Large Deviations for the Posterior Distributions under Conjugate Prior Distributions

Takuhisa Shikimi

Abstract

This paper takes up three parametric cases - the normal, Poisson, exponential cases - in order to study a large deviation upper bound for some posterior probabilitiy of the unknown parameter when in each case the prior distribution is assumed to be in a conjugate family. The upper bound will be given explicitly in each case.

Keywords: large deviations; posterior distributions; exchangeability.

1 Introduction

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with unknown distribution that belongs to a statistical model $\left(P_{\theta}: \theta \in \Theta\right)$, where Θ is a parameter space. In this paper, we focus on exponential rates of convergence of the posterior distributions in three parametric models - the normal, Poisson and exponential statistical models - when in each case the prior distribution is assumed to be in a conjugate family. There is comparatively little literature on the exponential rate of convergence of posterior distribution. Fu and Kass (1988) studies the rate of convergence of posterior distributions in the neighborhood of the mode. In the nonparametric Bayesian framework, Shen and Wasserman (2001) studies the rate at which the posterior distribution concentrates
around the true parameter, and Ganesh and O'Connell (1999) proves the large deviation principle for posterior distributions given i.i.d. random variables taking values in a finite set.

We will give a large deviation upper bound in an explicit form for posterior probabilities of the event $[\theta, \infty)$ given X_{1}, \ldots, X_{n} in each of the three parametric cases. In all cases, the basic tool to derive the results is the law of large numbers for exchangeable random variables (Theorem A.3) together with the conditional Markov inequality.

2 Constructing the model

Let (Θ, \mathscr{O}) be a measurable space. A stochastic kernel from ($\Theta, \mathscr{U})$ to (\mathbb{R}, $\mathscr{B}(\mathbb{R})$) , where $\mathscr{B}\left(\mathbb{R}^{n}\right)$ is the Borel σ-algebra of $\mathbb{R}^{n}(n=1,2, \ldots, \infty)$, is a family $\left(P_{\theta}: \theta \in \Theta\right)$ of probability measures on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ indexed by $\theta \in \Theta$ such that for each $A \in \mathscr{A}, \theta \in \Theta \mapsto P_{\theta}(A) \in[0,1]$ is measurable. As is usual, ($P_{\theta}: \theta \in \Theta$) is referred to as a statistical model. If $P_{\theta}^{(n)}$ is the n dimensional product measure $P_{\theta} \times \cdots \times P_{\theta}$,the infinite product probability measure $P_{\theta}^{(\infty)}$ $=P_{\theta} \times P_{\theta} \times \cdots, \theta \in \Theta$ is the unique probability measure on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right)\right)$ such that

$$
\begin{aligned}
P_{\theta}^{(\infty)}\left(A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \mathbb{R} \times \cdots\right) & =P_{\theta}\left(A_{1}\right) \cdots P_{\theta}\left(A_{n}\right) \\
& =P_{\theta}^{(n)}\left(A_{1} \times \cdots \times A_{n}\right)
\end{aligned}
$$

for all $n \geqslant 1$ and $A_{1} \ldots, A_{n} \in \mathscr{B}(\mathbb{R})$.
Lemma 1. For each $n=1,2, \ldots, \infty$, the family $\left(P_{\theta}^{(n)}: \theta \in \Theta\right)$ is a stochastic kernel from (Θ, \mathscr{U}) to $\left(\mathbb{R}^{n}, \mathscr{B}\left(\mathbb{R}^{n}\right)\right)$.

Proof. We only show that $\left(P_{\theta}^{(\infty)}: \theta \in \Theta\right.$) is a stochastic kernel, since ($P_{\theta}^{(n)}: \theta$ $\in \Theta), 1 \leqslant n<\infty$ will be shown to be stochastic kernels in the same manner.

If we define

$$
\mathscr{L}=\left\{B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right): \theta \mapsto P_{\theta}^{(\infty)}(B) \text { is measurable }\right\},
$$

then \mathscr{L} is a λ-class containing the π-class

$$
\mathscr{D}=\left\{A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \mathbb{R} \times \cdots: n \geqslant 1, A_{1}, \cdots, A_{n} \in \mathscr{B}(\mathbb{R})\right\} .
$$

It follows that $\mathscr{B}\left(\mathbb{R}^{\infty}\right)=\sigma(\mathscr{D}) \subset \mathscr{L}$.
For a prior distribution $\boldsymbol{\pi}$ on $(\Theta, \mathscr{2})$, define \mathbb{P} to be the probability measure on $(\Omega, \mathscr{F}) \triangleq\left(\Theta \times \mathbb{R}^{\infty}, \mathscr{Q} \times \mathscr{B}\left(\mathbb{R}^{\infty}\right)\right)$ satisfying

$$
\begin{equation*}
\mathbb{P}(U \times B)=\int_{U} P_{\theta}^{(\infty)}(B) \pi(d \theta) . \tag{1}
\end{equation*}
$$

for every $U \in \mathscr{U}$ and $B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right)$. It is not difficult to show the existence and uniqueness of \mathbb{P}. Now let us introduce the coordinate mappings ϑ, X and ξ_{i} defined by

$$
\begin{align*}
\vartheta(\omega) & =\vartheta(\theta, x)=\theta, \tag{2}\\
X(\omega) & =X(\theta, x)=x, \tag{3}\\
\xi_{i}(x) & =x_{i}(i \geqslant 1)
\end{align*}
$$

for $\omega=(\theta, x) \in \Omega$ and $x=\left(x_{i}\right) \in \mathbb{R}^{\infty}$. A random element X is a sequence of random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$, where $X_{i} \triangleq \xi_{i}(X)$. We think of ϑ as the unknown parameter, $X=\left(X_{1}, X_{2} \ldots\right)$ a date, where the distribution of X_{i} is specified by ϑ. By (2), (3) and (1), the parameter ϑ has π as its distribution:

$$
\mathbb{P}(\vartheta \in U)=\Pi(U) ;
$$

the distribution $\mathbb{P}(X \in d x)$ of X is given by the mixture

$$
\begin{equation*}
\int_{\Theta} \mathbb{P}_{\theta}^{\infty}(B) \pi(d \theta), B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right) \tag{4}
\end{equation*}
$$

the distribution $\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in\left(d x_{1}, \ldots, d x_{n}\right)\right)$ is given by the mixture

$$
\begin{equation*}
\int_{\Theta} P_{\theta}^{(n)}\left(B_{n}\right) \Pi(d \theta), B_{n} \in \mathscr{B}\left(\mathbb{R}^{\mathrm{n}}\right) \tag{5}
\end{equation*}
$$

and the distribution $\mathbb{P}\left(X_{i} \in d x_{i}\right)$ of X_{i} is given by the mixture

$$
\begin{equation*}
\int_{\Theta} P_{\theta}(A) \Pi(d \theta), A \in \mathscr{B}(\mathbb{R}) \tag{6}
\end{equation*}
$$

In particular, $X_{1}, X_{2} \ldots$ are identically distributed (but not independent in general) under \mathbb{P}. Distributions defined by (4), (5) and (6) are called prior predictive distributions of $X,\left(X_{1}, \ldots, X_{n}\right)$ and X_{i}, respectively.
Lemma 2. The function $P_{S(\omega)}^{(\infty)}(B)$, defined on $\Omega \times \mathscr{B}\left(\mathbb{R}^{\infty}\right)$, is a regular conditional distribution for $X=\left(X_{1}, X_{2}, \ldots\right)$ given ϑ. For each $n<\infty$, the function $P_{\Omega(\omega)}^{(n)}\left(B_{n}\right)$, defined for $\left(\omega, B_{n}\right) \in \Omega \times \mathscr{B}\left(\mathbb{R}^{n}\right)$, is a regular conditional distribution of $\left(X_{1}, \ldots, X_{n}\right)$ given ϑ. Moreover, $P_{\vartheta(\omega)}(A)$, defined for $(\omega, A) \in \Omega$ $\times \mathscr{B}(\mathbb{R})$, is a regular conditional distribution of X_{i} given ϑ for every $i \geqslant 1$. Proof. For each $\omega \in \Omega, P_{\vartheta(\omega)}^{(\infty)}$ is a probability measure on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right)\right)$. If $B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right)$

$$
\begin{aligned}
\int_{\vartheta \in U} P_{\vartheta(\omega)}^{(\infty)}(B) \mathbb{P}(d \omega) & =\int_{U} P_{\theta}^{(\infty)}(B) \Pi(d \theta) \\
& =\mathbb{P}(U \times B) \\
& =\mathbb{P}(\vartheta \in U, X \in B)
\end{aligned}
$$

Thus, $P_{\vartheta(\omega)}^{(\infty)}(B)$ is a version of $\mathbb{P}(X \in B \mid \cup)(\omega)$, because $P_{\vartheta(\omega)}^{(\infty)}(B)$ is $\sigma(\vartheta)$ measurable as a function of ω for each B.

Likewise, $P_{\vartheta(\omega)}^{(n)}\left(B_{n}\right)$ and $P_{\vartheta(\omega)}(A)$ are regular conditional distributions for $\left(X_{1}, \ldots, X_{n}\right)$ and $X_{i}(i=1,2 \ldots)$, respectively given ϑ, since they are $\sigma(\vartheta)$ measurable and almost surely

$$
\begin{aligned}
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in B_{n} \mid \vartheta\right)(\omega) & =\mathbb{P}\left(X \in B_{n} \times \mathbb{R} \times \mathbb{R} \times \cdots \mid \vartheta\right)(\omega) \\
& =P_{\vartheta(\omega)}^{(\infty)}\left(B_{n} \times \mathbb{R} \times \mathbb{R} \times \cdots\right) \\
& =P_{\vartheta(\omega)}^{(n)}\left(B_{n}\right), B_{n} \in \mathscr{B}\left(\mathbb{R}^{n}\right), \\
\mathbb{P}\left(X_{i} \in A \mid \vartheta\right)(\omega) & =\mathbb{P}(X \in \mathbb{R} \times \cdots \times \mathbb{R} \times A \times \mathbb{R} \times \cdots \mid \vartheta)(\omega) \\
& =P_{\vartheta(\omega)}^{(\infty)}(\mathbb{R} \times \cdots \times \mathbb{R} \times A \times \mathbb{R} \times \cdots) \\
& =P_{\vartheta(\omega)}(A), A \in \mathscr{B}(\mathbb{R}) .
\end{aligned}
$$

Lemma 3. The random variables $X_{1}, X_{2} \ldots$ are conditionally i.i.d. given ϑ. Proof. For all $n \geqslant 1$ and all $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n} \in \mathscr{B}(\mathbb{R})$

$$
\begin{aligned}
\mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n} \mid \vartheta\right)(\omega) & =P_{\vartheta(\omega)}^{(n)}\left(A_{1} \times \cdots \times A_{n}\right) \\
& =P_{\vartheta(\omega)}\left(A_{1}\right) \cdots P_{\vartheta(\omega)}\left(A_{n}\right) \\
& =\mathbb{P}\left(X_{1} \in A_{1} \mid \vartheta\right)(\omega) \cdots \mathbb{P}\left(X_{n} \in A_{n} \mid \vartheta\right)(\omega) \text { a.s., }
\end{aligned}
$$

where the first and third equalities follow from Lemma 2. Thus, $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ are conditionally independent given ϑ. Since $\mathbb{P}\left(X_{i} \in A \mid \vartheta\right)(\omega)=P_{\vartheta(\omega)}(A)=$ $\mathbb{P}\left(X_{1} \in A \mid \vartheta\right)(\omega)$ a.s. for all $i \geqslant 1, X_{1}, X_{2} \ldots$ are conditionally identically distributed.

Rea-valued random variables Y_{1}, Y_{2}, \ldots are exchangeable if for all $n \geqslant 1$ and all permutations T of $\{1, \ldots, n\}$

$$
\begin{equation*}
\left(Y_{1}, \ldots, Y_{n}\right) \stackrel{d}{=}\left(Y_{\mathrm{T}(1)}, \ldots, Y_{\mathrm{T}(n)}\right) . \tag{7}
\end{equation*}
$$

Here $\stackrel{d}{=}$ stands for equality in distribution. de Finetti's theorem claims that random variables $Y_{1}, Y_{2} \ldots$ are conditionally i.i.d. given some sub σ-algebra if and only if they are exchangeable. Lemma 3 tells us that X_{1}, X_{2}, \ldots are exchangeable random variables. See Aldous (1982) for an abstract version of de Finetti's theorem.

In what follows, we assume that Θ is a complete seperable metric space,
which is referred to as a Polish space. Accordingly, there exists a regular conditional distribution of ϑ given X_{1}, \ldots, X_{n} for all $n \geqslant 1$, which is termed a posterior distribution of ϑ given X_{1}, \ldots, X_{n} and denoted by $\Pi_{n}^{\omega}(U),(\omega, U) \in$ $\Omega \times \mathscr{U}$. More precisely, there exists a function $\Pi_{n}^{\omega}(U)$ on $\Omega \times \mathscr{U}$ such that
(a) for each $\omega \in \Omega, \Pi_{n}^{\omega}(\cdot)$ is a probability measure on (Θ, U);
(b) for each $U \in \mathscr{U}, \Pi_{n}^{\omega}(U)$ is a variant of $\mathbb{P}\left(\vartheta \in U \mid X_{1}, \ldots, X_{n}\right)(\omega)$.

Suppose that the statistical model $\left(P_{\theta}: \theta \in \Theta\right)$ is dominated by a σ-finite measure v on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ with density function $f(x \mid \theta), x \in \mathbb{R}$. We assume that $f(x \mid \theta)$ is measurable as a function of $(\theta, x) \in \Theta \times \mathbb{R}$. The marginal distribution $\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in\left(d x_{1}, \ldots, d x_{n}\right)\right)$ of $\left(X_{1}, \ldots, X_{n}\right)$ has the marginal density function

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\int_{\Theta} \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \Pi(d \theta)
$$

with respect to ${ }^{(n)}{ }^{(n)}$ the n-fold measure of v), i.e.,

$$
\mathbb{P}\left(\left(X_{1}, \ldots, X_{n}\right) \in B_{n}\right)=\int_{B_{n}} f_{n}\left(x_{1}, \ldots, x_{n}\right) \mathbf{v}^{(n)}\left(d\left(x_{1}, \ldots, d x_{n}\right)\right) .
$$

This can be seen from

$$
\begin{aligned}
\mathbb{P}\left(X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right) & =\int_{\Theta} P_{\theta}^{(n)}\left(A_{1} \times \cdots \times A_{n}\right) \Pi(d \theta) \\
& =\int_{\Theta} P_{\theta}\left(A_{1}\right) \cdots P_{\theta}\left(A_{n}\right) \Pi(d \theta) \\
& =\int_{\Theta}\left[\int_{A_{1}} f\left(x_{1} \theta\right) \mathbf{v}\left(d x_{1}\right) \cdots \int_{A_{1}} f\left(x_{n} \mid \theta\right) \mathbf{v}\left(d x_{n}\right)\right] \Pi(d \theta) \\
& =\int_{\Theta} \int_{A_{1} \times \cdots \times A_{n}} \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \mathbf{v}{ }^{(n)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right) \Pi(d \theta) \\
& =\int_{A_{1} \times \cdots \times A_{n}} \int_{\Theta} \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \Pi(d \theta) \mathbf{v}{ }^{(n)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\int_{A_{1} \times \cdots \times A_{n}} f_{n}\left(x_{1}, \ldots, x_{n}\right) \mathbf{v}{ }^{(n)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Note that $\mathbb{P}\left(f_{n}\left(X_{1}, \ldots, X_{n}\right)=0\right)=0$.
Lemma 4. If the statistical model $\left(P_{\theta}: \theta \in \Theta\right)$ is dominated by $a \sigma$-finite measure v on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ with density $f(x \mid \theta)$, a measurable function on $\Theta \times \mathbb{R}$, then

$$
\begin{aligned}
\Pi_{n}^{\omega}(U) \triangleq & {\left[\int_{U} \frac{\prod_{i=1}^{n} f\left(x_{i} \theta\right)}{f_{n}\left(X_{1}, \ldots, X_{n}\right)} \pi(d \theta)\right] 1_{\left.f_{n}>0\right\}}\left(X_{1}, \ldots, X_{n}\right) } \\
& +\pi(U) 1_{f_{n}=0,}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

is a posterior distribution of 9 given X_{1}, \ldots, X_{n}.
Proof. It is easily seen that for each $\omega, \Pi_{n}^{\omega}(\cdot)$ is a probability measure on $(\Theta$, $\left.\mathscr{Q}^{\prime}\right)$ and that for each $\mathrm{U} \in \mathscr{U}, \Pi_{n}^{\omega}(U)$ is $\sigma\left(X_{1}, \ldots, X_{n}\right)$-measurable. Thus it suffices to show that $\Pi_{n}^{\omega}(U)=\mathbb{P}\left(\vartheta \in U \mid X_{1}, \ldots, X_{n}\right)(\omega)$ a.s. and this can be shown in the following way:

$$
\begin{aligned}
& =\int_{U}\left[\int_{\substack{1\left(X_{i}, \ldots, X_{i} \in B_{i n} \\
f_{i}\left(X_{1}, \ldots, X_{n}\right)\right.}} \frac{\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)}{f_{n}\left(X_{1}, \ldots, X_{n}\right)} d \mathbb{P}\right] \Pi(d \theta) \\
& =\int_{U}\left[\int_{B_{n} \cap\left\{f_{n}>0\right\}} \frac{\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)}{f_{n}\left(x_{1}, \ldots, x_{n}\right)} f_{n}\left(x_{1}, \ldots, x_{n}\right) \vee^{(n)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right)\right] \Pi(d \theta) \\
& \left.=\int_{U}\left[\int_{B_{n} \cap\left\{f_{n}>0\right\}} \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \mathbf{v}{ }^{(n)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right)\right] \boldsymbol{(d \theta}\right) \\
& =\int_{U} P_{\theta}^{(n)}\left(B_{n} \cap\left\{f_{n}>0\right\}\right) \Pi(d \theta) \\
& =\mathbb{P}\left(\vartheta \in U,\left(X_{1}, \ldots, X_{n}\right) \in B_{n}, f_{n}\left(X_{1}, \ldots, X_{n}\right)>0\right) \\
& =\mathbb{P}\left(\vartheta \in U,\left(X_{1}, \ldots, X_{n}\right) \in B_{n}, f_{n}\left(X_{1}, \ldots, X_{n}\right)>0\right) \\
& +\mathbb{P}\left(9 \in U,\left(X_{1}, \ldots, X_{n}\right) \in B_{n}, f_{n}\left(X_{1}, \ldots, X_{n}\right)=0\right) \\
& =\mathbb{P}\left(9 \in U,\left(X_{1}, \ldots, X_{n}\right) \in B_{n}\right) \text {. }
\end{aligned}
$$

3 . The large deviation principle

Let S be a Polish space equipped with the Borel σ-algebra $\mathscr{B}(S)$. A function $I: S \rightarrow[0, \infty]$ is a rate function if for each $M<\infty$ the level set $\{x \in S: I(x) \leqslant$ $M\}$ is a compact subset of S. A rate function is necessarily a lower semicontinuous function, a function with closed level sets. A family (Q_{n}) of probability measures on S is defined to satisfy the large deviation principle with rate function I if for each closed $F \subset S$

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log Q_{n}(F) \leqslant-\inf _{x \in F} I(x)
$$

and for each open $G \subset S$

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log Q_{n}(G) \geqslant-\inf _{x \in G} I(x)
$$

Large deviation theory focuses on probability measures Q_{n} for which $Q_{n}(A)$ converges to 0 exponentially fast for a class of events A. The exponential decay of $Q_{n}(A)$ is characterized in terms of a rate function defined above. General treatments of the theory of large deviations and a wide variety of applications may be found in Dembo and Zeitouni (1998), Deuschel and Stroock (2000) .

In analogous way, let us define the large deviation principle for regular conditional distributions. Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, (\mathscr{F}) a filtration of sub σ-algebras. We define a function $I: \Omega \times S \rightarrow[0, \infty]$ to be a rate function if for each $\omega \in \Omega, \mathrm{I}(\omega, \cdot)$ is a rate function on S.
Definition 5. Suppose that $Q_{n}^{\omega}(B), n \geqslant 1$ is a family of regular conditional distributions for a random variable taking values in S given \mathscr{F}_{n}. We say that $Q_{n}^{\omega}(B), n \geqslant 1$ satisfies the large deviation principle if for each closed set F of S

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log Q_{n}^{\omega}(F) \leqslant-\inf _{x \in F} I(\omega, x) \text { a.s. } \tag{8}
\end{equation*}
$$

and for each open set G of S

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log Q_{n}^{\omega}(G) \geqslant-\inf _{x \in G} I(\omega, x) \text { a.s. }
$$

In this paper we restrict ourselves to the analysis on the large deviation upper bound (8) for the posterior distributions of ϑ given X_{1}, \ldots, X_{n}. We will examine the posterior distributions π_{n}^{ω} given X_{1}, \ldots, X_{n} in the normal, Poisson and exponential cases and give a large deviation upper bound (8) explicitly for the posterior probability of the closed $\operatorname{set}[\theta, \infty)$ in each case.

4 . The normal case

Suppose that

$$
P_{\theta}(d x)=f(x \mid \theta) d x \triangleq \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(x-\theta)^{2}}{2}\right) d x, \theta \in \Theta \triangleq \mathbb{R}
$$

and assume that the prior distribution for the normal mean ϑ is a conjugate distribution

$$
\pi(d \theta) \triangleq \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(\theta-\mu)^{2}}{2 \sigma^{2}}\right) d \theta, \sigma>0, \mu \in \mathbb{R}
$$

It follows from Lemma 4 that the posterior distribution of ϑ given X_{1}, \ldots, X_{n} is given by

$$
\begin{aligned}
\Pi_{n}^{\omega}(d \theta) & =\frac{\prod_{i=1}^{n} f\left(X_{i} \theta\right)}{f_{n}\left(X_{1}, \ldots, X_{n}\right)} \Pi(d \theta) \\
& =\frac{1}{\sqrt{2 \pi \sigma_{n}}} \exp \left[-\frac{\left(\mu_{n}\left(X_{1}, \ldots, X_{n}\right)-\mu\right)^{2}}{2 \sigma_{n}^{2}}\right] d \theta,
\end{aligned}
$$

where $\mu_{n}=\mu_{n}\left(x_{1}, \ldots, x_{n}\right)$ and σ_{n}^{2} are defined by

$$
\mu_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{1+n \sigma^{2}}\right) \mu+\left(\frac{n \sigma^{2}}{1+n \sigma^{2}}\right) \bar{x}_{n}, \bar{x}_{n}=\frac{x_{1}+\cdots+x_{n}}{n},
$$

$$
\sigma_{\mathrm{n}}^{2}=\frac{\sigma^{2}}{1+\mathrm{n} \sigma^{2}}
$$

Theorem 6. For each $\theta \in \Theta$

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-\frac{(\theta-\vartheta(\omega))^{2}}{2} \quad \text { on }\{\omega: \theta>\vartheta(\omega)\} \text { a.s. }
$$

Proof. By Markov's inequality for conditional expectations, for all $t>0$

$$
\begin{aligned}
\Pi_{n}^{\omega}[\theta, \infty) & =\mathbb{P}\left(\left\{\omega^{\prime}: \vartheta\left(\omega^{\prime}\right) \geqslant \theta\right\} \mid X_{1}, \ldots, X_{n}\right)(\omega) \\
& =\mathbb{P}\left(e^{n t \vartheta\left(\omega^{\prime}\right)}: \geqslant e^{n t \theta} \mid X_{1}, \ldots, X_{n}\right)(\omega) \\
& \leqslant e^{-n t \theta} \mathbb{E}\left(e^{n t \vartheta} \mid X_{1}, \ldots, X_{n}\right)(\omega) \\
& =e^{-n t \theta} \exp \left[\mu_{n}\left(X_{1}, \ldots, X_{n}\right) n t+\frac{\sigma_{n}^{2} n^{2} t^{2}}{2}\right] \text { a.s. }
\end{aligned}
$$

so that

$$
\frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-t \theta+\mu_{n}\left(X_{1}, \ldots, X_{n}\right) t+\frac{\sigma_{n}^{2} n t^{2}}{2} .
$$

Since $\mu_{n}\left(X_{1}, \ldots, X_{n}\right) \rightarrow \mathbb{E}\left(X_{1} \mid \vartheta\right)=\vartheta$ a.s. by Theorem A. 3 and Lemma A. 1 , we have

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-t \theta+\vartheta(\omega) t+\frac{t^{2}}{2}
$$

Since $t>0$ is arbitrary

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) & \leqslant \inf _{t>0}\left[-t \theta+\vartheta(\omega) t+\frac{t^{2}}{2}\right] \\
& =-\frac{(\theta-\vartheta(\omega))^{2}}{2} \text { on }\{\omega: \theta>\vartheta(\omega)\} \text { a.s. } \tag{9}
\end{align*}
$$

In the same manner, it follows that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}(-\infty, \theta] \leqslant-\frac{(\theta-\vartheta(\omega))^{2}}{2} \text { on }\{\omega: \theta<\vartheta(\omega)\} \text { a.s. }
$$

In Theorem 6 the rate function $I\left(\omega, \theta^{\prime}\right),\left(\omega, \theta^{\prime}\right) \in \Omega \times \Theta$ is

$$
I\left(\omega, \theta^{\prime}\right)=\frac{\left(\theta^{\prime}-\vartheta(\omega)\right)^{2}}{2}=K\left(\vartheta(\omega), \theta^{\prime}\right)
$$

where $K\left(\theta_{1}, \theta_{2}\right)$ is the Kullback-Leibler distance

$$
K\left(\theta_{1}, \theta_{2}\right)=\int_{-\infty}^{\infty} \log \frac{f\left(x \mid \theta_{1}\right)}{f\left(x \mid \theta_{2}\right)} f\left(x \mid \theta_{1}\right) d x=\frac{\left(\theta_{1}-\theta_{2}\right)^{2}}{2}
$$

If $\theta>\vartheta(\omega)$, then

$$
\frac{(\theta-\vartheta(\omega))^{2}}{2}=\inf _{\theta^{\prime} \geqslant \theta} I\left(\theta^{\prime}, \omega\right)
$$

and so the large deviation upper bound inequality (9) is rewritten by using the rate function $I\left(\omega, \theta^{\prime}\right)$ as

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-\inf _{\theta^{\prime} \geqslant \theta} I\left(\omega, \theta^{\prime}\right) \quad \text { on }\{\omega: \theta>\vartheta(\omega)\} \quad \text { a.s. }
$$

We now turn to the case where the samples are observed from the normal distribution with mean 0 and unknown precision. A precision is the reciprocal of the variance. Accordingly, we assume that

$$
P_{\theta}(d x) \triangleq\left(\frac{\theta}{2 \pi}\right)^{1 / 2} \exp \left(-\frac{\theta x^{2}}{2}\right) d x, \theta \in \Theta \triangleq(0 ; \infty)
$$

If the prior distribution π is specified by

$$
\pi(\alpha \theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta} 1_{(0 ; \infty)} d \theta, a>0, \beta>0
$$

which is a gamma distribution with parameters α and $\beta(\alpha>0, \beta>0)$, then the posterior distribution of ϑ given X_{1}, \ldots, X_{n} is a gamma distribution with parameters

$$
\mathbf{a}_{n}=\mathbf{\alpha}+\frac{n}{2} \quad \text { and } \quad \beta_{n}=\beta_{n}\left(X_{1}, \ldots, X_{n}\right)=\beta+\frac{1}{2} \sum_{i=1}^{n} X_{i}^{2}
$$

Theorem A. 3 together with Lemma A. 1 entails the convergence

$$
\frac{\beta_{n}}{n} \rightarrow \frac{1}{2} \mathbb{E}\left(X_{1}^{2} \mid \cup\right)=\frac{1}{2 \vartheta} \quad \text { a.s. }
$$

Theorem 7. For each $\theta>1$

$$
\lim _{n \rightarrow \infty} \sup _{n} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-\frac{1}{2 \vartheta(\omega)}(\theta-1-\vartheta(\omega) \log \theta)
$$

on $\{\omega: \theta>\vartheta(\omega)\}$ a.s.
Proof. For almost all $\omega \in\{\theta>\vartheta\}$ and $t \in(0,1 / 2 \vartheta(\omega))$, there is an n_{0} such that $\beta_{n} /\left(\beta_{n}-n t\right)>0$ for all $n \geqslant n_{0}$, since

$$
\frac{\beta_{n}}{\beta_{n}-n t}=\frac{\beta_{n} / n}{\beta_{n} / n-t} \rightarrow \frac{1 /(2 \vartheta(\omega))}{1 /(2 \vartheta(\omega))-t}=\frac{1}{1-2 \vartheta(\omega) t} .
$$

By Markov's inequality

$$
\begin{aligned}
\frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) & \leqslant-\theta+\log \mathbb{E}\left(e^{n t \theta} \mid X_{1}, \ldots, X_{n}\right)(\omega) \\
& =-\theta+\frac{\mathbf{a} n}{n} \log \left(\frac{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)}{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)-n t}\right) .
\end{aligned}
$$

It follows that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-\theta+\frac{1}{2} \log \left(\frac{1}{1-2 \vartheta(\omega) t}\right)
$$

for almost all $\omega \in\{\theta>\vartheta\}$ and $t \in(0,1 / 2 \vartheta(\omega))$. Now we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) & \leqslant \inf _{0<t<1 / 2 \vartheta(\omega)}\left[-\theta+\frac{1}{2} \log \left(\frac{1}{1-2 \vartheta(\omega) t}\right)\right] \\
& =-\frac{1}{2 \vartheta(\omega)}(\theta-1-\vartheta(\omega) \log \theta)
\end{aligned}
$$

on $\{\theta>\vartheta\}$ a.s.

5 . The Poisson case

Let v_{o} be the counting measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ and define $\mathrm{v}(A)=\mathrm{v} \mathrm{o}_{\mathrm{o}}(A \cap\{0$, $1, \ldots\}), A \in \mathscr{B}(\mathbb{R})$. Then v is a σ-finite measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. If

$$
P_{\theta}(d x)=f(x \mid \theta) \vee(d x) \triangleq \frac{e^{-\theta} \theta}{x!} \vee(d x), \theta \in \Theta=(0, \infty)
$$

and the prior distribution π is a gamma distribution with parameters a and β, then the posterior distribution of ϑ given $X_{1} \ldots, X_{n}$ is given by a gamma distribution with parameters $\mathbf{\alpha}_{n}=\mathbf{\alpha}_{n}\left(X_{1}, \ldots, X_{n}\right), \beta_{n}$. Here we define

$$
\mathbf{a}_{n}=\mathbf{\alpha}_{n}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{\alpha}+\sum_{i=1}^{n} x_{i}, \beta_{n}=\beta+n .
$$

Theorem 8. For each $\theta \in \Theta$

$$
\lim _{n \rightarrow \infty} \sup _{n} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-(\theta-\vartheta(\omega))+\vartheta(\omega) \log \frac{\theta}{\vartheta(\omega)}
$$

on $\{\omega: \theta>\vartheta(\omega)\}$ a.s.
Proof. For all $t \in(0,1)$, Markov's inequality yields

$$
\begin{aligned}
\Pi_{n}^{\omega}[\theta, \infty) & =\mathbb{P}\left(\left\{\omega^{\prime}: \vartheta\left(\omega^{\prime}\right) \geqslant \theta \mid X_{1}, \ldots, X_{n}\right)(\omega)\right. \\
& \leqslant e^{-n \theta} \mathbb{E}\left(e^{n t g} \mid X_{1}, \ldots, X_{n}\right)(\omega) \\
& \leqslant e^{-n \theta}\left(\frac{\beta_{n}}{\beta_{n}-n t}\right)^{\alpha_{n}\left(X_{1}, \ldots, X_{n}\right)} \text { a.s., }
\end{aligned}
$$

and hence for all $t \in(0,1)$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \log \pi_{n}^{\omega}[\theta, \infty) & \leqslant-\theta t+\lim _{n \rightarrow \infty} \frac{\mathbf{\alpha}_{n}\left(X_{1} \ldots, X_{n}\right)}{n} \log \left(\frac{\beta_{n}}{\beta_{n}-n t}\right) \\
& =-\theta t+\mathbb{E}\left(X_{1} \mid \vartheta\right)(\omega) \log \left(\frac{1}{1-t}\right) \\
& =-\theta t+\vartheta(\omega) \log \left(\frac{1}{1-t}\right) \text { a.s. }
\end{aligned}
$$

Thus on $\{\omega: \theta>\vartheta(\omega)\}$

$$
\begin{aligned}
\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \pi_{n}^{\omega}[\theta, \infty) & \leqslant \inf _{0<t<1}\left[-\theta t+\vartheta(\omega) \log \left(\frac{1}{1-t}\right)\right] \\
& =-(\theta-\vartheta(\omega))+\vartheta(\omega) \log \frac{\theta}{\vartheta(\omega)} \text { a.s. }
\end{aligned}
$$

6 . The exponential case

Suppose that $\Theta=(0, \infty)$ and that for each $\theta \in \Theta$

$$
P_{\theta}(d x)=\theta e^{-\theta x} 1_{(0, \infty)} d x .
$$

If the prior distribution π is a gamma distribution with parameters α and β, then the posterior distribution given X_{1}, \ldots, X_{n} is a gamma distribution with parameters $\mathbf{\alpha}_{n}$ and $\beta_{n}=\beta_{n}\left(X_{1}, \ldots, X_{n}\right)$, where

$$
\mathbf{a}_{n}=\mathbf{\alpha}+n, \beta_{n}=\beta_{n}\left(x_{1}, \ldots, x_{n}\right)=\beta+\sum_{i=1}^{n} x_{i} .
$$

Theorem 9. For each $\theta \in \Theta$

$$
\lim _{n \rightarrow \infty} \sup _{n} \frac{1}{n} \Pi_{n}^{\omega}[\theta, \infty) \leqslant 1-\theta \vartheta(\omega)+\log (\theta \vartheta(\omega))
$$

on $\{\omega: \theta>\vartheta(\omega)\}$ a.s.
Proof. For almost all $\omega \in\{\theta>\vartheta\}$ and $t \in(0, \vartheta(\omega))$, there is an n_{0} such that $\frac{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)}{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)-n t}>0$ for all $n \geqslant n_{0}$, since

$$
\frac{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)}{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)-n t} \rightarrow \frac{\mathbb{E}\left(X_{1} \mid \vartheta\right)(\omega)}{\mathbb{E}\left(X_{1} \mid \vartheta\right)(\omega)-t}=\frac{\vartheta(\omega)}{\vartheta(\omega)-t}>0 .
$$

Thus for almost all $\omega \in\{\theta>\vartheta\}$ and all $t \in(0, \vartheta(\omega))$

$$
\frac{1}{n} \log \pi_{n}^{\omega}[\theta, \infty) \leqslant-\theta t+\frac{\alpha_{n}}{n} \log \left(\frac{\beta_{n}\left(X_{1}, \ldots, X_{n}\right)}{\beta_{n}\left(X_{1} \ldots, X_{n}\right)-n t}\right)
$$

for all $n \geqslant n_{0}$, so that for $\omega \in\{\theta>\vartheta\}$ and $t \in(0, \vartheta(\omega))$

$$
\lim _{n \rightarrow \infty} \sup _{n} \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant-\theta t+\log \left(\frac{\vartheta(\omega)}{\vartheta(\omega)-t}\right) .
$$

Consequently

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \log \Pi_{n}^{\omega}[\theta, \infty) \leqslant \inf _{0<t<\gamma(\omega)}\left[-\theta t+\log \left(\frac{\vartheta(\omega)}{\vartheta(\omega)-t}\right)\right]
$$

$$
=1-\theta u(\omega)+\log (\theta u(\omega))
$$

Appendix

Lemma A.1. Let Y_{1} and Y_{2} be random variables on $(\Omega, \mathscr{F}, \mathbb{P})$ with values in measurable spaces (E_{1}, \mathscr{E}_{1}) and (E_{2}, \mathscr{E}_{2}), respectively, and \mathscr{C} a sub- σ-algebra with respect to which Y_{2} is measurable. If μ is a regular conditional distribution for Y_{1} given \mathscr{G}, then for every measurable function $f: E_{1} \times E_{2}$ $\rightarrow \mathbb{R}$ such that $h\left(Y_{1}, Y_{2}\right) \in L^{1}(\Omega, \mathscr{F}, \mathbb{P})$,

$$
\begin{equation*}
\int_{E_{1}} h\left(y_{1}, Y_{2}(\omega)\right) \mu\left(\omega, d y_{1}\right) \tag{A.1}
\end{equation*}
$$

is \mathscr{l}-measurable and

$$
\begin{equation*}
\mathbb{E}\left(h\left(Y_{1}, Y_{2}\right) \mid \mathscr{G}(\omega)=\int_{E_{1}} h\left(y_{1}, Y_{2}(\omega)\right) \mu\left(\omega, d y_{1}\right) \quad\right. \text { a.s. } \tag{A.2}
\end{equation*}
$$

In other words, (A.1) is a version of $\mathbb{E}\left(h\left(Y_{1}, Y_{2}\right) \mid \mathcal{G}\right)$.
Proof. If $h=1_{A_{1} \times A_{2}}, A_{i} \in \mathscr{E}_{i}$, then (A.1) is \mathscr{G}-measurable and (A. 2) holds. Since

$$
\mathscr{H}=\left\{A \in \mathscr{E}_{1} X \mathscr{E}_{2}: \int_{E_{1}} 1_{A}\left(y_{1}, Y_{2}(\omega)\right) \mu\left(\omega, d y_{1}\right) \text { is a version of } \mathbb{E}\left(1_{A}\left(Y_{1} ; Y_{2}\right) \mid \mathscr{G}(\omega)\right\}\right.
$$

is a λ-class and \mathscr{H} contains the π-class

$$
\mathscr{D}=\left\{A_{1} \times A_{2}: A_{i} \in \mathscr{E}_{i}, i=1,2\right\},
$$

$\mathscr{E}_{1} \times \mathscr{E}_{2} \subset \mathscr{H}$. Thus (A.1) is a version of $\mathbb{E}\left(h\left(Y_{1}, Y_{2}\right) \mid \mathscr{G}\right.$ whenever h is an indicator function. By linearity , (A.1) is a version of $\mathbb{E}\left(h\left(Y_{1}, Y_{2}\right) \mid G\right)$ for all simple functions h, and hence for all nonnegative functions by the monotone convergence theorem. For the general case, the result follows by splitting the function into positive and negative parts.

Let $Y_{1}, Y_{2} \ldots$ be real-valued random variables defined on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and \mathscr{G} a sub σ-algebra. If for all $n \geqslant 1$ and $A_{1}, \ldots, A_{n} \in \mathscr{B}(\mathbb{R})$

$$
\mathbb{P}\left(Y_{1} \in A_{1}, \ldots, Y_{n} \in A_{n} \mid \mathscr{G}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \in A_{i} \mid \mathscr{G}\right) \quad \text { a.s., }
$$

Y_{1}, Y_{2}, \ldots are declared conditionally independent given \mathscr{G}. If $\mathscr{G}=\sigma(\eta)$ for some random element $\eta, Y_{1}, Y_{2} \ldots$ are called conditionally independent given η. In addition to the conditional independence, if for all $i \geqslant 1 \mathbb{P}\left(Y_{i} \in A\right.$ $\mid \mathscr{G})=\mathbb{P}\left(Y_{1} \in A \mid G\right)$ a.s., Y_{1}, Y_{2}, \ldots are defined to be conditionally independent and identically distributed (abbreviated to conditionally i.i.d.) given \mathscr{G}. If Y_{1}, Y_{2}, \ldots are conditionally i.i.d. and φ is a measurable function, then φ $\left(Y_{1}\right), \varphi\left(Y_{2}\right), \ldots$ are conditionally i.i.d.

Lemma A. 2. If $Y_{1}, Y_{2} \ldots$ are conditionally i.i.d. given \mathscr{G}, there exists a regular conditional distribution $\mu(\omega, B),(\omega, B) \in \Omega \times \mathscr{B}\left(\mathbb{R}^{\infty}\right)$ for $Y=\left(Y_{1}\right.$, $Y_{2} \ldots$) given \mathscr{G} such that for each $\omega \in \Omega$ the coordinate functions ξ_{1}, ξ_{2}, \ldots on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right), \boldsymbol{\mu}(\omega, \square)\right)$ are i.i.d. Moreover, if Y_{1} is integrable, then ξ_{1}, ξ_{2}, \ldots are integrable with respect to $\mu(\omega, \square)$ for almost all $\omega \in \Omega$.

Proof. Since \mathbb{R}^{∞} is a Borel space, there is a regular conditional distribution v_{0} (ω, B) for $Y=\left(Y_{1}, Y_{2} \ldots\right)$ given \mathscr{G}. For each $i \geqslant 1$ and each $r \in \mathbb{Q}$ there is a null set $N_{i, r} \in \mathscr{G}$ such that for each $\omega \notin N_{i, r}$

$$
\begin{aligned}
\mathrm{v}_{0}\left(\omega, \xi_{i} \leqslant r\right) & =\mathrm{v}_{0}(\omega, \mathbb{R} \times \cdots \times \mathbb{R} \times(-\infty, r] \times \mathbb{R} \times \cdots) \\
& =\mathbb{P}(Y \in \mathbb{R} \times \cdots \times \mathbb{R} \times(-\infty, r] \times \mathbb{R} \times \cdots \mid \mathscr{G}(\omega) \\
& =\mathbb{P}\left(Y_{i} \leqslant r \mid \mathscr{G}(\omega)=\mathbb{P}\left(Y_{1} \leqslant r \mid \mathscr{G}\right)(\omega)\right. \\
& =\mathrm{v}_{0}\left(\omega, \xi_{1} \leqslant r\right),
\end{aligned}
$$

and hence for $\operatorname{all} \omega \notin \mathrm{N} \triangleq \bigcup_{i \geqslant 1, r \in \mathrm{Q}} N_{i, r}$ and for all $i \geqslant 1, r \in \mathrm{Q}$, we have

$$
\mathrm{v}_{0}\left(\omega, \xi_{i} \leqslant r\right)=\mathrm{v}_{0}\left(\omega, \xi_{1} \leqslant r\right) .
$$

Since the sets of the form ($-\infty, r], r \in \mathbb{Q}$ form a π-class generating $\mathscr{B}(\mathbb{R})$, it follows that for each $\omega \notin N, v_{0}\left(\omega, \xi_{i} \in \square\right)$ and $v_{0}\left(\omega, \xi_{1} \in \square\right)$ agree as probability measures on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. For each ω define a measure v^{ω} by

$$
v^{\omega}(\square)= \begin{cases}v o\left(\omega, \xi_{1} \in \square\right), & \omega \notin N \\ v(\square), & \omega \in N,\end{cases}
$$

where v is any probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Now we define a probability measure

$$
\mu(\omega, \square)=\left(v^{\omega} \times v^{\omega} \times \cdots\right)(\square)
$$

for each $\omega \in \Omega$ on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right)\right)$. We will show that μ is a regular conditional distribution given \mathscr{G} that satisfies the requirement of the theorem. Since μ (ω, \square) is the infinite-dimensional product measure of v^{ω} with itself, the coordinate functions $\xi_{1, \xi_{2}}, \ldots$ are necessarily i.i.d. random variables on $\left(\mathbb{R}^{\infty}, \mathscr{B}\right.$ $\left.\left(\mathbb{R}^{\infty}\right), \mu(\omega, \square)\right)$ for each ω with distribution

$$
\begin{aligned}
\mu\left(\omega, \xi_{i} \in A\right) & =v^{\omega}(A) \\
& =\left\{\begin{array}{ll}
v o\left(\omega, \xi_{1} \in A\right), & \omega \notin N \\
v(A), & \omega \in N,
\end{array} \quad A \in \mathscr{B}(\mathbb{R}) .\right.
\end{aligned}
$$

To show that $\mu(\omega, \mathrm{B})$ is a regular conditional distribution for $Y=\left(Y_{1}, Y_{2} \ldots\right)$ given \mathscr{G}, it suffices to verify that $\mu(\square, B)$ is a version of $\mathbb{P}(Y \in B \mid \mathscr{G}$ for each $B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right)$, since $\mu(\omega, \square)$ is a probability measure by definition. If $A_{1}, \ldots, A_{n} \in \mathscr{B}(\mathbb{R}), n \geqslant 1$, then

$$
\begin{aligned}
\mu\left(\omega, A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \cdots\right) & =v^{\omega}\left(A_{1}\right) \cdots v^{\omega}\left(A_{n}\right) 1_{N^{c}}+\mathrm{v}^{\omega}\left(A_{1}\right) \cdots v^{\omega}\left(A_{n}\right) 1_{N} \\
& \left.=v_{0}\left(\omega, \xi_{1} \in A_{1}\right) \cdots v_{d}\left(\omega, \xi_{1} \in A_{n}\right) 1_{N^{k}}+\mathrm{v}^{(} A_{1}\right) \cdots v\left(A_{n}\right) 1_{N},
\end{aligned}
$$

and therefore $\mu\left(\omega, A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \cdots\right)$ is \mathscr{G} measurable. Besides outside
the \mathscr{G}-null set N

$$
\begin{aligned}
\mu\left(\omega, A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \cdots\right) & =\mathrm{v}_{0}\left(\omega, \xi_{1} \in A_{1}\right) \cdots \mathrm{v}_{0}\left(\omega, \xi_{1} \in A_{n}\right) \\
& =\mathrm{v}_{0}\left(\omega, \xi_{1} \in A_{1}\right) \cdots \mathrm{v}_{0}\left(\omega, \xi_{n} \in A_{n}\right) \\
& =\mathbb{P}\left(Y_{1} \in A_{1} \mid \mathscr{G}(\omega) \cdots \mathbb{P}\left(Y_{n} \in A_{n} \mid \mathscr{G}(\omega)\right.\right. \\
& =\mathbb{P}\left(Y_{1} \in A_{1} \cdots, Y_{n} \in A_{n} \mid \mathscr{G}(\omega)\right. \\
& =\mathbb{P}\left(Y \in A_{1} \times \cdots A_{n} \times \mathbb{R} \times \cdots \mid \mathscr{G}(\omega)\right. \text { a.s. }
\end{aligned}
$$

Therefore $\mu\left(\square, A_{1} \times \cdots \times A_{n} \times \mathbb{R} \times \cdots\right)$ is a version of $\mathbb{P}\left(Y \in A_{1} \times \cdots A_{n} \times \mathbb{R}\right.$ $\times \cdots \mid g)$. Note that

$$
\mathscr{D}=\left\{A_{1} \times \cdots A_{n} \times \mathbb{R} \times \cdots: n \geqslant 1, A_{i} \in \mathscr{B}(\mathbb{R}), i=1, \ldots, n\right\}
$$

is a π-class that generates $\mathscr{B}\left(\mathbb{R}^{\infty}\right)$. Since

$$
\mathscr{H}=\left\{B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right): \mu(\square, B) \text { is a version of } \mathbb{P}(Y \in B \mid \mathscr{G}\}\right.
$$

is a λ-class with $\mathscr{D} \subset \mathscr{H}, \mathscr{B}\left(\mathbb{R}^{\infty}\right) \subset \mathscr{H}$. This implies that $\mu(\square, B)$ is a version of $\mathbb{P}(Y \in B \mid \mathscr{G})$ for each $B \in \mathscr{B}\left(\mathbb{R}^{\infty}\right)$.

Finally by Lemma A. 1

$$
\begin{aligned}
\int_{\mathbb{R}^{\infty}}\left|\xi_{i}(y)\right| \mu(\omega, d y) & =\int_{\mathbb{R}^{\infty}}\left|\xi_{1}(y)\right| \mu(\omega, d y) \\
& =\mathbb{E}\left(\mid \xi_{1}(Y) \| \mathscr{G}(\omega)=\mathbb{E}\left(\mid Y_{1} \| \mathscr{G}(\omega) \quad\right. \text { a.s. }\right.
\end{aligned}
$$

The integrability of Y_{1} entails $\mathbb{E}\left(\mid Y_{1} \| \mathscr{G}\right)(\omega)<\infty$ a.s., and hence the claims follows. This completes the proof.

Theorem A. 3. If Y_{1}, Y_{2}, \ldots are conditionally i.i.d. random variables given a sub σ-algebra \mathscr{G} and if Y_{1} is integrable, then

$$
Y \neq \frac{Y_{1}+\cdots+Y_{n}}{n} \rightarrow \mathbb{E}\left(Y_{1} \mid \mathscr{G} \quad \text { a.s. }(n \rightarrow \infty)\right.
$$

Proof. Let $\mu^{\omega}(B)=\mu(\omega, B),(\omega, B) \in \Omega \times \mathscr{B}\left(\mathbb{R}^{\infty}\right)$ be a regular conditional dis-
tribution for $Y=\left(Y_{1}, Y_{2}, \ldots\right)$ given $\mathscr{\theta}$ such that the coordinate functions ξ_{1}, $\xi_{2} \ldots$ are i.i.d. random variables on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right), \mu^{\omega}\right)$ for each ω. We will show that

$$
\begin{equation*}
\mathbb{P}\left(\sup _{n \geqslant m}\left|Y \nmid h-\mathbb{E}\left(Y_{1} \mid \mathscr{G}\right)\right|>\epsilon\right) \rightarrow 0 \quad(m \rightarrow \infty) \tag{A.3}
\end{equation*}
$$

which is equivalent to the convergence $Y \not \subset h \rightarrow \mathbb{E}\left(Y_{1} \mid \mathscr{G}\right)$ a.s. as $n \rightarrow \infty$. For all $\epsilon>0$

$$
\begin{aligned}
\mathbb{P}\left(\sup _{n \geqslant m} \mid Y \not Y h-\mathbb{E}\left(Y_{1}|\mathscr{G}|>\epsilon\right)\right. & =\mathbb{E}\left[\mathbb{P}\left(\sup _{n \geqslant m}\left|Y \not f_{h}-\mathbb{E}\left(Y_{1} \mid \mathscr{G}\right)\right|>\epsilon \mid \mathscr{G}\right)\right] \\
& =\mathbb{E}\left[\mathbb{P}\left(\left.\sup _{n \geqslant m}\left|\frac{1}{n} \sum_{i=1}^{n} \xi_{i}(Y)-\mathbb{E}\left(Y_{1} \mid \mathscr{G}\right)\right|>\epsilon \right\rvert\, \mathscr{G}\right)\right] \\
& =\mathbb{E}\left[\mu^{\omega}\left\{y \in \mathbb{R}^{\infty}: \sup _{n \geqslant m} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}(y)-\mathbb{E}\left(Y_{1}|\mathscr{G}(\omega)|>\epsilon\right\}\right] .\right.
\end{aligned}
$$

The last equation follows from Lemma A. 1. Since Y_{1} is assumed to be integrable, Lemma A. 2 shows that ξ_{1}, ξ_{2}, \ldots are i.i.d. integrable random variables on $\left(\mathbb{R}^{\infty}, \mathscr{B}\left(\mathbb{R}^{\infty}\right), \mu^{\omega}\right)$ for almost all ω. It follows by the strong law of large numbers and Lemma A. 1 that

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \xi_{i} & \rightarrow \int_{\mathbb{R}^{\omega}} \xi_{1} d \mu^{\omega}=\mathbb{E}\left(\xi_{1}(Y) \mid \mathscr{G}(\omega)\right. \\
& =\mathbb{E}\left(Y_{1} \mid \mathscr{G}(\omega) \quad \mu^{\omega}-\mathrm{a} . \mathrm{s} .\right.
\end{aligned}
$$

for almost all ω. It follows that

$$
\mu \omega\left\{y \in \mathbb{R}^{\infty}: \sup _{n \geqslant m} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} \xi_{i}(y)-\mathbb{E}\left(Y_{1}|\mathscr{G}(\omega)|>\epsilon\right\} \rightarrow 0\right.\right.
$$

for almost all ω. And now (A.3) is obtained by the dominated convergence theorem.

References

[1] Aldous, D. J. (1982) . On exchangeabilitiy and conditional independence, In Koch, G. and Spizzichino, F., editors, Exchangeabilitiy in Probability and Statistics, 165-170,

North-Holland, Amsterdam.
[2] Dembo, A. and Zeitouni, O.(1998). Large Deviations Techniques and Applications, 2nd ed., Springer-Verlag, New York.
[3] Deuschel, J. D. and Stroock, D. W . (2000) . Large Deviations, AMS Chelsea Publishing, Amer. Math. Soc.
[4] Fu, J. C. and Kass, R. E. (1988) . The exponential rate of convergence of posterior distributions, Ann. Inst. Statist. Math., 40, 683-691.
[5] Ganesh, A. and O'Connell, N . (1999) . An inverse of Sanov's theorem, Statist. Probab. Lett . 42, 201-206.
[6] Shen, X. and Wasserman, L . (1998). Rates of convergence of posterior distributions, Ann. Probab., 29, 687-714.

