# Synergistic Effects of PdO<sub>x</sub>-CuO<sub>x</sub> Loadings on Methylmercaptan Sensing of Porous WO<sub>3</sub> Microspheres Prepared by Ultrasonic Spray Pyrolysis

Nantikan Tammanoon<sup>a,b,c</sup>, Takumi Iwamoto<sup>d</sup>, Taro Ueda<sup>d</sup>, Takeo Hyodo<sup>d</sup>,

Anurat Wisitsoraat<sup>c,e</sup>, Chaikarn Liewhiran<sup>a,c,f\*</sup>, and Yasuhiro Shimizu<sup>d\*\*</sup>

<sup>a</sup>Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

<sup>b</sup>Graduate School, Chiang Mai University, Chiang Mai 50202, Thailand

<sup>c</sup>Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research

Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

<sup>d</sup>Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521,

Japan

<sup>e</sup>National Security and Dual-Use Technology Center, National Science and Technology

Development Agency (NSTDA), Klong Luang, Phathum Thani 12120, Thailand

<sup>f</sup>Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai

50200, Thailand

Tel.: +66-81-408-2324; Fax: +66-53-943-445

\* Corresponding author: E-mail: cliewhiran@gmail.com

\*\* Corresponding author: E-mail: shimizu@nagasaki-u.ac.jp

# **ABSTRACT GRAPHICS**



#### ABSTRACT

In this work, the PdO<sub>x</sub>-CuO<sub>x</sub> co-loaded porous WO<sub>3</sub> microspheres were synthesized with varying loading levels by ultrasonic-spray pyrolysis (USP) using polymethylmethacrylate (PMMA) microspheres as a vehicle template. The as-prepared sensing materials and their fabricated sensor properties were characterized by X-ray analysis, nitrogen adsorption, and electron microscopy. The gas-sensing properties were studied towards methylmercaptan (CH<sub>3</sub>SH), hydrogen sulfide (H<sub>2</sub>S), dimethyl sulfide (CH<sub>3</sub>SCH<sub>3</sub>), nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), methane (CH<sub>4</sub>,), ethanol (C<sub>2</sub>H<sub>5</sub>OH) and acetone (C<sub>3</sub>H<sub>6</sub>O) at 0.5 ppm under atmospheric conditions with different operating temperatures ranging from 100-400°C. The results showed that the CH<sub>3</sub>SH response of USP-made WO<sub>3</sub> microspheres were collaboratively enhanced by the creation of pores in the microsphere and co-loading of CuO<sub>x</sub> and PdO<sub>x</sub> at low operating temperatures ( $\leq 200^{\circ}$ C). More importantly, the CH<sub>3</sub>SH selectivity against H<sub>2</sub>S was significantly improved and high selectivity against CH<sub>3</sub>SCH<sub>3</sub>, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> were upheld by the incorporation of PdO<sub>x</sub> to CuO<sub>x</sub>-loaded WO<sub>3</sub> sensors. Therefore, the co-loading of PdO<sub>x</sub>-CuO<sub>x</sub> on porous WO<sub>3</sub> structures could be promising strategies to achieve highly selective and sensitive CH<sub>3</sub>SH sensors, which would be practically useful for specific applications including biomedical and periodontal diagnoses.

**KEYWORDS:** WO<sub>3</sub>, Co-loading, Copper, Palladium, Ultrasonic spray pyrolysis, Methylmercaptan sensor.

# 1. INTRODUCTION

A particular attention has been recently focused on an exhaled breath analysis for biomedical applications because some gaseous components can serve as indicators of many physiological parameters, which can diagnose the status of possible diseases. For instance, the patients who suffer from diabetes, lung cancer and halitosis can release acetone, toluene, hydrogen sulfide (H<sub>2</sub>S) and methylmercaptan (CH<sub>3</sub>SH).<sup>1-2</sup> In particular, CH<sub>3</sub>SH, an important volatile organic sulfur compound (VOSC), is a principal indicator of halitosis symptoms caused by periodontitis (gum disease). In the periodontitis patients, large periodontal pockets formed in mouth increase the concentration of CH<sub>3</sub>SH in the exhaled breath, which will become higher than that of another key marker, H<sub>2</sub>S.<sup>3</sup> The application of gas-sensing devices to analyses of VOSCs in the exhaled breath will allow rapid and non-invasive diagnoses of these diseases. However, their gas-sensing properties need to be improved to sensitively and selectively detect these specific gases at lower temperatures as well as a lower threshold limit value (TLV) before they can be practically used with patients.

Semiconductor oxide-based gas sensors have numerous applications due to their advantages such as low cost, high sensitivity, fast response and simplicity of use. In addition to tin dioxide  $(SnO_2)^4$ , tungsten trioxide (WO<sub>3</sub>) has been considered as another promising candidate for detections of H<sub>2</sub>S, CH<sub>3</sub>SH, and hydrogen (H<sub>2</sub>) as reported in Table 1. Poongodi et al. synthesized WO<sub>3</sub> nanoflakes array via the template-free facile electrodeposition method, and they demonstrated excellent sensing properties towards H<sub>2</sub>S.<sup>5</sup> Lee et al. investigated the sensing properties of ZnO, SnO<sub>2</sub>, and WO<sub>3</sub>-based materials to detect VOCs and H<sub>2</sub>S in exhaled breath, and found that the most suitable materials for detection of H<sub>2</sub>S is 0.01 wt% Au-loaded WO<sub>3</sub>.<sup>1</sup> Furthermore, Amogelang et al. showed that the nanocrystalline VO<sub>2</sub>-WO<sub>3</sub> composites effectively

improved the sensing properties to  $H_2S$ .<sup>6</sup> Besides, Kabcum et al. enhanced the sensing properties of WO<sub>3</sub> nanorods loading with PdO<sub>x</sub> nanoparticles to H<sub>2</sub> and modifying the microstructure with a distinctive preparation process and the study results demonstrated that 1 wt% Pd-loaded WO<sub>3</sub> exhibited the highest response towards H<sub>2</sub> at the optimal operating temperature of 150°C.<sup>7</sup> Wu et al. compared the H<sub>2</sub>-sensing performances of commercial WO<sub>3</sub>, mesoporous WO<sub>3</sub> (m-WO<sub>3</sub>) and Pd-loaded m-WO<sub>3</sub> at room temperature and confirmed that the mesoporous structure and Pd loading effectively improved the H<sub>2</sub>-sensing properties of WO<sub>3</sub>.<sup>8</sup> In another work, Ueda et al. investigated the effect of Ru or Pd loading on WO<sub>3</sub> on the detection of CH<sub>3</sub>SH at 150°C and concluded that 0.5 wt% Ru-loaded WO<sub>3</sub> was the most suitable CH<sub>3</sub>SH-sensing material <sup>9</sup>. Recently, He et al. synthesized flower-like WO<sub>3</sub> microspheres modified with CuO nanoparticles by a two-step hydrothermal method and reported that the optimized WO<sub>3</sub>/CuO composites (WO<sub>3</sub>:CuO = 7:1 in molar ratio) exhibited large response, excellent selectivity and fast response to ppm-level H<sub>2</sub>S at a low operating temperature of 80°C.<sup>10</sup>

According to the literatures, it can be inferred that the gas responses towards these specific gases can be effectively enhanced by functionalization with suitable catalysts, e.g.,  $PdO_x$  and  $CuO_x$ , on highly porous WO<sub>3</sub> structures. Generally, porous metal oxide structures can be synthesized via template-based or template-free techniques. The template-based methods, which include additional temporary template materials during synthesis followed by template removal steps, are considered more effective than template-free approaches due to higher attainable porosity, process controllability, reproducibility, and versatility.<sup>3</sup> Mesoporous nanostructures of metal oxides including  $SnO_2$ ,  $In_2O_3$ , and  $WO_3$  have recently been synthesized via different synthetic routes including sol-gel, impregnation, and ultrasonic spray pyrolysis (USP) using some templates such as silica and polymethyl-methacrylate (PMMA) microspheres <sup>8, 11</sup>. Among

these, USP using PMMA microsphere template is particularly promising since it was demonstrated to yield porous metal oxide materials with large surface area suitable as catalyst supports providing excellent gas-sensing performances.<sup>9, 12-13</sup> Nevertheless, additional improvement is demanded to a lower detection limit and enhance selectivity for advanced applications including breath analysis. Co-loading of two or more catalysts is recently reported to offer superior gas-sensing behaviors for differently prepared metal oxide materials.<sup>14-15</sup> However, the approach has not been applied to porous metal oxide structures synthesized by USP with PMMA template. In this study, we investigated for the first time the synergistic effects of functionalized bimetallic oxide catalysts (CuO<sub>x</sub> and PdO<sub>x'</sub>) on the sensing properties of the porous WO<sub>3</sub> structures made by USP with PMMA template. The sensors were tested towards CH<sub>3</sub>SH and H<sub>2</sub>S, which were two key markers for the periodontitis patients.

**Table 1.** A comparison of gas-sensing performance of different semiconducting metal oxide materials.

| Sensing materials                                    | Synthesis route                | morphology                  | Target<br>gas      | Conc.       | Response            | Temp. | Refs.           |
|------------------------------------------------------|--------------------------------|-----------------------------|--------------------|-------------|---------------------|-------|-----------------|
| WO <sub>3</sub>                                      | electrodeposition              | nanoflakes                  | $H_2S$             | 10 ppm      | 85%                 | 300°C | 5               |
| 0.03 wt% Au-doped WO <sub>3</sub>                    | heat-treatment                 | nanoparticles               | $H_2S$             | 2 ppm       | 12.40               | 300°C | 1               |
| VO <sub>2</sub> -WO <sub>3</sub>                     | ball milling                   | rod-shaped & hollow-shaped  | $H_2S$             | 5 ppm       | 9.1                 | 300°C | 6               |
| 1 wt% Pd-loaded WO <sub>3</sub>                      | precipitation/<br>Impregnation | nanoparticles &<br>nanorods | $H_2$              | 0.5 vol%    | 7.8×10 <sup>5</sup> | 150°C | 7               |
| 1 wt% Pd-loaded WO <sub>3</sub>                      | hydrothermal                   | mesoporous                  | $H_2$              | 5000<br>ppm | 11.78               | RT    | 8               |
| 0.5 wt% Ru-WO <sub>3</sub>                           | precipitation                  | porous oxide                | CH₃SH              | 0.5 ppm     | 3.09                | 200°C | 9               |
| WO <sub>3</sub> /CuO composite                       | hydrothermal                   | nanoparticles & flower-like | $H_2S$             | 5 ppm       | 105.14              | 80°C  | 10              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ | Ultrasonic spray<br>pyrolysis  | porous oxide                | CH <sub>3</sub> SH | 0.5 ppm     | 11                  | 200°C | Present<br>work |

# 2. MATERIALS AND METHODS

#### 2.1. Synthesis of Porous Pd-Cu/WO<sub>3</sub> Microspheres

Porous WO<sub>3</sub> microspheres were prepared by USP which was previously established by our group <sup>11-12</sup>. The precursor solution was prepared by dissolving appropriate amounts (0.025 M) of ammonium tungstate pentahydrate ( $(NH_4)_{10}W_{12}O_{41} \cdot 5H_2O$ ), copper (II) nitrate (Cu(NO<sub>3</sub>)<sub>2</sub>), and palladium (II) nitrate (Pd(NO<sub>3</sub>)<sub>2</sub>) in the DI water. Subsequently, home-made PMMA microspheres (mean diameter of PMMA microspheres: ca. 70 nm) were mixed with the precursor solution.<sup>11-12</sup> In a typical preparation procedure, the precursor mixture was set in a plastic container, and the mist was then atomized by an ultrasonic vibrator (Honda Electric Co., Ltd., HM-303N, 2.4 MHz). At that time, only small droplets separated in a glass vessel were fed into an electric furnace at 700°C via air flow. As the mists were momentarily heated in the electric furnace, the evaporation of water and the thermal decomposition of precursors together with PMMA microspheres simultaneously occurred, resulting in the formation of spherical and porous (pr)-WO<sub>3</sub>-based oxide powders. The USP-made dense-WO<sub>3</sub> microsphere prepared without PMMA microsphere templates was labeled as d-WO<sub>3</sub> whereas pr-WO<sub>3</sub> microspheres loaded with  $CuO_x$  were indicated as  $nCu/pr-WO_3$  (n: the loading amount of Cu (wt%)). Moreover, pr-WO<sub>3</sub> co-loaded with PdO<sub>x</sub> and CuO<sub>x</sub> were denoted as  $mPd-0.1Cu/WO_3$  (m: the loading amount of Pd (wt%)). The Cu and Pd contents were varied in the range of 0.1–1 wt%.

# 2.2. Preparation of Sensing Films and Measurement of Their Gas-Sensing Properties

Sensing films were prepared by screen-printing methods. The obtained WO<sub>3</sub>-based powders were mixed with an appropriate amount of  $\alpha$ -terpineol (generally, powder:  $\alpha$ -terpineol = 1: 2 in weight) and then thoroughly ground in a mortar for 30 min to form a homogeneous paste

for screen printing. The resulting paste was screen-printed on an alumina substrate equipped with a pair of interdigitated Pt electrodes to form a sensing film. Finally, the resulting film was calcined at 550°C for 5 h in ambient air for binder removal prior to sensing test. The gas-sensing performances of these sensors were measured towards 0.5 ppm CH<sub>3</sub>SH, H<sub>2</sub>S, dimethyl sulfide (CH<sub>3</sub>SCH<sub>3</sub>), nitric oxide (NO), nitrogen dioxide (NO<sub>2</sub>), methane (CH<sub>4</sub>,), ethanol (C<sub>2</sub>H<sub>5</sub>OH) and acetone (C<sub>3</sub>H<sub>6</sub>O) in dry air at operating temperatures ranging from 100 to 400°C. All sensors were exposed to a gas sample for 30 min at each gas concentration and the air flux was then resumed for 30 min. The magnitude of gas response was defined as the ratio ( $R_a/R_g$ ) of sensor resistance to gas ( $R_g$ ) balanced in dry air to that in dry air ( $R_a$ ). The response time ( $t_{res}$ ) was the time to reach 90% of stabilized resistance signal while the recovery time was the time required to recover 90% of baseline resistance.

# 2.3. Structural Characterizations

The phase composition and crystallinity of nanopowders were measured by X-ray diffraction (XRD: Shimadzu, JDX-8030) using Cu $K_a$  radiation (20 kV, 20 mA) with a sweeping speed of 2°/min. Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses were performed to estimate the specific surface area and pore size distribution of these powders using the N<sub>2</sub> adsorption isotherm (Micromeritics Inst. Corp., TriStar 3000). The microstructures and size of the microspheres as well as sensing films were observed using transmission electron microscope (TEM: JEOL JSM-2100Plus), field-emission TEM/scanning TEM (FETEM/STEM: Thermo Scientific TALOS F200X), and scanning electron microscopy (SEM; JEOL Ltd., JSM-7500F). In addition, the elemental composition and oxidation states of powders as well as sensing films were characterized by X-ray photoelectron spectroscopy using Al $K_a$  radiation (XPS,

Kratos Analytical Ltd., ACIS-TLATRA DLD), and the binding energy was calibrated using the C1s level (285.0 eV) from usual organic contaminations.

#### 3. RESULTS AND DISCUSSION

#### 3.1. Crystal Structure and Morphology of the Powders

The phase composition and crystallinity of the as-prepared base WO<sub>3</sub> microspheres and Pd-Cu bimetallic oxide functionalized  $WO_3$  microspheres were evaluated from XRD data as illustrated for pr-WO<sub>3</sub>, 0.1Cu/pr-WO<sub>3</sub> and 0.2Pd-0.1Cu/pr-WO<sub>3</sub> in Fig. 1. The complete XRD data were provided in Fig. S1 (Supporting Information). All the diffraction peaks were in accordance with the orthorhombic WO<sub>3</sub> phase (JCPDS No. 01-089-4480), suggesting high crystallinity of these particles. It demonstrated that all samples exhibited three dominant peaks corresponding to (002), (020), and (200) planes of the WO<sub>3</sub> phase. Nevertheless, the secondary diffraction peaks of CuO<sub>x</sub> and PdO<sub>x</sub> phases were not observed in these patterns due to very low loading amounts of  $CuO_x$  and  $PdO_x$ . In spite of the absence of peaks related with  $CuO_x$  or  $PdO_x$ ,  $CuO_x$  and  $PdO_x$  loadings might affect the crystallite size of WO<sub>3</sub> nanostructures. This effect could be clearly seen from the crystallite size of all samples estimated from Debye-Scherer's equation using full widths at half maximum as reported in the inset of Fig. 1. It revealed that the crystallite size of d-WO<sub>3</sub> was smaller than that of pr-WO<sub>3</sub>, dictating that the formation of porous WO<sub>3</sub> structures via the PMMA template led to the decrease of the WO<sub>3</sub> crystallite size from 19.2 to 16.8 nm. In contrast, CuO<sub>x</sub> loading with the small Cu content of 0.1 wt% caused the crystallites size to increase from 16.8 to 22.3 nm. However, the crystallite size tended to decrease from 22.3 to 16.4 nm with increasing Cu content from 0.1 to 1 wt%. Moreover, the additional loading of 0.1-1 wt% Pd onto 0.1Cu/pr-WO<sub>3</sub> resulted in the decrease of the WO<sub>3</sub> crystallite size

from 22.3 to 16.0-16.3 nm almost independent of Pd content. The overall results indicated that  $CuO_x$  and  $PdO_x$  loading led to small reductions of the WO<sub>3</sub> crystallite size. A possible explanation was that the loaded  $CuO_x$  and  $PdO_x$  nanoparticles on porous WO<sub>3</sub> structures acted as surface grain growth inhibitors.



**Figure 1.** The XRD patterns of pr-WO<sub>3</sub>, *0.1*Cu/pr-WO<sub>3</sub> microspheres and *0.2*Pd-*0.1*Cu/WO<sub>3</sub> microspheres. Inset: Crystallite sizes of all materials plotted versus Cu and Pd contents.

The surface chemical compositions and oxidation states of  $ICu/pr-WO_3$  powder and sensor were investigated by XPS as shown in Fig. 2. The full survey spectrum (Fig. 2(a)) confirmed the existence of W4f, Cu2p, O1s, and C1s from typical surface organic contaminations. By omitting the carbon contamination (see the inset table), the Cu contents of ICu/pr-WO<sub>3</sub> powder and sensor were estimated to be 1.05 and 1.73 wt%, respectively. The value of the powder was close to the value expected from the amount of Cu added to the precursor solution for the UPS process while that of the sensor was considerably higher due possibly to the aggregation of CuO<sub>x</sub> on the surface after annealing. The W4f core-level spectrum of powder (Fig. 2(b)) exhibited one doublet pair consisting of W4f<sub>7/2</sub> and W4f<sub>5/2</sub> at binding energies of 36.2 eV and 38.3 eV while those of the sensor were slightly shifted to 35.9 eV and 38.0 eV, respectively. Both results could be assigned to the highest oxidation state of W<sup>6+</sup> for WO<sub>3</sub>.<sup>7, 16</sup>



**Figure 2.** (a) survey, (b) W4f, (c) Cu2p, and (d) O1s XPS spectra of as prepared *1*Cu/pr-WO<sub>3</sub> powder and sensor.

As for the Cu element (Fig. 2(c)), the Cu2p core level of the powder could be decomposed into the main doublet pair,  $Cu2p_{3/2}$ :Cu2p<sub>1/2</sub>, located at 932.6:952.4 eV and the tiny doublet pair positioned at 934.9:954.9 eV. Similarly, the Cu2p core level of the sensor contained

the major and minor doublet pairs at 932.5:952.5 eV and 934.5 eV:954.4 eV, respectively. The main doublet pair could be ascribed to Cu<sup>+</sup> of Cu<sub>2</sub>O, while the minor doublet pair should be attributed to Cu<sup>2+</sup> of CuO.<sup>17-18</sup> The contribution of Cu<sup>2+</sup> for the powder and sensor were found to be 18.7% and 37.3%, respectively. The results indicated that Cu<sub>2</sub>O was partially oxidized into CuO after annealing in air at 550°C for 5 h. As for the oxygen element (Fig. 2(d)), the O1s spectrum of the powder could be deconvoluted into three components located at 530.7 (main peak), 531.8 and 533.1 eV while those of the sensor were similarly positioned at 530.6 (main peak), 532.0 and 533.1 eV. The main, secondary and minor peaks could be ascribed to outermost lattice oxygen (O<sup>2-</sup>) of CuO<sub>x</sub>-loaded WO<sub>3</sub> microspheres, chemisorbed oxygen (O<sub>ads</sub>) and hydroxyl surface groups (OH<sup>-</sup>) due to water adsorption.<sup>19-20</sup> It also revealed that the contributions of O<sub>ads</sub> and OH<sup>-</sup> species were relatively low for the sensor, suggesting that these species were desorbed after the high-temperature annealing in air.

The surface elemental composition and the chemical states of *I*Pd-*0.1*Cu/pr-WO<sub>3</sub> powder and sensor were presented in Fig. 3. The XPS survey scans (Fig. 3(a)) confirmed the presence of W4f, Cu2p, Pd3d, O1s, and C1s in the powder and sensor. By excluding the carbon contamination, the Cu and Pd contents of *I*Pd-*0.1*Cu/pr-WO<sub>3</sub> powder were determined to be 0.16 and 0.53 wt% while those of the sensor were 0.18 and 1.27 wt%, respectively (inset table in Fig. 3(a)). The Fig. 3(b-d) showed the high resolution XPS spectra of W, Cu, and Pd elements. The W4f signals (W4f<sub>7/2</sub>:W4f<sub>5/2</sub>) of the powder and sensor were found at 36.0:38.2 and 35.8:37.9 eV, respectively. The two pairs could also be associated with the highest oxidation state of W<sup>6+</sup> for WO<sub>3</sub> <sup>16</sup>. For the Cu element, the Cu2p core level of the powder contained a single doublet pair (Cu2p<sub>3/2</sub>:Cu2p<sub>1/2</sub>) positioned at 932.6:952.6 eV corresponding to Cu<sup>+</sup> of Cu<sub>2</sub>O.<sup>18</sup> In the case of sensor, the Cu2p core level comprised one main and one minor doublet components located at 932.5:952.4 eV and 934.8:953.7 eV corresponding to the oxidation states of Cu<sup>+</sup> and Cu<sup>2+</sup>, respectively. It revealed that Cu<sub>2</sub>O was partially oxidized into CuO (22.7%) after annealing in air at 550 °C. Regarding Pd element, the Pd3d core level of the powder could be divided into the main and minor doublet pairs (Pd3d<sub>5/2</sub>:Pd3d<sub>3/2</sub>) located at 337.7:343.5 eV and 335.8:340.9 eV, respectively. For the sensor, the Pd3d core level exhibited only a single main doublet pair found at 337.3:342.7 eV. The main and minor doublet pairs could be assigned to Pd<sup>2+</sup> of PdO and Pd<sup>0</sup> of metal, respectively.<sup>21-22</sup> The results dictated that the metallic Pd species (17.3 %) formed in the powder were mostly oxidized into Pd<sup>2+</sup> after annealing in air at 550°C for 5 h. Concerning oxygen, the O1s peaks of the *I*Pd-0.*I*Cu/pr-WO<sub>3</sub> powder and sensor also comprised three deconvoluted components (530.5-530.7 eV: O<sup>2-</sup>, 531.2-531.5 eV: O<sub>ads</sub> and 532.6-532.9 eV: OH) similar to that of *I*Cu/pr-WO<sub>3</sub>. In addition, the contribution of O<sub>ads</sub> and OH<sup>-</sup> species were much lower for the sensor indicating that they were largely desorbed after annealing in air similar to the case of *I*Cu/pr-WO<sub>3</sub> powder. Moreover, the *I*Pd-0.*I*Cu/pr-WO<sub>3</sub> powder contained relatively high contents of O<sub>ads</sub> and OH<sup>-</sup> in relation to the presence of metallic Pd species.

The SEM micrographs of as-prepared d-WO<sub>3</sub>, pr-WO<sub>3</sub>, 0.1Cu/pr-WO<sub>3</sub>, and 0.2Pd-0.1Cu/pr-WO<sub>3</sub> microspheres were shown in Fig. 4(a)–(d) with insets of their high-resolution images. Morphologies of all samples were spherical with varying particle sizes in the range of 100–600 nm. In addition, samples prepared with PMMA microspheres exhibited well-developed porous structures due to the thermal decomposition of PMMA microspheres while d-WO<sub>3</sub> displayed solid spherical features with relatively small particle sizes compared with those of other porous samples. Moreover, the morphologies and the particle sizes of porous samples were almost independent of the CuO<sub>x</sub> and PdO<sub>x</sub> loading. Figure 4(e–h) showed cross-sectional SEM photographs of d-WO<sub>3</sub>, pr-WO<sub>3</sub>, 0.1Cu/pr-WO<sub>3</sub>, and 0.2Pd-0.1Cu/pr-WO<sub>3</sub> sensing films after gas-sensing measurements (Fig. 4(e)–(h)). Evidently, all the films were quite homogeneous and the microspheres were connected closely to each other. In addition, there was no significant difference in thickness among these films (12–15  $\mu$ m) demonstrating the controllability of pasting and screen-printing processes.<sup>9, 11</sup> Therefore, USP and screen printing were demonstrated to be promising for the preparation of practical thick-film metal-oxide gas sensors.

The internal porous structure of pr-WO<sub>3</sub>, 1Cu/pr-WO<sub>3</sub>, and 1Pd-0.1Cu/pr-WO<sub>3</sub> microspheres were examined by TEM as shown in Fig. 5. The bright field (BF)-TEM images (Fig. 5 (a), (c), and (e)) demonstrated that the internal structures of the microspheres with diameters of 300-400 nm were mesoporous containing a number of fine nanostructures and pores with dimensions in the range of ~3-30 nm. The inset selected area electron diffraction (SAED) patterns indicated that they were mainly polycrystalline with their diffraction rings corresponding to the (002), (222), and (114) planes of the orthorhombic WO<sub>3</sub> phase in accordance with the XRD data (Fig. 1). The related high-resolution (HR)-TEM images of all samples (Fig. 5 (b), (d), and (f)) illustrated the lattice fringes of crystallites exhibiting d-spacings matched well with various planes of orthorhombic WO<sub>3</sub> phase, confirming high crystallinity of porous WO<sub>3</sub> structures. Moreover, the HR-TEM images of *1*Cu/pr-WO<sub>3</sub> and *1*Pd-0.1Cu/pr-WO<sub>3</sub> samples (Fig. 5(e) and (f)) proved the presence of secondary-phase species loaded on WO<sub>3</sub> surfaces. For *1*Cu/pr-WO<sub>3</sub> (Fig. 5(e)), approximately round and oval nanoparticles were widely observed as darker spots marked with blue arrows on the porous WO<sub>3</sub> structures, dictating that Cu<sub>2</sub>O or CuO species were loaded on porous WO<sub>3</sub> surface rather than doped into WO<sub>3</sub> lattice.



**Figure 3.** (a) survey, (b) W4f, (c) Cu2p, (d) Pd3d, and (e) O1s XPS spectra of as-prepared *I*Pd-*0.1*Cu/pr-WO<sub>3</sub> powder and sensor.



**Figure 4.** SEM images of as-prepared (a) d-WO<sub>3</sub>, (b) pr-WO<sub>3</sub>, (c) *0.1*Cu/pr-WO<sub>3</sub>, and (d) *0.2*Pd-*0.1*Cu/pr-WO<sub>3</sub> microspheres prepared by USP method, together with insets of their highresolution images, and cross-sectional SEM images of (e) d-WO<sub>3</sub>, (f) pr-WO<sub>3</sub>, (g) *0.1*Cu/pr-WO<sub>3</sub>, and (h) *0.2*Pd-*0.1*Cu/pr-WO<sub>3</sub> sensors after measuring their gas-sensing properties.



**Figure 5.** Bright field (BF)-TEM images, selected area electron diffraction (SAED) patterns (inset) and high resolution (HR)-TEM images of (a, b) pr-WO<sub>3</sub>, (c, d) *1*Cu/pr-WO<sub>3</sub>, and (e, f) *1*Pd-0.1Cu/pr-WO<sub>3</sub> microspheres.



**Figure 6.** Nitrogen adsorption/desorption isotherms of (a) pr-WO<sub>3</sub>, (b) 0.1Cu/pr-WO<sub>3</sub> and (c) 0.2Pd-0.1Cu/pr-WO<sub>3</sub> together with corresponding BJH pore size distributions (insets), and (d) specific surface area (*SSA*<sub>BET</sub>) and average particle diameter ( $d_{BET}$ ) of all samples.

When considering the Hume–Rothery rule, the ionic radius of host ion (60 pm for  $W^{6+}$ ) differed from those of loaded Cu species (77 and 73 pm for Cu<sup>+</sup> and Cu<sup>2+</sup>, respectively) beyond the relative radii disparity limit of 15%. In addition, the Cu oxidation states of 1+ and 2+ were very different from that of the W oxidation state of 6+. Therefore, the Cu cations could not stably substitute  $W^{6+}$  lattice sites resulting in the CuO<sub>x</sub> loading on the WO<sub>3</sub> surface. Similarly, the HR-

TEM image of *I*Pd-0.1Cu/pr-WO<sub>3</sub> microspheres (Fig. 5(f)) presented some darker spots marked by arrows on the porous WO<sub>3</sub> structures, which could not be definitely assigned to the phase of CuO<sub>x</sub> or PdO<sub>x</sub>. According to the Hume-Rothery rule, the Pd<sup>2+</sup> cation also could not substitute the W<sup>6+</sup> cation due to their large difference of ionic radii (86 vs. 60 pm) and oxidation state (2+ vs. 6+).<sup>21</sup> The results were consistent with all previous studies reporting Pd and/or PdO loading on WO<sub>3</sub> surfaces.

The representative nitrogen sorption isotherms along with corresponding BJH pore-size distributions (insets) were displayed in Figs. 6(a)–(c). The complete isotherm data were included in Fig. S2 (Supporting information). The data revealed that the adsorption profiles of isotherms for all samples were similar but the dense  $WO_3$  sample (d- $WO_3$ ) exhibited a wide hysteresis feature distinctive from those of all porous WO<sub>3</sub> samples (pr-WO<sub>3</sub>). According to International Union of Pure and Applied Chemistry (IUPAC) classification, this isotherm could be designated as type III corresponding to the unimpeded multilayer adsorption with strong interaction between adsorbates. In addition, the hysteresis loop of d-WO<sub>3</sub> and pr-WO<sub>3</sub> could be matched with type H4 and H3 relating to macro/mesoporous materials with weak capillary condensation in narrow slit-like and slit-shape pores, respectively.<sup>23-24</sup> The narrow slit-like pores could correspond to interparticle voids between solid WO<sub>3</sub> spheres while slit-shape pores were accordingly observed within porous WO<sub>3</sub> spheres as seen in the TEM images (Fig. 5). The corresponding BJH poresize distributions (insets) provided detailed differences in pore characteristics of the two WO<sub>3</sub> structures. The BJH profile of d-WO<sub>3</sub> (inset of Fig. S2(a)) exhibited only one narrow maxima at  $\sim$ 1 nm while those of pr-WO<sub>3</sub> displayed multi-mode pore size distributions (inset of Figs. 6(a)-(c)) with two main BJH peaks at pore diameters of  $\sim 1$  and  $\sim 40-80$  nm. The narrow micropore peaks at  $\sim 1$  nm of d-WO<sub>3</sub> should correspond to small interparticle gaps among closely packed solid microsphere and the broad peak at ~1 nm of pr-WO<sub>3</sub> could similarly relate to relatively large short-range interparticle cavities of the porous WO<sub>3</sub> structures. The broad peak at ~40–80 nm should be corresponding to meso/macropores created due to PMMA decomposition since the pore sizes were concordant with the nominal diameter of home-made PMMA microspheres (ca. 70 nm). Furthermore, the peak pore volume related to meso/macropores decreased due to loading with CuO<sub>x</sub> as well as PdO<sub>x</sub> and the reductions were much higher after PdO<sub>x</sub> loading. The BET specific surface area (*SSA*<sub>BET</sub>, left axis)) and average BET particle diameter ( $d_{BET}$ , right axis) calculated from the isotherm data were reported in Fig. 6(d). It clearly demonstrated that the formation of porous structures using the PMMA template significantly increased *SSA*<sub>BET</sub> and reduced  $d_{BET}$ . Additionally, the *SSA*<sub>BET</sub> tended to decrease while the  $d_{BET}$  increased accordingly with increasing Cu and Pd contents. The results might be due to the agglomerations of CuO<sub>x</sub> and PdO<sub>x</sub> nanoparticles in the pores of pr-WO<sub>3</sub> microspheres. Moreover, the dependencies of  $d_{BET}$  on the Cu and Pd contents were similar to those of XRD crystallite size.

### **3.2.** Gas-Sensing Properties

Response transients of pr-WO<sub>3</sub> sensors with varying Cu contents and a d-WO<sub>3</sub> sensor to 0.5 ppm CH<sub>3</sub>SH at 200°C in air and the related CH<sub>3</sub>SH response together with response and recovery times of these sensors at various operating temperatures (100-400°C) were shown in Fig. 7. When the sensors were exposed to CH<sub>3</sub>SH (Fig. 7(a)), their resistances decreased regularly, confirming a typical n-type semiconducting character towards this reducing gas. Among these, the d-WO<sub>3</sub> sensor exhibited the smallest resistance at 200°C in air and relatively small response to CH<sub>3</sub>SH at low operating temperatures (100-200°C) as displayed in (Fig. 7(b)). Additionally, the CH<sub>3</sub>SH response tended to increase gradually with increasing operating

temperature. On the other hand, the introduction of pore structures into the  $WO_3$  microspheres led to the increased resistance in air over the entire temperature range and enhanced CH<sub>3</sub>SH responses at low temperatures ( $\leq 200^{\circ}$ C). In addition, the pr-WO<sub>3</sub> sensor displayed the largest CH<sub>3</sub>SH response at 200°C. The loading of CuO<sub>x</sub> to the pr-WO<sub>3</sub> microspheres further improved the  $CH_3SH$  response at most working temperatures. Among all the sensors, pr-WO<sub>3</sub> sensor loaded with the smallest Cu amount of 0.1 wt% (0.1Cu/pr-WO<sub>3</sub>) offered the largest CH<sub>3</sub>SH response at 200°C. However, the enhancement of CH<sub>3</sub>SH response tended to deteriorate with increasing Cu content. Although the 0.2Cu/pr-WO<sub>3</sub> and 0.5Cu/pr-WO<sub>3</sub> sensors showed relatively large CH<sub>3</sub>SH responses at low temperatures (especially 100°C), the response and recovery times as displayed in Fig. 7(c)-(d) were very poor because the adsorption and desorption rates of CH<sub>3</sub>SH were very low due to limited thermal energy, prohibiting practical use of these sensors at these operating conditions. At working temperatures higher than 200°C, the responses of most sensors tended to decline steadily while the response and recovery times inclined to decrease substantially with increasing temperature (Fig. 7(b)-(d)). The results confirmed that the appropriate increase in the operating temperature helped improving the response speed and recovery speed. Thus, the working temperature would be selected by trading off between response and response/recovery times. Overall,  $CuO_x$ -loaded porous WO<sub>3</sub> microspheres with the appropriate Cu amount of 0.1 wt% offered the optimal response of 6.5 to 0.5 ppm CH<sub>3</sub>SH while attaining moderate response and recovery times at the moderate temperature of 200°C.

Co-loadings with 0.1–1 wt% Pd were applied to further enhance the CH<sub>3</sub>SH response of porous WO<sub>3</sub> microspheres with the optimal Cu content of 0.1 wt% (0.1Cu/pr-WO<sub>3</sub>). The response transients of 0.1Cu/pr-WO<sub>3</sub> sensors with varying Pd co-loading contents to 0.5 ppm CH<sub>3</sub>SH at 200°C in air and the CH<sub>3</sub>SH response along with response and recovery times of the

sensors at different operating temperatures were presented in Fig. 8. Fig. 8(a) showed that the coloading of 0.1 wt% Pd on the 0.1Cu/pr-WO<sub>3</sub> sensor resulted in a decrease in baseline resistance of the 0.1Cu/pr-WO<sub>3</sub> sensor but the resistance in air tended to increase with the additional increase of Pd content up to 1 wt%. After exposure to  $CH_3SH$ , these sensors also displayed the usual n-type gas-sensing behavior with reductions of resistance. The response characteristics at 200°C were quite similar to those at other operating temperatures (Fig. 8(b)). In addition, the coloadings of PdO<sub>x</sub> and CuO<sub>x</sub> were effective in enhancing the CH<sub>3</sub>SH response of the 0.1Cu/pr-WO<sub>3</sub> sensor, particularly at low temperatures ( $\leq 300^{\circ}$ C). However, the responses of most Pdloaded 0.1Cu/pr-WO<sub>3</sub> sensors tended to reduce gradually while the response and recovery times inclined to decrease steadily with increasing temperature similar to those with no  $PdO_x$  coloading (Fig. 8(b)-(d)). Thus, Pd-co-loading did not evidently change the temperature-dependent characteristics of CH<sub>3</sub>SH sensing parameters. Furthermore, the CH<sub>3</sub>SH response of the 0.1Cu/pr-WO<sub>3</sub> sensor tended to increase with increasing Pd co-loading content from 0 to 0.2 wt% but then inclined to decrease with the additional increase of Pd content up to 1 wt%. In particular, the 0.2Pd-0.1Cu/pr-WO<sub>3</sub> sensor provided the largest response of 8.6 to 0.5 ppm CH<sub>3</sub>SH at 200°C. The roles of  $PdO_x$  and  $CuO_x$  as well as the pore structure to the  $CH_3SH$ -sensing properties of WO<sub>3</sub> microspheres would be further discussed in the next section.



**Figure 7.** (a) Response transients of pr-WO<sub>3</sub> sensors with varying Cu contents and d-WO<sub>3</sub> sensor to 0.5 ppm CH<sub>3</sub>SH at 200°C in air, (b) the CH<sub>3</sub>SH response, (c) response time and (d) recovery time of these sensors versus operating temperature.



**Figure 8.** (a) Response transients of 0.1Cu/pr-WO<sub>3</sub> sensors with varying Pd co-loading contents to 0.5 ppm CH<sub>3</sub>SH at 200°C in air, (b) the CH<sub>3</sub>SH response, (c) response time and (d) recovery time of the sensors versus operating temperature.

The CH<sub>3</sub>SH selectivity was investigated against 0.5 ppm H<sub>2</sub>S, CH<sub>3</sub>SCH<sub>3</sub>, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and C<sub>3</sub>H<sub>6</sub>O at the optimal operating temperature of 200°C as illustrated in Fig. 9. It revealed that the single loading of CuO<sub>x</sub> actually led to relatively high enhancement of H<sub>2</sub>S response compared with that of CH<sub>3</sub>SH response. In contrast, the responses to CH<sub>3</sub>SCH<sub>3</sub>, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and C<sub>3</sub>H<sub>6</sub>O were low and not evidently affected by the Cu content. Specifically, the *I*Cu/pr-WO<sub>3</sub> sensor exhibited the highest H<sub>2</sub>S response and H<sub>2</sub>S selectivity. With co-loading of 0.2 wt% Pd and 0.1 wt% Cu, CH<sub>3</sub>SH of the *0.1*Cu/pr-WO<sub>3</sub> sensor increased moderately while the H<sub>2</sub>S response decreased substantially and the responses to other gases

changed slightly, causing the sensor to become highly selective to  $CH_3SH$ . As the Pd content increased to 1 wt%, the  $CH_3SH$  response decreased more than the  $H_2S$  response did while those to other gases slightly decreased, resulting in relatively low  $CH_3SH$  selectivity against  $H_2S$  and other gases. The high selectivity with sufficiently high response at the low gas concentration attained via  $PdO_x$  co-loading could enable its practical use in targeted applications particularly the  $CH_3SH$  detection in breath for periodontal diagnoses.



**Figure 9.** Responses of representative sensors to 0.5 ppm CH<sub>3</sub>SH, H<sub>2</sub>S, CH<sub>3</sub>SCH<sub>3</sub>, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and C<sub>3</sub>H<sub>6</sub>O at the optimal operating temperature of 200°C.

# **3.3.** Sensing Mechanisms

The gas-sensing data demonstrated that the introduction of well-controlled macropores into  $WO_3$  microspheres as well as the co-loading of  $PdO_x$  and  $CuO_x$  species on the pr-WO<sub>3</sub>

microspheres were quite effective in improving the response and selectivity to CH<sub>3</sub>SH against H<sub>2</sub>S and several other breath gases. The formation of macropores in WO<sub>3</sub> microspheres understandably improved the gas diffusion from the top surface to the bottom part of the sensing layer and increased the effective gas interaction volume, leading to enhanced gas responses. Concerning the co-loading effects, the PdO<sub>x</sub> and CuO<sub>x</sub> loadings on the pr-WO<sub>3</sub> microspheres could further enhance the CH<sub>3</sub>SH response via two fundamental mechanisms, namely electronic and chemical sensitizations as schematically described in Fig. 10. According to chemical-sensitization mechanisms, the CH<sub>3</sub>SH response originates from the direct combustion of CH<sub>3</sub>SH on the oxide surface through the positively charged adsorption of CH<sub>3</sub>SH and/or the partially oxidized products.<sup>9</sup> Generally, CH<sub>3</sub>SH would be oxidized at elevated temperatures and the partially oxidized product, dimethyldisulfide (CH<sub>3</sub>SSCH<sub>3</sub>), would be mainly produced at around 200°C according to the following reactions<sup>21</sup>:

$$CH_3SH + 30_{ad}^- \rightarrow CO_2 + SO_2 + 2H_2O(g) + 3e^-$$
 (1)

$$2CH_3SH + O_{ad}^- \rightarrow CH_3SSCH_3 + H_2O(g) + e^-$$
(2)

where  $O_{ad}^-$  represented negatively charged oxygen adsorbates on WO<sub>3</sub> surface. The complete oxidation of CH<sub>3</sub>SH (eq. (1)) and the generation of CH<sub>3</sub>SSCH<sub>3</sub> (eq. (2)) simultaneously occurred at some reactive sites on the surface of porous WO<sub>3</sub> as depicted in Fig. 10 (a). The number of oxygen adsorbates decreased by the reaction with CH<sub>3</sub>SH while electrons were released back to porous WO<sub>3</sub> surface resulting in recession of depletion regions and a decrease of resistance. The enhanced reaction rate concerning CH<sub>3</sub>SSCH<sub>3</sub> at 200°C could be a possible reason for the largest CH<sub>3</sub>SH response of *pr*-WO<sub>3</sub> sensors at 200°C.

With loading of  $CuO_x$  at a moderately low content,  $CuO_x$  nanoparticles were dispersed on the porous WO<sub>3</sub> surfaces as depicted in Fig. 10(b). According to the XPS data,  $CuO_x$  mainly comprised Cu<sub>2</sub>O, which was a p-type semiconductor with the nominal energy gap ( $E_g$ ) of 2.1 eV, work function (W) of 5.0 eV and electron affinity ( $\chi$ ) of 3.2 eV <sup>25-26</sup> while WO<sub>3</sub> was n-type with  $E_g = 2.7$  eV, W = 4.9 eV and  $\chi = 3.9$  eV.<sup>22, 27</sup> Thus, CuO<sub>x</sub>-WO<sub>3</sub> (p-n) heterojunctions would be formed through the structure and the small work function difference could induce thin extended depletion regions of electrons in the n-type WO<sub>3</sub> and holes in the p-type CuO<sub>x</sub> as depicted in Fig. 11(a), leading to a small increase of electrical resistance in air. When subjected to CH<sub>3</sub>SH, CuO<sub>x</sub> could chemically catalyze the reactions (1)-(2) via the interaction with the active SH group, causing spillover reactions from CuO<sub>x</sub> nanoparticles to WO<sub>3</sub>. This provided more electrons, causing wider receded depletion regions, lower electrical resistance and higher CH<sub>3</sub>SH response than the unloaded structure (electronic-sensitization effect).<sup>28-29</sup>

The co-loading process added nanoparticles of PdO<sub>x</sub> containing mainly PdO, another ptype semiconductor ( $E_g = 2.5 \text{ eV}$ , W = 3.7 eV and  $\chi = 1.7 \text{ eV}$ )<sup>30-32</sup>, to the structure forming two kinds of heterojunctions: (1) p-n junctions of CuO<sub>x</sub>-WO<sub>3</sub> and PdO<sub>x</sub>-WO<sub>3</sub> and (2) p-p heterojunctions of CuO<sub>x</sub>-PdO<sub>x</sub> on the porous WO<sub>3</sub> surfaces. The hypothetical energy band analysis in Fig. 11(b) revealed that the behavior of PdO-WO<sub>3</sub> heterojunction was distinct from that of CuO<sub>x</sub>-WO<sub>3</sub>. After thermal stabilization of the PdO-WO<sub>3</sub> junctions, holes and electrons would be accumulated in PdO and WO<sub>3</sub> interfacial regions, resulting in receded depletion regions as depicted in Fig. 10(c) and a decrease of electrical resistance in accordance with the electrical data in Fig. 9(a). The electron accumulation in WO<sub>3</sub> at the interface could promote oxygen chemisorption, leading to the increase of  $O_{ad}^-$  concentration beneficial for the reducing reaction of CH<sub>3</sub>SH (Eq. (1)-(2)). In addition, the excellent catalytic activity of PdO<sub>x</sub> towards the sulfur functional group could further enhance the CH<sub>3</sub>SH reactions at the PdO<sub>x</sub>-WO<sub>3</sub> junctions leading to the enhanced CH<sub>3</sub>SH response. As for the CuO<sub>x</sub>-PdO<sub>x</sub> (p-p) heterojunctions as demonstrated in Fig. 11(c), the hole transfers between  $CuO_x$  and  $PdO_x$  led to hole accumulation in  $PdO_x$  and hole depletion in  $CuO_x$  causing changes in electrical behaviors to both catalyst.<sup>33</sup> This electronic interaction between  $PdO_x$  and  $CuO_x$  could further promote the CH<sub>3</sub>SH interactions on WO<sub>3</sub> surfaces via electronic-sensitization effects as depicted in Fig. 10(c).



**Figure 10.** Schematic drawings of  $CH_3SH$ -sensing mechanisms for pr-WO<sub>3</sub> sensors with (a) no loading, (b)  $CuO_x$  loading, and (c)  $PdO_x$ - $CuO_x$  co-loading.



Figure 11. Energy band diagrams of (a)  $Cu_2O-WO_3$ , (b) PdO-WO<sub>3</sub> and (c)  $Cu_2O-PdO$  heterojunctions.

Distinctively,  $H_2S$  was relatively easily oxidized in comparison with  $CH_3SH$  since it would turn into  $SO_2$  and  $H_2O$  with no partially oxidized product during the oxidation reaction. Thus, the  $H_2S$  response would largely depend on the combustion rate of  $H_2S$  especially in the

lower part of the sensing layer. With  $CuO_x$  loading, the H<sub>2</sub>S oxidation would be catalytically enhanced, leading to a higher H<sub>2</sub>S response. In addition, H<sub>2</sub>S easily reacted with CuO<sub>x</sub> to form CuS<sup>34</sup>, augmenting the H<sub>2</sub>S response especially at low temperatures. The co-loading of PdO<sub>x</sub> with  $CuO_x$  could limit the H<sub>2</sub>S oxidation in comparison with the single loading of  $CuO_x$  due possibly to the effect of lower electronic conductivity caused by hole depletion in  $CuO_x$  (Fig. 11 (c)). Moreover, the interaction between  $PdO_x$  and  $CuO_x$  could enhance the decomposition of CuS because of the large oxidation activity of more conductive PdO<sub>x</sub> having accumulated holes (Fig. 11 (c)), which would reduce the formation of CuS from CuO and the H<sub>2</sub>S response. Consequently, the 0.2Pd-0.1Cu/pr-WO<sub>3</sub> sensor exhibited lower H<sub>2</sub>S response and higher CH<sub>3</sub>SH selectivity than the 0.1Cu/pr-WO<sub>3</sub> sensor at a low temperature of 200°C. In the case of CH<sub>3</sub>SCH<sub>3</sub>, the  $CuO_x$  and  $PdO_x$  loadings could not catalyze its reducing reaction at a low temperature since fully oxidized CH<sub>3</sub>SCH<sub>3</sub> molecules required a high dissociation energy. Concerning other gases including, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and C<sub>3</sub>H<sub>6</sub>O, the CuO<sub>x</sub> and PdO<sub>x</sub> catalysts were not effective for enhancing their adsorptions and reactions at low temperatures due partly to the absence of active sulfur functional groups.

#### 4. CONCLUSIONS

In summary,  $PdO_x$ -CuO<sub>x</sub> functionalized porous WO<sub>3</sub> microspheres were successfully synthesized via USP technique with PMMA microsphere templates for CH<sub>3</sub>SH-sensing applications. From structural characterizations, ultra-small secondary nanostructures of CuO<sub>x</sub> and PdO<sub>x</sub> with mixed oxidation states (Cu<sup>+</sup>/Cu<sup>2+</sup> and Pd<sup>0</sup>/Pd<sup>2+</sup>) were formed and well dispersed on porous orthorhombic WO<sub>3</sub> microspheres with 100–600 nm in diameter. The gas-sensing results demonstrated that the formation of macropores in WO<sub>3</sub> microspheres by utilizing PMMA microsphere templates and co-loading of PdO<sub>x</sub> and CuO<sub>x</sub> cooperatively enhanced the CH<sub>3</sub>SH response, especially at a low optimal working temperature. Specifically, the porous WO<sub>3</sub> sensor with optimal Cu and Pd contents of 0.1 wt% and 0.2 wt% exhibited an optimal response of 8.6 to 0.5 ppm CH<sub>3</sub>SH at 200°C. Moreover, the addition of PdO<sub>x</sub> to CuO<sub>x</sub>-loaded WO<sub>3</sub> sensors substantially improved the CH<sub>3</sub>SH selectivity against H<sub>2</sub>S and retained high selectivity against CH<sub>3</sub>SCH<sub>3</sub>, NO, NO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub>. Therefore, the PdO<sub>x</sub>-CuO<sub>x</sub> functionalized porous WO<sub>3</sub> microspheres could be promising candidates for highly sensitive and selective CH<sub>3</sub>SH detections in practical applications including biomedical and periodontal diagnoses.

#### **AUTHOR INFORMATION**

#### **Corresponding Author**

\*C. Liewhiran. E-mail: cliewhiran@gmail.com.

Tel.: +66-81-408-2324 Fax: +66-53-943-440

#### ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the Royal Golden Jubilee Ph.D. Programme (RGJ) (PHD/0152/2559), the Mid-Career Research Grant, National Research Council of Thailand (NRCT). We also wish to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, National Research University (NRU) Project under the Office of the Higher Education Commission (CHE), Ministry of Education, Thailand, Graduate School, Materials Science Research Center, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University. In addition, the authors gratefully acknowledge the Thailand Research Fund for TRF Research Team Promotion Grant (RTA6180004). The special thanks should be given to Graduate School of Engineering, Nagasaki University, Japan, for the sensor facility and other technical assistance.

### REFERENCES

(1) Lee, I.; Choi, S.-J.; Park, K.-M.; Lee, S. S.; Choi, S.; Kim, I.-D.; Park, C. O. The Stability, Sensitivity and Response Transients of ZnO, SnO<sub>2</sub> and WO<sub>3</sub> Sensors under Acetone. Toluene and H<sub>2</sub>S Environments. Sens. Actuators B Chem. 2014, 197, 300-307.

(2) Van den Broek, A. M.; Feenstra, L.; de Baat, C. A Review of The Current Literature on Aetiology and Measurement Methods of Halitosis. J. Dent. 2007, 35 (8), 627-635.

(3) Nonaka, S.; Hyodo, T.; Shimizu, Y.; Egashira, M. Preparation of Macroporous Semiconductor Gas Sensors and Their Odur Sensing Properties. IEEJ Trans. SM 2008, 128 (4), 141-144.

(4) Shimizu, Y.; Kai, S.; Takao, Y.; Hyodo, T.; Egashira, M. Correlation Between Methylmercaptan Gas-Sensing Properties and its Surface Chemistry of SnO<sub>2</sub>-Based Sensor Materials. Sens. Actuators B Chem. 2000, 65, 349-357.

(5) Poongodi, S.; Kumar, P. S.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Masuda, Y.; Lee, C. Electrodeposition of WO<sub>3</sub> Nanostructured Thin Films for Electrochromic and H<sub>2</sub>S Gas Sensor Applications. J. Alloys Compd. 2017, 719, 71-81.

(6) Bolokang, A. S.; Motaung, D. E. Reduction-Oxidation of V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub> Nanostructured by Ball Milling and Annealing: Their Improved H<sub>2</sub>S Gas Sensing Performance. Appl. Surf. Sci. 2019, 473, 164-173.

(7) Kabcum, S.; Channei, D.; Tuantranont, A.; Wisitsoraat, A.; Liewhiran, C.; Phanichphant, S. Ultra-Responsive Hydrogen Gas Sensors Based on PdO Nanoparticle-Decorated WO<sub>3</sub> Nanorods

Synthesized by Precipitation and Impregnation Methods. Sens. Actuators B Chem. 2016, 226, 76-89.

(8) Wu, C.-H.; Zhu, Z.; Huang, S.-Y.; Wu, R.-J. Preparation of Palladium-Doped MesoporousWO<sub>3</sub> for Hydrogen Gas Sensors. J. Alloys Compd. 2019, 776, 965-973.

(9) Ueda, T.; Maeda, T.; Huang, Z.; Higuchi, K.; Izawa, K.; Kamada, K.; Hyodo, T.; Shimizu, Y. Enhancement of Methylmercaptan Sensing Response of WO<sub>3</sub> Semiconductor Gas Sensors by Gas Reactivity and Gas Diffusivity. Sens. Actuators B Chem. 2018, 273, 826-833.

(10) He, M.; Xie, L.; Zhao, X.; Hu, X.; Li, S.; Zhu, Z.-G. Highly Sensitive and Selective H<sub>2</sub>S Gas Sensors Based on Flower-Like WO<sub>3</sub>/CuO Composites Operating at Low/Room Temperature.
J. Alloys Compd. 2019, 788, 36-43.

(11) Hyodo, T.; Fujii, E.; Ishida, K.; Ueda, T.; Shimizu, Y. Microstructural Control of Porous In<sub>2</sub>O<sub>3</sub> Powders Prepared by Ultrasonic-Spray Pyrolysis Employing Self-Synthesized Polymethylmethacrylate Microspheres as a Template and Their NO<sub>2</sub>-Sensing Properties. Sens. Actuators B Chem. 2017, 244, 992-1003.

(12) Ueda, T.; Ishida, K.; Kamada, K.; Hyodo, T.; Shimizu, Y. Improvement in NO<sub>2</sub> Sensing Properties of Semiconductor-Type Gas Sensors by Loading of Au Into Porous In<sub>2</sub>O<sub>3</sub> Powders.
Front. Mater. 2019, 1-10.

(13) Hyodo, T.; Nonaka, S.; Shimizu, Y.; Egashira, M. H<sub>2</sub>S Sensing Properties and Mechanism of Macroporous Semiconductor Sensors. ECS Transactions 2008, 16, 317.

(14) Kukkola, J.; Mohl, M.; Leino, A.-R.; Mäklin, J.; Halonen, N.; Shchukarev, A.; Konya, Z.; Jantunen, H.; Kordas, K. Room Temperature Hydrogen Sensors Based on Metal Decorated WO<sub>3</sub> Nanowires. Sens. Actuators B Chem. 2013, 186, 90-95. (15) Kim, S.; Park, S.; Park, S.; Lee, C. Acetone Sensing of Au and Pd-Decorated WO<sub>3</sub> Nanorod Sensors. Sens. Actuators B Chem. 2015, 209, 180-185.

(16) Yang, F.; Wang, F.; Guo, Z. Characteristics of Binary WO<sub>3</sub>@CuO And Ternary WO<sub>3</sub>@PDA@CuO Based on Impressive Sensing Acetone Odor. J. Colloid. Interface. Sci. 2018, 524, 32-41.

(17) Aregahegn, A.; Gedamu, A.; Chen, H.-M.; Berhe, T.; su, w.-n.; Hwang, B. J. Highly Stable Cus and CuS-Pt Catalyzed Cu<sub>2</sub>O/CuO Heterostructure as Efficient Photocathode for Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 4.

(18) Karthik, T. V. K.; Olvera, M. d. l. L.; Maldonado, A.; Gómez Pozos, H. CO Gas Sensing Properties of Pure and Cu-Incorporated SnO<sub>2</sub> Nanoparticles: A Study of Cu-Induced Modifications. Sensors (Basel) 2016, 16 (8), 1283.

(19) Sánchez-Martínez, D.; Martínez-de la Cruz, A.; López-Cuéllar, E. Synthesis of WO<sub>3</sub> Nanoparticles by Citric Acid-Assisted Precipitation and Evaluation of Their Photocatalytic Properties. Mater. Res. Bull. 2013, 48 (2), 691-697.

(20) Sunding, M. F.; Hadidi, K.; Diplas, S.; Løvvik, O. M.; Norby, T. E.; Gunnæs, A. E. XPS Characterization of In Situ Treated Lanthanum Oxide and Hydroxide Using Tailored Charge Referencing and Peak Fitting Procedures. J. Electron Spectrosc. Relat. Phenom. 2011, 184 (7), 399-409.

(21) Kaur, J.; Anand, K.; Kohli, N.; Kaur, A.; Singh, R. C. Temperature Dependent Selective Detection of Hydrogen and Acetone using Pd Doped WO<sub>3</sub>/Reduced Graphene Oxide Nanocomposite. Chem. Phys. Lett. 2018, 701, 115-125.

(22) Zhang, J.; Zhang, L.; Leng, D.; Ma, F.; Zhang, Z.; Zhang, Y.; Wang, W.; Liang, Q.; Gao, J.;
Lu, H. Nanoscale Pd Catalysts Decorated WO<sub>3</sub>–SnO<sub>2</sub> Heterojunction Nanotubes for Highly
Sensitive and Selective Acetone Sensing. Sens. Actuators B Chem. 2020, 306, 127575.

(23) Sotomayor, F.; Cychosz, K.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3 (2), 34-50.

(24) Garcia, D.; Picasso, G.; Hidalgo, P.; Peres, H. E. M.; Sun Kou, R.; Gonçalves, J. M. Sensors Based on Ag-Loaded Hematite ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>) Nanoparticles for Methyl Mercaptan Detection at Room Temperature. Anal. Chem. Res. 2017, 12, 74-81.

(25) Deuermeier, J.; Liu, H.; Rapenne, L.; Calmeiro, T.; Renou, G.; Martins, R.; Muñoz-Rojas,
D.; Fortunato, E. Visualization of Nanocrystalline CuO In the Grain Boundaries of Cu<sub>2</sub>O Thin
Films and Effect on Band Bending and Film Resistivity. APL Mater. 2018, 6 (9), 096103.

(26) Brandt, R. E.; Young, M.; Park, H. H.; Dameron, A.; Chua, D.; Lee, Y. S.; Teeter, G.;Gordon, R. G.; Buonassisi, T. Band Offsets of N-Type Electron-Selective Contacts on CuprousOxide (Cu<sub>2</sub>O) for Photovoltaics. Appl. Phys. Lett. 2014, 105 (26), 263901.

(27) Lim, S.-H.; Kim, H.-K. Deposition Rate Effect on Optical and Electrical Properties of Thermally Evaporated  $WO_3-x/Ag/WO_{3-x}$  Multilayer Electrode for Transparent and Flexible Thin Film Heaters. Sci. Rep. 2020, 10 (1), 8357.

(28) Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11 (47), 22664-22684.

(29) Liu, B.; Cai, D.; Liu, Y.; Wang, D.; Wang, L.; Wang, Y.; Li, H.; Li, Q.; Wang, T. Improved Room-Temperature Hydrogen Sensing Performance of Directly Formed Pd/WO<sub>3</sub> Nanocomposite. Sens. Actuators B Chem. 2014, 193, 28-34. (30) Ramond, T. M.; Davico, G. E.; Hellberg, F.; Svedberg, F.; Salén, P.; Söderqvist, P.;Lineberger, W. C. Photoelectron Spectroscopy of Nickel, Palladium, and Platinum Oxide Anions.J. Mol. Spectrosc. 2002, 216 (1), 1-14.

(31) Ryabtsev, S.; Shaposhnik, A.; Samoylov, A.; Sinelnikov, A.; Soldatenko, S.; Kushchev, S.;Ievlev, V. Thin Films of Palladium Oxide for Gas Sensors. Dokl. Phys. Chem. 2016, 470, 158-161.

(32) Rogal, J.; Reuter, K.; Scheffler, M. Thermodynamic Stability of PdO Surfaces. Phys. Rev. B 2004, 69 (7), 075421.

(33) Hu, X.; Zhu, Z.; Chen, C.; Wen, T.; Zhao, X.; Xie, L. Highly Sensitive H<sub>2</sub>S Gas Sensors Based on Pd-Doped CuO Nanoflowers with Low Operating Temperature. Sens. Actuators B Chem. 2017, 253, 809-817.

(34) Maekawa, T.; Tamaki, J.; Miura, N.; Yamazoe, N. Improvement of Copper Oxide–Tin Oxide Sensor for Dilute Hydrogen Sulfide. J. Mater. Chem. 1994, 4 (8), 1259-1262.