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Large Deviations for the Posterior Distributions

under Conjugate Prior Distributions

Takuhisa Shikimi

Abstract
This paper takes up three parametric cases[] the normal, Poisson, ex-
ponential casesU in order to study a large deviation upper bound for
some posterior probabilitiy of the unknown parameter when in each
case the prior distribution is assumed to be in a conjugate family. The

upper bound will be given explicitly in each case.
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0O Introduction

Let X3, X5,... be i.i.d. random variables with unknown distribution that be-
longs to a statistical model (& :6 0® )0 where © is a parameter space. In
this paper, we focus on exponential rates of convergence of the posterior dis-
tributions in three parametric models[] the normal, Poisson and exponential
statistical models(] when in each case the prior distribution is assumed to be
in a conjugate family. There is comparatively little literature on the exponen-
tial rate of convergence of posterior distribution. Fu and Kass (1988) studies
the rate of convergence of posterior distributions in the neighborhood of the
mode. In the nonparametric Bayesian framework, Shen and Wasserman

(2001) studies the rate at which the posterior distribution concentrates
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around the true parameter, and Ganesh and O’Connell (1999) proves the
large deviation principle for posterior distributions given i.i.d. random varia-
bles taking values in a finite set.

We will give a large deviation upper bound in an explicit form for
posterior probabilities of the event [0, ) given Xj,..., X, in each of the
three parametric cases. In all cases, the basic tool to derive the results is the
law of large numbers for exchangeable random variables (Theorem A.3)

together with the conditional Markov inequality.

0 Constructing the model

Let (© ,%) be a measurable space. A stochastic kernel from (@ ,2) to (R,
P(R))T where Z(R") is the Borel o -algebra of R* (20 1, 2,..., © )0 is a fa-
mily (B :6 0©) of probability measures on (R, .Z(R)) indexed by 6 0O
such that for each A0 .o/ 6 0O —R (A)0O [0,1] is measurable. As is usuall
(B :0 00O) is referred to as a statistical model. If B is the # dimensional
product measure B x [(I0x B [the infinite product probability measure B’
ORx BRxOJO6 00 is the unique probability measure on (R”, Z(R”))
such that

R (Ax ODx A,x Rx Rx )0 R (A)TR (A,)
0 RM(Ax O0x A,)

for all n=1and A,,..., A0 2(R).

Lemma 10 For each n 1, 2,..., « O the family (Pé"):e 0®) is a stochastic
kernel from ©,%) to (R",2(R")).

Proof. We only show that (Z”°:6 0O) is a stochastic kernel, since (B{”:8

00)01<n0 o will be shown to be stochastic kernels in the same manner.
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If we define
/1 BO #(R”):0 —F~(B) is measurable[T]
then _/’is aA -class containing the Tt-class
900 Ax I0x A,x Rx RxMH:n=>10 Ay,..., A,0 2(R)D

It follows that Z(R*)Uo ()0 -~ g
For a prior distribution T on ©@,%)0 define IP to be the probability meas-
ure on (Q,%) 0 (@ x R*02x #(R™)) satisfying

P(Ux B)IZI/UH)(‘”)(B)H @®@). @

for every U0 % and BO .%(R” )0 It is not difficult to show the existence and
uniqueness of IP0 Now let us introduce the coordinate mappings 90 X and

¢ ; defined by

9@)0 90 ,x)06 0 @
X)O XE ,x)d x0 (©)
§0x (21)

for w0 @ ,x)0Q and 20 (x;)J R0 A random element X is a sequence of
random variables X;, X,..., where Xiﬁi /(X)O We think of 9 as the
unknown parameter, XO (X, X>,...) a date, where the distribution of X, is
specified by 90 By (2)0 (3) and (1) the parameter 9 has T as its distribu-

tion:

PO O)On(U);

the distribution P (X0 dx) of X is given by the mixture
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/ o 5 By (® )0 BO 4(R”); (©)
the distribution P ((Xy,..., X,,)0 (dxy,..., dx,)) is given by the mixture

o B @B (@ )0 B,0 4(R)0 ®)
and the distribution IP (X0 dx;) of X; is given by the mixture

/ePe(A)rr(aB)IZIAD,%(R)D (6)

In particular, X;, X,,... are identically distributed (but not independent in
general) under PO Distributions defined by (4)0 (5) and (6) are called
prior predictive distributions of X, (Xj,..., X,,) and Xj, respectively.
Lemma 20 The function PSgJ(B)0 defined on Q x #(R”)0 is a regular
conditional distribution for XO (X, X5,...) given 90 For each n0 e O the func-
tion P%g) (B0 defined for ,B,)0 Qx (RO is a regular conditional dis-
tribution of (Xu..., X,,) given 90 Moreover, Py (A)D defined for ,A)0 Q
x B(R)T is a regular conditional distribution of X; given 9 for every =10
Proof. For each w0 Q O PS¢ is a probability measure on (R” 0.2(R”))0 If
BO %(R”)

[ o PEB®P @[ BE@Br@)
0P(Ux B)
0 P90 U, X0 B)O

Thus, P§¢d(B) is a version of IP(X0 B ) ()0 because PSgi(B) is o (9)-
measurable as a function of w for each B.

Likewise, P{g)(B,) and Pyey(A) are regular conditional distributions for
Xy..., X)) and X;(Z0 1, 2,...)0 respectively given 90 since they are o (9)-

measurable and almost surely
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P((Xy..., X,)0 BO9) )0 P(X0 B,x Rx Rx (I1119) (@)
0 PSg3(Bx Rx Rx [11D)
0 P§gy(B,)0 B,0.2(R")0
P(X,0 AD9) @)0 IP(X0 Rx [T1x Rx Ax Rx [(TTT19) ()
0 PSg(Rx [x Rx Ax Rx [T1])

0 Pyey (A0 AD 2(R)C
O

Lemma 30 The random variables X1, X,,... are conditionally i.i.d. given 90

Proof. For all n=1and all Ay,..., A,0.2(R)

P(X,0 Ay,..., X,0 A09) @)0 Piy(Ax TDx A,)

0 Pygy (AT Py (A.)
0 P(X,0 AD9) @YTOP(X,0 A09) @) ¢,

where the first and third equalities follow from Lemma 20 Thus, X;, Xo,...
are conditionally independent given 90 Since 1P (X;0 A09) @)D Pyey(4A)O
P(X,0 A09) () a.s. for all =10 X, X,... are conditionally identically dis-
tributed.

Rea-valued random variables Y3, Y,,... are exchangeable if for all #=1 and

all permutationst of(d 1,..., n0]
(Yoo YU (% @ypoves % (i) @)

Here [§ stands for equality in distribution. de Finetti’s theorem claims that
random variables Y3, Y,,... are conditionally i.i.d. given some sub o -algebra
if and only if they are exchangeable. Lemma 3 tells us that X;, Xj,... are ex-
changeable random variables. See Aldous (1982) for an abstract version of
de Finetti’s theorem.

In what follows, we assume that @ is a complete seperable metric space,
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which is referred to as a Polish space. Accordingly, there exists a regular
conditional distribution of 9 given Xj,..., X, for all #=10 which is termed a
posterior distribution of 9 given Xj,..., X, and denoted by n4(U)0J (, V)0

Q x 240 More precisely, there exists a function m4(U) on Q x % such that

(a) for each w0 Q On4 () is a probability measure on @, U);
(b) for each U0 %, y(U) is a variant of P(90 U0 X,,..., X,)@)-

Suppose that the statistical model (B 0 0O®) is dominated by a o -finite
measureVv on (RO .%2(R)) with density function f(B )0 x0 R. We assume
that /(4B ) is measurable as a function of @ 0 x)JOx R. The marginal dis-
tribution IP((Xy,..., X,)0O (dxy,..., dx,)) of (X4,..., X,) has the marginal den-

sity function

Sl 50 Ijlf(x,te @)
with respect tov @ (the n-fold measure ofv ) i.e.,
P((Xs,..., X,)O Bn)D/ann(xl,..., TN M (dy,..., dx,))0
This can be seen from
P(X.0 Ay, X0 An)lil/e B (A% TTx A, ()
0 [ BAYTIR (A (® )
Of [ /@ » @i | ey @) @)
Of of snce s, l_rjlf(xEB » DA, £)IT(D)
O e f ﬁllf(xﬁe (B W O, %))

D / mrron 4 oG, £V (A (..., %,))0
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Note that P (f,,(Xy,..., X,)00)0 0.
Lemma 40 If the statistical model (By:0 0©) is dominated by a G -finite
measurev on (R, Z(R)) with density f(40 )0 a measurable function on®@x R,
then
a0 [, P (@) oK X0
On (D10 00Xy, Xu)

is a posterior distribution of 9 given X,..., X,,.

Proof. 1t is easily seen that for eachw O Q) is a probability measure on @,
Z) and that for each UO20n%(U) is 0 (Xy,..., X,)-measurable. Thus it
suffices to show that ()0 PP (Y0 UOX,,..., X)) a.s. and this can be

shown in the following way:

© M0 X0 )
/D Ko XD BT (AP0 [ x, . x)0 B,‘Dl-/ e (® )]dIP

oK X,)00 U fuXy..., X,)

D/U [/D N i, f(XB zd]P]n @)

}ffé?;;.’f??gégﬁu SulXy.., X3)

IZI/U V m’@)fn(xb..., Gy O(d@y..., x”))]n @)

BAFOC f (e 12)

D/U I-/B,lrﬂf,,D oo ﬁ S@B W O>d(xy,..., xn))]" (®)

i1
IZI/U B (B, £,0 00y ()
0 P90 U0 (Xy..., X,)0 B,0 fu(Xy..., X,)00)
0 P90 U0 (Xy..., X,)0 B0 fu(Xs..., X,)00)

0 P90 U0 (Xy..., X,)0 B0 £u(Xy..., X,)00)
0 P90 U0 (Xy..., X,)0 B,)O
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0 O The large deviation principle

Let S be a Polish space equipped with the Borelo -algebra .2(S)0 A function
I: 5S-[0, ]is arate function if for each MO o the level setd x0 S : I(x) <
M0Uis a compact subset of S. A rate function is necessarily a lower semicon-
tinuous function, a function with closed level sets. A family (®,) of probabil-
ity measures on S is defined to satisfy the large deviation principle with rate
function I if for each closed FO S

lim sup % log Q,(F) <[ inf I(x)

N0

and for each open GO S

lim inf 1 log @,(G) =0 inf I(x)
n x0G

n-o

Large deviation theory focuses on probability measures @, for which @,(A4)
converges to 0 exponentially fast for a class of events A. The exponential
decay of @,(A) is characterized in terms of a rate function defined above.
General treatments of the theory of large deviations and a wide variety of ap-
plications may be found in Dembo and Zeitouni (1998)0 Deuschel and
Stroock (2000).

In analogous way, let us define the large deviation principle for regular
conditional distributions. Let Q,.% IP) be a probability spacel (%) a filtra-
tion of sub o -algebras. We define a function 7 :Qx S— [00 « ] to be a rate
function if for eachwOQO I(w,0) is a rate function on S.

Definition 50 Suppose that Q5(B)J n=>1is a family of regular conditional
distributions for a random variable taking values in S given.7,. We say that
@y (B)0 n=>1 satisfies the large deviation principle if for each closed set F

of S
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lim sup % log Q(F) <D inf I@,) as. ®)

n-w

and for each open set G of S

lim inf%log Q(G) =0 inf IW,x) a.s.
N0 x0G

In this paper we restrict ourselves to the analysis on the large deviation
upper bound (8) for the posterior distributions of 9 given Xj,..., X,. We will
examine the posterior distributions 14 given Xj,..., X, in the normal, Poisson

and exponential cases and give a large deviation upper bound (8) explicitly

for the posterior probability of the closed set [B ,» ) in each case.

0 O The normal case
Suppose that

B (dx)0 f(GEB YdxT] %ﬁ exp (0 @Zelz)dxme el R

N

and assume that the prior distribution for the normal mean 9 is a conjugate

distribution

2
(® ) —— exp (Dﬁe—m“—l)as Oo000p0R

J2Zno x?

It follows from Lemma 4 that the posterior distribution of 9 given X,..., X,

is given by
© Mih. f(X[P )
@ L (..o, Xy @)
2

J2no

wherep ,0u ,(¥..., %,) and 0 3 are defined by

1 w? \- __ _x0000x,
U n(xl,m; xn)D (1D mZ)J O (1|:| mz)an an n g

g

n
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0.2

10 no?

o0
Theorem 60 For each® 0O

2
lim sup%logn‘;;[e ,0)<[ @D%m ondwB 0 IW)d as.

N0

Proof. By Markov’s inequality for conditional expectations, for all {00

myo ,0 )0 PQw :9@') =0 M X,,..., X))
0 P(e6): 2090 X,,..., X,)(®)
e B (e X,,..., X))
oflnztz]

O e"™ exp [u 2(Xy..., Xp)ntO B

a.s.,
so that

0 2nt?
2

%logn‘;i L0 )< Oy (Xy..., X,)i022 0

Sincepy ,(Xy,..., X)) -~ IE(X{O 90O 9 a.s. by Theorem A.3 and Lemma A.10

we have

2
fim sup%logn‘*’n[e 0 )< 00 9@)i0 %m

N0

Since #0J 0 is arbitrary

2
lim sup%logn‘*’n[e ) <int [0 0 9@)10 %]

2
00 @D%@l onDwd 0 9@)Das. (9)
O

In the same manner, it follows that

2
lim sup%logn‘*’n(lil o 0]<0O %@L onw:®d O I@w)0 a.s.

-

In Theorem 6 the rate function I(w,0')0 (w,0')0Q% O is
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©®'0IW))?
Iw,8)0 5 PO K(9@),81)0

where K@® 1,0 ;) is the Kullback-Leibler distance

K®..8 Z)D/D: logj%i—egf(ﬁ:e Ddx DKMD

If6 0 9@)0 then

MD inf 1@ w)0

0 =6
and so the large deviation upper bound inequality (9) is rewritten by using

the rate function /(w,0') as

lim supflogrr [S) oo)<IZI 1nf Iw,0') ondw:®b O IW)OT a.s.

oo
We now turn to the case where the samples are observed from the normal

distribution with mean 0 and unknown precision. A precision is the recipro-

cal of the variance. Accordingly, we assume that
6 2 (02 .
) XN (2“) exp (IZI 5 )dxme 0o (030 )0
If the prior distribution Tt is specified by

n(ae)mri%e“m T8 1 0:wy® O 00,8 000

which is a gamma distribution with parameters a and (o O 0,8 0O0)O
then the posterior distribution of 9 given Xj,..., X,, is a gamma distribution
with parameters
n 2
a,0a05 and B,0B.(Xy., X,)OBD 2%1)( O

Theorem A .3 together with Lemma A .1 entails the convergence

Bn 1 1
< 2 B0, as.
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Theorem 70 For each® O 1

lim supflogT[ [B,0)<DO 2(}(m)(e 010 9@)logh )

n-w

onJw0 0 9)0a.s.
Proof. For almost all w116 0 90 and ¢0 (0,1/29())0 there is an 7, such
thatB ./ @ .0 #£)0 0 for all n=n,0 since

B,0nt B,/nOt” 1/QIW))D¢ — 1029W)t

By Markov’s inequality

%logn‘;; L0 )<0 8 Olog E(@®0X,..., X,)@)

n Xl,----; )(n
908 0% Moz (3¢5 Ky i)

It follows that

1 1
lim sup *, L 1ogme B,w)<bBU;log (1|] 29(00)1‘)

-

for almost allwM6 O 90 and 0 (0,1/29(w))0 Now we obtain

. 1 1
= < = - -
lim sup , log T3P ,» ) < <, [P# g (1556

oad m(@ 010 9(@) logb )

onJ6 O 90 a.s.

0 O The Poisson case

Letv ¢ be the counting measure on (R, %(R)) and definev (A)0v (A0,
1,..0)0 A0 Z(R)T Thenv is ao -finite measure on (R, Z(R))0 If
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By (dx)0 f(EB W (dv)0 %\; (dx)06 060 (0, )

and the prior distribution Tt is a gamma distribution with parametersa and
B, then the posterior distribution of 9 given Xj,..., X, is given by a gamma
distribution with parametersa ,0a ,(Xy,..., X,), B ». Here we define
a,00 (e, )0 0 0B ,0B O n0
01

Theorem 80 For each® 0O

lim supflogrr [B,0)<O®OIW))T IW) log 9?&))

ondwB 0 IW)d as.
Proof. For all 0 (0,1)0 Markov’s inequality yields

8P ,0 )0 P{w': 9@)=0KX,,..., X,) )

<8 (e’ 0Xy,...., X)) @)

< o8 B, ) t(Xl ,,,,, X)

JOnt a.s.,

and hence for all /0 (0,1)

i Supflog-‘-[ [e ,oo)SDe 0 hman(Xl;n 5 n) 10g(8 Bn )

N -0 n—oo

006 /0 E(X09) @) log (1é )

00810 9) log (37 L) as

10 t)

Thus onOw:06 O 9@)O

lim Supfl()g‘r[ [0 ,0)< inf [DetD Y() log (1é t)]

n— 00 odm1

000 0Iw))O Iw) logTw) a.s.
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0 O The exponential case
Suppose that ©0 (0, ) and that for each® 0O
B (dx)08 e+ o ydx.

If the prior distributionTt is a gamma distribution with parametersa and3 O
then the posterior distribution given Xj,..., X, is a gamma distribution with
parametersa , and B ,0B ,(Xy,..., X,,)d where
a,0a0n0B 0B (..., )OO %0
01
Theorem 90 For each® 0O
lim sup %nf;;[e ,0)<100 9(@)0log G IW))

N

onJwB 0 I)O as.
Proof. For almost all w0 {8 O 9} and 0 (0, I(@)) T there is an 7, such that

B.(Xy..., Xu) )
B.(Xy..., X,)O m‘D 0 for all 7=, since
Bu(Xi X BXON®) [ 9@ oy

B.(Xy.., X,)Ont ~ EXONDW)D 1 9wt
Thus for almost allwd {6 O 9} and all 0 (0, I(W))

1 ay, —M
= ™) < _—
,, 10gT4[B L0 ) <06 /07 *log (X, Xo)O nt)

for all n=n,0 so that forwO {6 O 9} and 0 (0, I(W))

' 1 - I@)
lim sup, log T3P 0 ) <08 10 log (’9@)D t)l:l

Consequently

. 1 . I)
1 =1 0P ,0 )< f |06l
1rnnjup n 081G 1) outéln@) [ o8 (9(00)E| t)]
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0106v )0 log Gu ))O

Appendix

Lemma A.10 Let Y; and Y, be random variables on Q,.%, IP) with values
in measurable spaces (£1,47) and (E,,£)0 respectively, and 4 a subo -al-
gebra with respect to which Y, is measurable. If y is a regular conditional
distribution for Y; given 4 then for every measurable function /O E1x E,

- R such that 2(Y:,Y))0 L'Q,%1P),

[ 1 h0n Yo @, o) (A.1)

is #measurable and

E(Y:, Y09 @)0[ | hr, Yo@)h @.dv) as. (A.2)

In other wordsO (A.1) is a version of I8 (2 (Y3, Y,)J2).
Proof. If h 14« 4,0 A0, then (A.1) is “measurable and (A.2) holds.

Since

Fa {AD 4% gzm/ 140 Yo@)H @, is a version of B(1y(Y:; Yz)D,ﬁ)(w)}
is aA -class and -7 contains the -class

g0 {Ax A0 A0&,i01,230

&ix &0 40 Thus (A1) is a version of IE(h(Y7, Y,)0.9) whenever £ is an in-
dicator function. By linearity (A.1) is a version of IE(2(Y7, Y2)J.9) for all
simple functions %, and hence for all nonnegative functions by the monotone
convergence theorem. For the general case, the result follows by splitting

the function into positive and negative parts. m]
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Let Y1,7Y,,... be real-valued random variables defined on a probability
space Q,%P) and #a sub o -algebra. If for all z=1and A,..., A,0.2(R)
P(.0A4,,.., V,0A4090 ﬁ PXOAD9) as.,
01
Yy, Y,... are declared conditionally independent given 40 If 0o () for
some random element n 0 Y3, Y,,... are called conditionally independent
givenn O In addition to the conditional independence, if for all ;=1 IP(Y;0 A
090 P(Y,0 A09) a.s., Y1, Y,,... are defined to be conditionally indepen-
dent and identically distributed (abbreviated to conditionally i.i.d.) given <.
If Yy, Y,,... are conditionally i.i.d. and ¢ is a measurable function, then ¢
(Y1), ¢ (Y>),... are conditionally i.i.d.
Lemma A. 20 1If Y3, Y,,... are conditionally i.i.d. given .4, there exists a
regular conditional distribution p (w,B),,B)0Qx B(R>) for YO (Y3,
Y,,...) given such that for eachwQ the coordinate functions§ ;,§ ,,... on
R, Z(R*),u (w,0)) are i.i.d. Moreover, if Y; is integrable, theng 4, € »,...
are integrable with respect top (w,0) for almost allwOQO
Proof. Since R* is a Borel space, there is a regular conditional distributionv o
,B) for YO (Y, Y,,...) given 4. For each i=1 and each 700 Q there is a
null set NV;,00 ¢ such that for eachw? N;,

V o@.& i <7)OV o(w,Rx MOx Rx (0o ,7]x Rx 1)
0 P(YO RxOMOx Rx (O e ,7]x Rx I (W)
0 PY:siH9))O0 P(Y:</E9)W)
Ov & 1 <m0

and hence for allwZ NUJ Ui=1,,00N;, and for all i=1,70 Q, we have

\Y 0(00 ,E, ,‘<7’)DV o((JL),E, 1<7’).
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Since the sets of the form (O o ,7],70 Q form aT-class generating Z(R)0
it follows that for eachw [ NOv (W, ;0 0) andv o(W,& ;0 0) agree as proba-

bility measures on (R, Z(R))0 For each w define a measurev® by

Vo, O0DOwAN
v (D)0 w0 NO

ve(dO

wherev is any probability measure on (R, Z(R))0 Now we define a proba-

bility measure
M (@,0O @ex vex T)(0)

for eachwQ on (R”,Z(R*))0 We will show thatp is a regular condition-
al distribution given #that satisfies the requirement of the theorem. Sincep

(,0) is the infinite-dimensional product measure of v® with itself, the coor-
dinate functions & 1,& »,... are necessarily i.i.d. random variables on (R* ,.Z

(R*),u ,0)) for eachw with distribution

H @& 0A)Ove(A)
{jo(&),z ;0 A)D(A)MN

AD Z(R)0
Ao w0 NO

To show thaty (w,B) is a regular conditional distribution for YO (Y3, Y5,...)
given 41 it suffices to verify that y (0,B) is a version of IP(Y0 BJ.9) for
each BO Z(R>)0 since p (w,0) is a probability measure by definition. If
Ay,..., A,0 Z(R),n=10 then

Y ((*)vAlx x Anx Rx D:D)DV‘"(AJ:D]} w(Aﬂ)lN‘Dvm(Al)m w(Aﬂ)lN
Ov o £ AT @ £ 10 A4,)1x0v (A)TTV (4,) 1y,

and thereforepy (,Ax (IT0x A,x Rx 1) is “#measurable. Besides outside
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the “#null set N

M, A x T0x A,x Rx )0V o 10 A )TV o 10 4,)
Ov o ,& 10 A XTIV o@ ., .0 A4,)
0 P(Y,0 A9 @YTOP(Y,0A409W)
0P (Yi0A4,.., V,04,09)W)
0P(YDO A;x TDA,x Rx T2 (W) a-s-

Thereforep (0,Ax (I1x A,x Rx[I1J) is a version of IP(YU Ax (ITJA,x R
x (111020 Note that

90 {A;x ODA,x Rx 0D:n=>1,A,0 2(R),i01,..., n}
is aTt-class that generates #(IR* )0 Since
0 {B0O 2(R*) 1 (0,B) is a version of P(YU B1.9)}

is a A -class with 20 1 .2(R> )0 0 This implies that py (0,B) is a version
of IP(YO B1.9) for each BO Z(R*).
Finally by Lemma A.1

[ 080X @.an0 [ | 08 10) @)
DEQE (IO EQYIHW) as.

The integrability of Y; entails IEQ Yi{l.9) ()0 « a.s., and hence the
claims follows. This completes the proof. o
Theorem A.301If Y3, Y5,... are conditionally i.i.d. random variables given

a sub o -algebra .#and if Y; is integrable, then

y,ooogy,
n

yio > E(YD2) as. (n-o).

Proof. Letpe(B)0Op (w,B), ,B)0Qx Z(R*) be a regular conditional dis-
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tribution for YO (Y3, Y5,...) given  such that the coordinate functions  ,
& ;... are i.i.d. random variables on (R*,Z(R*),u®) for each wO We will
show that

]P(SupD WO E(YD.9)00e ) S0 (m-ow), (A.3)
which is equivalent to the convergence Yj-IE(Y{J£) a.s. as n » o O For
alle OO

IP(supD WO E(YO900¢ )D IE[IP(supD VO E(Y0.900e D,f)]

n=m n=m

0[P (sup] %Z & (N0 EE]0s07)]

n=m 01

OBl Re:surf] %Z £ OIEDAE)]0 ).

n=m 01
The last equation follows from Lemma A .10 Since Y; is assumed to be in-
tegrable, Lemma A.2 shows that& , € ,,... are i.i.d. integrable random varia-
bles on (R® ,.Z(R*),u®) for almost all wO It follows by the strong law of

large numbers and Lemma A .1 that

S Ei- [ BdeD B (N1A)
T OE(YD9)@) ue-as.

for almost all w0 It follows that

pw{ym R :sup | 12 £0)0E(YD)W)]Ce }qo

n=m— NS

for almost allw And now (A .3) is obtained by the dominated convergence

theorem.
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