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Large Deviations for the Posterior Distributions

under Conjugate Prior Distributions

Takuhisa Shikimi

Abstract

This paper takes up three parametric cases－the normal, Poisson, ex-

ponential cases－in order to study a large deviation upper bound for

some posterior probabilitiy of the unknown parameter when in each

case the prior distribution is assumed to be in a conjugate family. The

upper bound will be given explicitly in each case.
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１ Introduction

Let X1, X2,... be i.i.d. random variables with unknown distribution that be-

longs to a statistical model (Pθ:θ∈Θ)，whereΘ is a parameter space. In

this paper, we focus on exponential rates of convergence of the posterior dis-

tributions in three parametric models－the normal, Poisson and exponential

statistical models－when in each case the prior distribution is assumed to be

in a conjugate family. There is comparatively little literature on the exponen-

tial rate of convergence of posterior distribution. Fu and Kass (1988) studies

the rate of convergence of posterior distributions in the neighborhood of the

mode. In the nonparametric Bayesian framework, Shen and Wasserman

(2001) studies the rate at which the posterior distribution concentrates
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around the true parameter, and Ganesh and O'Connell (1999) proves the

large deviation principle for posterior distributions given i.i.d. random varia-

bles taking values in a finite set.

We will give a large deviation upper bound in an explicit form for

posterior probabilities of the event [θ,∞) given X1,...,Xn in each of the

three parametric cases. In all cases, the basic tool to derive the results is the

law of large numbers for exchangeable random variables (Theorem A.3)

together with the conditional Markov inequality.

２ Constructing the model

Let (Θ,�) be a measurable space. A stochastic kernel from (Θ,�) to (�,

�(�))，where �(�n) is the Borelσ-algebra of �n (n＝1, 2,..., ∞)，is a fa-

mily (Pθ:θ∈Θ) of probability measures on (�, �(�)) indexed by θ∈Θ

such that for each A∈��θ∈Θ Pθ(A)∈[0,1] is measurable. As is usual，

(Pθ:θ∈Θ) is referred to as a statistical model. If P(n)θ is the n dimensional

product measure Pθ×・・・×Pθ，the infinite product probability measure P(∞)θ

＝Pθ×Pθ×・・・，θ∈Θ is the unique probability measure on (�∞, �(�∞))

such that

P(∞)θ (A1×・・・×An×�×�×・・・)＝Pθ(A1)・・・Pθ(An)

＝P(n)θ (A1×・・・×An)

for all n�1 and A1,..., An∈�(�).

Lemma 1．For each n＝1, 2,..., ∞，the family (P(n)θ :θ∈Θ) is a stochastic

kernel from (Θ,�) to (�n,�(�n)).

Proof. We only show that (P(∞)θ :θ∈Θ) is a stochastic kernel, since (P(n)θ :θ

∈Θ)，1�n＜∞ will be shown to be stochastic kernels in the same manner.
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If we define

�＝｛B∈�(�∞):θ P(∞)θ (B) is measurable｝，

then � is aλ-class containing theπ-class

�＝｛A1×・・・×An×�×�×・・・:n�1，A1,..., An∈�(�)｝．

It follows that �(�∞)＝σ(�)⊂�� �

For a prior distributionπ on (Θ,�)，define to be the probability meas-

ure on (Ω,� )
△
＝(Θ×�

∞，�×�(�∞)) satisfying

(U×B)＝∫U
P(∞)θ (B)π(dθ). (1)

for every U∈� and B∈�(�∞)．It is not difficult to show the existence and

uniqueness of ．Now let us introduce the coordinate mappings �，X and

ξi defined by

�(ω)＝�(θ,x)＝θ， (2)

X(ω)＝X(θ,x)＝x， (3)

ξi(x)＝xi (i�1)

for ω＝(θ,x)∈Ω and x＝(xi)∈�
∞．A random element X is a sequence of

random variables X1, X2,..., where Xi
△
＝ξi(X)．We think of � as the

unknown parameter, X＝(X1, X2,...) a date, where the distribution of Xi is

specified by�．By (2)，(3) and (1)，the parameter �hasπ as its distribu-

tion:

(�∈U)＝π(U);

the distribution (X∈dx) of X is given by the mixture
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∫Θ ∞
θ(B)π(dθ)，B∈�(�∞); (4)

the distribution ((X1,..., Xn)∈(dx1,..., dxn)) is given by the mixture

∫ΘP(n)θ (Bn)π(dθ)，Bn∈�(��)， (5)

and the distribution (Xi∈dxi) of Xi is given by the mixture

∫ΘPθ(A)π(dθ)，A∈�(�)， (6)

In particular, X1, X2,... are identically distributed (but not independent in

general) under ．Distributions defined by (4)，(5) and (6) are called

prior predictive distributions of X, (X1,..., Xn) and Xi, respectively.

Lemma 2．The function P(∞)�(ω)(B)，defined onΩ×�(�∞)，is a regular

conditional distribution for X＝(X1, X2,...) given �．For each n＜∞，the func-

tion P(n)�(ω)(Bn)，defined for (ω,Bn)∈Ω×�(�n)，is a regular conditional dis-

tribution of (X1,..., Xn) given �．Moreover, P�(ω)(A)，defined for (ω,A)∈Ω

×�(�)，is a regular conditional distribution of Xi given �for every i�1．

Proof. For eachω∈Ω，P(∞)�(ω) is a probability measure on (�∞，�(�∞))．If

B∈�(�∞)

∫�∈U
P(∞)�(ω)(B) (dω)＝∫U

P(∞)θ (B)π(dθ)

＝ (U×B)

＝ (�∈U,X∈B)．

Thus, P(∞)�(ω)(B) is a version of (X∈B｜υ)(ω)，because P(∞)�(ω)(B) is σ(�)-

measurable as a function ofω for each B.

Likewise, P(n)�(ω)(Bn) and P�(ω)(A) are regular conditional distributions for

(X1,..., Xn) and Xi(i＝1, 2,...)，respectively given �，since they areσ(�)-

measurable and almost surely
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((X1,..., Xn)∈Bn｜�)(ω)＝ (X∈Bn×�×�×・・・｜�)(ω)

＝P(∞)�(ω)(Bn×�×�×・・・)

＝P(n)�(ω)(Bn)，Bn∈�(�n)，

(Xi∈A｜�)(ω)＝ (X∈�×・・・×�×A×�×・・・｜�)(ω)

＝P(∞)�(ω)(�×・・・×�×A×�×・・・)

＝P�(ω)(A)，A∈�(�)．
�

Lemma 3．The random variables X1, X2,... are conditionally i.i.d. given �．

Proof. For all n�1 and all A1,..., An∈�(�)

(X1∈A1,..., Xn∈An｜�)(ω)＝P(n)�(ω)(A1×・・・×An)

＝P�(ω)(A1)・・・P�(ω)(An)

＝ (X1∈A1｜�)(ω)・・・ (Xn∈An｜�)(ω) a.s.,

where the first and third equalities follow from Lemma 2．Thus, X1, X2,...

are conditionally independent given �．Since (Xi∈A｜�)(ω)＝P�(ω)(A)＝

(X1∈A｜�)(ω) a.s. for all i�1，X1, X2,... are conditionally identically dis-

tributed.

Rea-valued random variables Y1, Y2,... are exchangeable if for all n�1 and

all permutationsτ of｛1,..., n｝

(Y1,..., Yn)
d
＝(Yτ(1),..., Yτ(n))． (7)

Here
d
＝ stands for equality in distribution. de Finetti's theorem claims that

random variables Y1, Y2,... are conditionally i.i.d. given some subσ-algebra

if and only if they are exchangeable. Lemma 3 tells us that X1, X2,... are ex-

changeable random variables. See Aldous (1982) for an abstract version of

de Finetti's theorem.

In what follows, we assume thatΘ is a complete seperable metric space,
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which is referred to as a Polish space. Accordingly, there exists a regular

conditional distribution of �given X1,..., Xn for all n�1，which is termed a

posterior distribution of �given X1,..., Xn and denoted byπωn(U)，(ω,U)∈

Ω×�．More precisely, there exists a functionπωn(U) on Ω×� such that

(a) for eachω∈Ω，πωn(・) is a probability measure on (Θ,U);

(b) for each U∈�,πωn(U) is a variant of (�∈U｜X1,..., Xn)(ω).

Suppose that the statistical model (Pθ:θ∈Θ) is dominated by aσ-finite

measureν on (�，�(�)) with density function f(x｜θ)，x∈�. We assume

that f(x｜θ) is measurable as a function of (θ，x)∈Θ×�. The marginal dis-

tribution ((X1,..., Xn)∈(dx1,..., dxn)) of (X1,..., Xn) has the marginal den-

sity function

fn(x1,..., xn)＝∫Θ
n

Π
i＝1

f(xi｜θ)π(dθ)

with respect toν(n) (the n-fold measure ofν)，i.e.,

((X1,..., Xn)∈Bn)＝∫Bn
fn(x1,..., xn)ν(n)(d(x1,..., dxn))．

This can be seen from

(X1∈A1,..., Xn∈An)＝∫ΘP(n)θ (A1×・・・×An)π(dθ)

＝∫ΘPθ(A1)・・・Pθ(An)π(dθ)

＝∫Θ[∫A1
f(x1｜θ)ν(dx1)・・・∫A1

f(xn｜θ)ν(dxn)]π(dθ)
＝∫Θ∫A1×・・・×An

n

Π
i＝1

f(xi｜θ)ν(n)(d(x1,..., xn))π(dθ)

＝∫A1×・・・×An∫Θ
n

Π
i＝1

f(xi｜θ)π(dθ)ν(n)(d(x1,..., xn))

＝∫A1×・・・×An
fn(x1,..., xn)ν(n)(d(x1,..., xn))．
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Note that (fn(X1,..., Xn)＝0)＝0.

Lemma 4．If the statistical model (Pθ:θ∈Θ) is dominated by a σ-finite

measureνon (�,�(�)) with density f(x｜θ)，a measurable function onΘ×��

then

πωn(U)
△
＝[∫U

Πn
i＝1 f(xi｜θ)

fn(X1,..., Xn)
π(dθ)]1｛fn＞0｝(X1,..., Xn)

＋π(U)1{fn＝0}(X1,..., Xn)

is a posterior distribution of �given X1,..., Xn.

Proof. It is easily seen that for eachω，πωn(・) is a probability measure on (Θ,

�) and that for each U∈�，πωn(U) is σ(X1,..., Xn)-measurable. Thus it

suffices to show thatπωn(U)＝ (�∈U｜X1,..., Xn)(ω) a.s. and this can be

shown in the following way:

∫｛(X1,..., Xn)∈Bn｝
πωn(U)d ＝∫｛(X1,..., Xn)∈Bn｝

fn(X1,..., Xn)＞0
[∫U

Πn
i＝1 f(Xi｜θ)

fn(X1,..., Xn)
π(dθ)]d

＝∫U [∫｛(X1,..., Xn)∈Bn｝
fn(X1,..., Xn)＞0

Πn
i＝1 f(Xi｜θ)

fn(X1,..., Xn)
d ]π(dθ)

＝∫U [∫Bn∩｛fn＞0｝
Πn

i＝1 f(xi｜θ)
fn(x1,..., xn)

fn(x1,..., xn)ν(n)(d(x1,..., xn))]π(dθ)

＝∫U [∫Bn∩｛fn＞0｝

n

Π
i＝1

f(xi｜θ)ν(n)(d(x1,..., xn))]π(dθ)
＝∫U

P(n)θ (Bn∩｛fn＞0｝)π(dθ)

＝ (�∈U，(X1,..., Xn)∈Bn，fn(X1,..., Xn)＞0)

＝ (�∈U，(X1,..., Xn)∈Bn，fn(X1,..., Xn)＞0)

＋ (�∈U，(X1,..., Xn)∈Bn，fn(X1,..., Xn)＝0)

＝ (�∈U，(X1,..., Xn)∈Bn)．
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３．The large deviation principle

Let S be a Polish space equipped with the Borelσ-algebra �(S)．A function

I : S→[0,∞] is a rate function if for each M＜∞ the level set｛x∈S : I(x)�

M｝is a compact subset of S. A rate function is necessarily a lower semicon-

tinuous function, a function with closed level sets. A family (Qn) of probabil-

ity measures on S is defined to satisfy the large deviation principle with rate

function I if for each closed F⊂S

lim sup
n→∞

1
n

log Qn(F)�－inf
x∈F

I(x)

and for each open G⊂S

lim inf
n→∞

1
n

log Qn(G)�－inf
x∈G

I(x)

Large deviation theory focuses on probability measures Qn for which Qn(A)

converges to 0 exponentially fast for a class of events A. The exponential

decay of Qn(A) is characterized in terms of a rate function defined above.

General treatments of the theory of large deviations and a wide variety of ap-

plications may be found in Dembo and Zeitouni (1998)，Deuschel and

Stroock (2000).

In analogous way, let us define the large deviation principle for regular

conditional distributions. Let (Ω,�, ) be a probability space，(�n) a filtra-

tion of subσ-algebras. We define a function I :Ω×S→[0，∞] to be a rate

function if for eachω∈Ω，I(ω,・) is a rate function on S.

Definition 5．Suppose that Qωn(B)，n�1 is a family of regular conditional

distributions for a random variable taking values in S given �n. We say that

Qωn(B)，n�1 satisfies the large deviation principle if for each closed set F

of S
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lim sup
n→∞

1
n

log Qωn(F)�－inf
x∈F

I(ω,x) a.s. (8)

and for each open set G of S

lim inf
n→∞

1
n

log Qωn(G)�－ inf
x∈G

I(ω,x) a.s.

In this paper we restrict ourselves to the analysis on the large deviation

upper bound (8) for the posterior distributions of �given X1,..., Xn. We will

examine the posterior distributionsπωn given X1,..., Xn in the normal, Poisson

and exponential cases and give a large deviation upper bound (8) explicitly

for the posterior probability of the closed set [θ,∞) in each case.

４．The normal case

Suppose that

Pθ(dx)＝f(x｜θ)dx
△
＝ 1
2π

exp (－(x－θ)
2

2 )dx，θ∈Θ
△
＝�

and assume that the prior distribution for the normal mean �is a conjugate

distribution

π(dθ)
△
＝ 1
2πσ

exp (－(θ－μ)
2

2σ2 )dθ，σ＞0，μ∈�

It follows from Lemma 4 that the posterior distribution of �given X1,..., Xn

is given by

πωn(dθ)＝
Πn

i＝1 f(Xi｜θ)
fn(X1,..., Xn)

π(dθ)

＝ 1
2πσn

exp [－(μn(X1,..., Xn)－μ)
2

2σ2n ] dθ，

whereμn＝μn(x1,..., xn) andσ2n are defined by

μn(x1,..., xn)＝( 1
1＋nσ2)μ＋( nσ2

1＋nσ2)xn，xn＝
x1＋・・・＋xn

n
，
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σ2n＝
σ2

1＋nσ2

Theorem 6．For eachθ∈Θ

lim sup
n→∞

1
n

logπωn[θ,∞)�－
(θ－�(ω))2

2 on｛ω:θ＞�(ω)｝ a.s.

Proof. By Markov's inequality for conditional expectations, for all t＞0

πωn[θ,∞)＝ (｛ω′:�(ω′)�θ｝｜X1,..., Xn)(ω)

＝ (ent�(ω′):�entθ｜X1,..., Xn)(ω)

�e－ntθ (ent�｜X1,..., Xn)(ω)

＝e－ntθexp [μn(X1,..., Xn)nt＋σ
2
nn2 t 2

2 ] a.s.,

so that

1
n

logπωn[θ,∞)�－tθ＋μn(X1,..., Xn)t＋
σ2nnt 2

2 ．

Sinceμn(X1,..., Xn)→ (X1｜�)＝�a.s. by Theorem A.3 and Lemma A.1，

we have

lim sup
n→∞

1
n

logπωn[θ,∞)�－tθ＋�(ω)t＋t 2

2．

Since t＞0 is arbitrary

lim sup
n→∞

1
n

logπωn[θ,∞)�inf
t＞0 [－tθ＋�(ω)t＋t 2

2 ]
＝－(θ－�(ω))2

2 on｛ω:θ＞�(ω)｝a.s. (9)

�

In the same manner, it follows that

lim sup
n→∞

1
n

logπωn(－∞,θ]�－
(θ－�(ω))2

2 on｛ω:θ＜�(ω)｝a.s.

In Theorem 6 the rate function I(ω,θ′)，(ω,θ′)∈Ω×Θ is
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I(ω,θ′)＝
(θ′－�(ω))2

2 ＝K(�(ω),θ′)，

where K(θ1,θ2) is the Kullback-Leibler distance

K(θ1,θ2)＝∫∞－∞ log
f(x｜θ1)
f(x｜θ2)

f(x｜θ1)dx＝(θ1－θ2)
2

2 ．

Ifθ＞�(ω)，then

(θ－�(ω))2
2 ＝ inf

θ′�θ
I(θ′,ω)．

and so the large deviation upper bound inequality (9) is rewritten by using

the rate function I(ω,θ′) as

lim sup
n→∞

1
n

logπωn[θ,∞)�－ inf
θ′�θ

I(ω,θ′) on｛ω:θ＞�(ω)｝ a.s.

We now turn to the case where the samples are observed from the normal

distribution with mean 0 and unknown precision. A precision is the recipro-

cal of the variance. Accordingly, we assume that

Pθ(dx)
△
＝(θ2π)

1/2
exp (－θx 2

2 )dx，θ∈Θ
△
＝(0;∞)．

If the prior distributionπ is specified by

π(dθ)＝ βα

Γ(α)θ
α－1 e－βθ1(0;∞)dθ，α＞0,β＞0，

which is a gamma distribution with parameters α and β(α＞0,β＞0)，

then the posterior distribution of �given X1,..., Xn is a gamma distribution

with parameters

αn＝α＋
n
2 and βn＝βn(X1,..., Xn)＝β＋

1
2

n

Σ
i＝1

X 2
i．

Theorem A.3 together with Lemma A.1 entails the convergence

βn

n
→ 12 (X21｜υ)＝

1
2� a.s.
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Theorem 7．For eachθ＞1

lim sup
n→∞

1
n

logπωn[θ,∞)�－
1

2�(ω)(θ－1－�(ω)logθ)

on｛ω:θ＞�(ω)｝a.s.

Proof. For almost allω∈｛θ＞�｝ and t∈(0,1/2�(ω))，there is an n0 such

thatβn/(βn－nt)＞0 for all n�n0，since

βn

βn－nt
＝ βn/n
βn/n－t

→ 1/(2�(ω))
1/(2�(ω))－t

＝ 1
1－2�(ω)t．

By Markov's inequality

1
n

logπωn[θ,∞)�－tθ＋log (entθ｜X1,..., Xn)(ω)

＝－tθ＋αn
n

log ( βn(X1,..., Xn)
βn(X1,..., Xn)－nt)．

It follows that

lim sup
n→∞

1
n

logπωn[θ,∞)�－tθ＋12 log ( 1
1－2�(ω)t)

for almost allω∈｛θ＞�｝and t∈(0,1/2�(ω))．Now we obtain

lim sup
n→∞

1
n

logπωn[θ,∞)� inf
0＜t＜1/2�(ω) [－tθ＋12 log ( 1

1－2�(ω)t)]
＝－ 1
2�(ω)(θ－1－�(ω) logθ)

on｛θ＞�｝a.s.

５．The Poisson case

Letν0 be the counting measure on (�,�(�)) and defineν(A)＝ν0(A∩｛0,

1,...｝)，A∈�(�)．Thenν is aσ-finite measure on (�� �(�))．If
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Pθ(dx)＝f(x｜θ)ν(dx)
△
＝e－θθx

x! ν(dx)，θ∈Θ＝(0,∞)

and the prior distributionπ is a gamma distribution with parametersα and

β, then the posterior distribution of �given X1,..., Xn is given by a gamma

distribution with parametersαn＝αn(X1,..., Xn),βn. Here we define

αn＝αn(x1,..., xn)＝α＋
n

Σ
i＝1

xi，βn＝β＋n．

Theorem 8．For eachθ∈Θ

lim sup
n→∞

1
n

logπωn[θ,∞)�－(θ－�(ω))＋�(ω) log
θ

�(ω)

on｛ω:θ＞�(ω)｝ a.s.

Proof. For all t∈(0,1)，Markov's inequality yields

πωn[θ,∞)＝ ({ω′:�(ω′)�θ｜X1,..., Xn)(ω)

�e－ntθ (ent�｜X1,..., Xn)(ω)

�e－ntθ( βn

βn－nt)
αn(X1,..., Xn)

a.s.,

and hence for all t∈(0,1)

lim sup
n→∞

1
n

logπωn[θ,∞)�－θt＋lim
n→∞

αn(X1,..., Xn)
n

log ( βn

βn－nt)
＝－θt＋ (X1｜�)(ω) log ( 11－t)
＝－θt＋�(ω) log ( 11－t) a.s.

Thus on｛ω:θ＞�(ω)｝

lim sup
n→∞

1
n

logπωn[θ,∞)� inf
0＜t＜1 [－θt＋�(ω) log ( 11－t)]
＝－(θ－�(ω))＋�(ω) log

θ
�(ω) a.s.

�
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６．The exponential case

Suppose thatΘ＝(0,∞) and that for eachθ∈Θ

Pθ(dx)＝θe－θx1(0,∞)dx.

If the prior distributionπ is a gamma distribution with parametersαandβ，

then the posterior distribution given X1,..., Xn is a gamma distribution with

parametersαn andβn＝βn(X1,..., Xn)，where

αn＝α＋n，βn＝βn(x1,..., xn)＝β＋
n

Σ
i＝1

xi．

Theorem 9．For eachθ∈Θ

lim sup
n→∞

1
n
πωn[θ,∞)�1－θ�(ω)＋log (θ�(ω))

on｛ω:θ＞�(ω)｝ a.s.

Proof. For almost allω∈{θ＞�} and t∈(0,�(ω))，there is an n0 such that
βn(X1,..., Xn)
βn(X1,..., Xn)－nt

＞0 for all n�n0，since

βn(X1,..., Xn)
βn(X1,..., Xn)－nt

→ (X1｜�)(ω)
(X1｜�)(ω)－t

＝ �(ω)
�(ω)－t

＞0．

Thus for almost allω∈{θ＞�} and all t∈(0,�(ω))

1
n

logπωn[θ,∞)�－θt＋αn

n
log ( βn(X1,..., Xn)
βn(X1,..., Xn)－nt)

for all n�n0，so that forω∈{θ＞�} and t∈(0,�(ω))

lim sup
n→∞

1
n

logπωn[θ,∞)�－θt＋log ( �(ω)
�(ω)－t)．

Consequently

lim sup
n→∞

1
n

logπωn[θ,∞)� inf
0＜t＜�(ω) [－θt＋log ( �(ω)

�(ω)－t)]
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＝1－θυ(ω)＋log (θυ(ω))．

�

Appendix

Lemma A.1．Let Y1 and Y2 be random variables on (Ω,�, ) with values

in measurable spaces (E1,�1) and (E2,�2)，respectively, and � a sub-σ-al-

gebra with respect to which Y2 is measurable. Ifμ is a regular conditional

distribution for Y1 given �，then for every measurable function f：E1×E2

→ � such that h(Y1,Y2)∈L1(Ω,�, ),

∫E1
h(y1,Y2(ω))μ(ω,dy1) (A.1)

is �-measurable and

(h(Y1,Y2)｜�)(ω)＝∫E1
h(y1,Y2(ω))μ(ω,dy1) a.s. (A.2)

In other words，(A.1) is a version of (h(Y1,Y2)｜�).

Proof. If h＝1A1×A2，Ai∈�i, then (A.1) is �-measurable and (A.2) holds.

Since

�＝{A∈�1×�2：∫E1
1A(y1,Y2(ω))μ(ω,dy1) is a version of (1A(Y1;Y2)｜�)(ω)}

is aλ-class and � contains theπ-class

�＝{A1×A2：Ai∈�i,i＝1,2}，

�1×�2⊂�．Thus (A.1) is a version of (h(Y1,Y2)｜�) whenever h is an in-

dicator function. By linearity，(A.1) is a version of (h(Y1,Y2)｜�) for all

simple functions h, and hence for all nonnegative functions by the monotone

convergence theorem. For the general case, the result follows by splitting

the function into positive and negative parts. �
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Let Y1,Y2,... be real-valued random variables defined on a probability

space (Ω,�, ) and � a subσ-algebra. If for all n�1 and A1,..., An∈�(�)

(Y1∈A1,..., Yn∈An｜�)＝
n

Π
i＝1

(Xi∈Ai｜�) a.s.,

Y1, Y2,... are declared conditionally independent given �．If �＝σ(η) for

some random element η，Y1, Y2,... are called conditionally independent

givenη．In addition to the conditional independence, if for all i�1 (Yi∈A

｜�)＝ (Y1∈A｜�) a.s., Y1, Y2,... are defined to be conditionally indepen-

dent and identically distributed (abbreviated to conditionally i.i.d.) given �.

If Y1, Y2,... are conditionally i.i.d. and � is a measurable function, then �

(Y1), �(Y2),... are conditionally i.i.d.

Lemma A. 2．If Y1, Y2,... are conditionally i.i.d. given �, there exists a

regular conditional distribution μ(ω,B),(ω,B)∈Ω×�(�∞) for Y＝(Y1,

Y2,...) given � such that for eachω∈Ω the coordinate functionsξ1,ξ2,... on

(�∞� �(�∞),μ(ω,･)) are i.i.d. Moreover, if Y1 is integrable, thenξ1,ξ2,...

are integrable with respect toμ(ω,･) for almost allω∈Ω．

Proof. Since �∞ is a Borel space, there is a regular conditional distributionν0

(ω,B) for Y＝(Y1, Y2,...) given �. For each i�1 and each r∈� there is a

null set Ni,r∈� such that for eachω∈/ Ni,r

ν0(ω,ξi�r)＝ν0(ω,�×・・・×�×(－∞,r]×�×・・・)

＝ (Y∈�×・・・×�×(－∞,r]×�×・・・｜�)(ω)

＝ (Yi�r｜�)(ω)＝ (Y1�r｜�)(ω)

＝ν0(ω,ξ1�r)，

and hence for allω∈/ N
△
＝ i�1,r∈� Ni,r and for all i�1,r∈�, we have

ν0(ω,ξi�r)＝ν0(ω,ξ1�r).
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Since the sets of the form (－∞,r],r∈� form aπ-class generating �(�)，

it follows that for eachω∈/ N，ν0(ω,ξi∈･) andν0(ω,ξ1∈･) agree as proba-

bility measures on (�,�(�))．For eachωdefine a measureνω by

νω(･)＝
�
�
�

ν0(ω,ξ1∈･)，ω∈/ N

ν(･)， ω∈N，

whereν is any probability measure on (�,�(�))．Now we define a proba-

bility measure

μ(ω,･)＝(νω×νω×・・・)(･)

for eachω∈Ωon (�∞,�(�∞))．We will show thatμ is a regular condition-

al distribution given � that satisfies the requirement of the theorem. Sinceμ

(ω,･) is the infinite-dimensional product measure ofνωwith itself, the coor-

dinate functionsξ1,ξ2,... are necessarily i.i.d. random variables on (�∞,�

(�∞),μ(ω,･)) for eachωwith distribution

μ(ω,ξi∈A)＝νω(A)

＝
�
�
�

ν0(ω,ξ1∈A)，ω∈/ N
A∈�(�)．

ν(A)， ω∈N，

To show thatμ(ω,B) is a regular conditional distribution for Y＝(Y1,Y2,...)

given �，it suffices to verify thatμ(･,B) is a version of (Y∈B｜�) for

each B∈�(�∞)，since μ(ω,･) is a probability measure by definition. If

A1,..., An∈�(�),n�1，then

μ(ω,A1×・・・×An×�×・・・)＝νω(A1)・・・νω(An)1Nc＋νω(A1)・・・νω(An)1N

＝ν0(ω,ξ1∈A1)・・・ν0(ω,ξ1∈An)1Nc＋ν(A1)・・・ν(An)1N,

and thereforeμ(ω,A1×・・・×An×�×・・・) is �-measurable. Besides outside
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the �-null set N

μ(ω,A1×・・・×An×�×・・・)＝ν0(ω,ξ1∈A1)・・・ν0(ω,ξ1∈An)

＝ν0(ω,ξ1∈A1)・・・ν0(ω,ξn∈An)

＝ (Y1∈A1｜�)(ω)・・・ (Yn∈An｜�)(ω)

＝ (Y1∈A1,..., Yn∈An｜�)(ω)

＝ (Y∈A1×・・・An×�×・・・｜�)(ω) a.s.

Thereforeμ(･,A1×・・・×An×�×・・・) is a version of (Y∈A1×・・・An×�

×・・・｜�)．Note that

�＝{A1×・・・An×�×・・・:n�1,Ai∈�(�),i＝1,..., n}

is aπ-class that generates �(�∞)．Since

�＝{B∈�(�∞):μ(･,B) is a version of (Y∈B｜�)}

is aλ-class with �⊂�，�(�∞)⊂�．This implies thatμ(･,B) is a version

of (Y∈B｜�) for each B∈�(�∞).

Finally by Lemma A.1

∫�∞
｜ξi(y)｜μ(ω,dy)＝∫�∞

｜ξ1(y)｜μ(ω,dy)

＝ (｜ξ1(Y)｜｜�)(ω)＝ (｜Y1｜｜�)(ω) a.s.

The integrability of Y1 entails (｜Y1｜｜�)(ω)＜∞ a.s., and hence the

claims follows. This completes the proof. �

Theorem A.3．If Y1, Y2,... are conditionally i.i.d. random variables given

a subσ-algebra � and if Y1 is integrable, then

ŒYn＝
Y1＋・・・＋Yn

n
→ (Y1｜�) a.s. (n→∞).

Proof. Letμω(B)＝μ(ω,B),(ω,B)∈Ω×�(�∞) be a regular conditional dis-
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tribution for Y＝(Y1, Y2,...) given � such that the coordinate functionsξ1,

ξ2... are i.i.d. random variables on (�∞,�(�∞),μω) for each ω．We will

show that

(sup
n�m
｜ŒYn－ (Y1｜�)｜＞ε)→ 0 (m→∞), (A.3)

which is equivalent to the convergence ŒYn→ (Y1｜�) a.s. as n→∞．For

allε＞0

(sup
n�m
｜ŒYn－ (Y1｜�)｜＞ε)＝ [ (sup

n�m
｜ŒYn－ (Y1｜�)｜＞ε｜� )]

＝ [ (sup
n�m
｜1n

n

Σ
i＝1

ξi(Y)－ (Y1｜�)｜＞ε｜� )]
＝ [μω{y∈�∞:sup

n�m｜
1
n

n

Σ
i＝1

ξi(y)－ (Y1｜�)(ω)｜＞ε}].
The last equation follows from Lemma A.1．Since Y1 is assumed to be in-

tegrable, Lemma A.2 shows thatξ1,ξ2,... are i.i.d. integrable random varia-

bles on (�∞,�(�∞),μω) for almost allω．It follows by the strong law of

large numbers and Lemma A.1 that

1
n

n

Σ
i＝1

ξi→∫�∞
ξ1dμω＝ (ξ1(Y)｜�)(ω)

＝ (Y1｜�)(ω) μω-a.s.

for almost allω．It follows that

μω{y∈�∞:sup
n�m
｜1n

n

Σ
i＝1

ξi(y)－ (Y1｜�)(ω)｜＞ε}→0
for almost allω．And now (A.3) is obtained by the dominated convergence

theorem.
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