Kgp-encoding gene (kgp) as a control (Supplementary
Table S8). In this analysis, a large amount of the glk
gene transcript was detected in all of the five strains.
On the other hand, all the strains used in this study
(ATCC 33277, W83, and five other strains) were con-
firmed to be asaccharolytic (data not shown). Thus,
these data suggest that defects of glk, which were
detected in W83 and ATCC 33277, cannot always
account for asaccharolysis of P. gingivalis. Further
work is needed to clarify physiological roles of
glucose kinase in P. gingivalis and what is responsible
for asaccharolysis of P. gingivalis.

3.8. Conclusion
In this study, we determined the whole genome

sequence of ATCC 33277, a less-virulent P. gingivalis
strain, and carried out a genomic comparison with a
virulent strain, W83. Although the genome size and
GC content are almost the same, we detected exten-
sive rearrangements between the two strains, many
of which have been induced by various mobile
genetic elements (IS, MITE, Tn, and CTn). Such struc-
tural alterations of the P. gingivalis genomes gener-
ated many strain-specific CDSs and may be closely
associated with difference in virulence of the two
strains.
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