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Large Deviation Principles for Posterior

Distributions of the Normal Parameters

Takuhisa Shikimi

Abstract

Suppose that X3, X5, ... are conditionally i.i.d. random variables with
distribution Py given 906 0 where 9 is an unknown parameter. If Py
is a normal distribution with mean 6 and known variance o 2, and if the
prior of ¢ is chosen from the conjugate family N ,vz) or proportional
to the Lebesgue measure, then it follows that the posterior distributions
given Xi, ..., X, obey a large deviation principle with a rate function. If
Py is a normal distribution with known mean and unknown precision 6 ,
and if as a prior we choose the gamma distribution with parameters o
and B or the improper distribution (18 ) O the Jeffereys’ prior, then
the posterior distributions of ¢ given Xi,...,X, are shown to satisfy a
large deviation principle. The Géirtner-Ellis theorem plays the key role

to prove these large deviation principles for the posterior distributions.

Keywords: large deviations; posterior distributions; the Girtner-Ellis

theorem.

0 Introduction

Let 9 be an unknown parameter with prior m and X;,X,, ... are condition-
ally i.i.d. random variables with conditional distribution By given 906 O In

this paper, we will show the large deviation principles for the posterior dis-
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tribution of ¢ given Xi,...,X, when P, is either N@® ,0 *) with known o °
or N ,1/8 ) with known p . There is comparatively little literature on the
exponential rate of convergence of posterior distributions. Fu and Kass
(1988) studies the rate of convergence of posterior distributions in the
neighborhood of the mode. In the nonparametric Bayesian framework, Shen
and Wasserman (2001) studies the rate at which the posterior distribution
concentrates around the true parameter, and Ganesh and O’Connell (1999)
proves the large deviation principle for posterior distributions given i.i.d.
random variables taking values in a finite set. Moderate deviation asymptot-
ic results in a Bayesian setting are studied by Eichelsbacher and Ganesh
(2002).

We begin with constructing the Bayesian framework appropriate for for-
mulating and proving our results. Let (©,%) and (£,./) be Polish spaces
(complete separable metric spaces) endowed with the Borel o -algebras %
and .o/0 A stochastic kernel from @ ,%) to (2,.7) is a family (& :6 00) of
probability measures on (Z;.%7) indexed by 8 0©®0 namely a mapping 6 0O
—Py 0.2, 0 where &, is the set of probability measures on (2,.22)0 such
that for each A0 .o401 6 0O@—Py (A)O [0,1] is measurable. The space %, e-
quipped with the weak topology is metrized by the Lévy-Prohorov metric,
and with respect to the metric #,-is Polish. Further, a family (& :6 0®) of
probability measures is a stochastic kernel from ©,%) to (£,.27) if and only
if 06 0@ —Fy 0 #-is measurable with respect to % and the Borel ¢ -algebra
generated by the weak topology of &2, [In the literature of statistics(d® ,%)
is called a parameter space and a stochastic kernel from @ ,%) to (Z2,.%7) is
called a statistical model on (Z;.2/)[Let (2™ ,o/™)0 (Z;.2/)x Tx (Z,/)
be the #-dimensional product measurable space and let P00 Py xOx By

be the n-dimensional product measure of P, with itself. It is easy to show
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that (P{:6 0O) is a stochastic kernel from @,%) to (2™ ,/™)0 We as-
sume that each Py is absolutely continuous with respect to a ¢ -finite meas-
ure A on (2,)01i.e., B OA for all® OOOIf f(«16 )is a density of P
with respect to A
Ré")(A)D/A [ /@B )Yd( xTDOx A YO AD /™0
01
We further assume that /(a0 ) is measurable as a function of @ ,x)0Ox
Let it be a prior distribution on (® ,%)0 Define probability measures P®
on @x 2P . 9x o/ by
IP(”)(C)D/C [ /(8 )d(m x A xTDOx A )0 CO2x /"0 n=>10
01

Since the sequence P® IP@ | . is consistent, that is,
PP DCx 270 PP (C)

for all #=1and CO2x /™0 it follows by Kolmogorov’s consistency the-
orem that there is a unique probability measure IP0 IP™ on the infinite

product space (Q ,7)0 @x 2, 9% /) such that
P(Cx 2'x 2xI0)0 P ()0 n=10 CO2x /0
Now let us introduce the coordinate functions. ForwO ® , (x,))0Q define

9(w)D 6060
Xi(w)Ox020:01,2,....

We think of 9 as the unknown parameter and X;,X,, ... as data. If U0 %
and A0 /%0 then
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P90 U,(X,-...X,)0 A0 P(Ux Ax 2% 2% [11)

0 PO (U A)D/UxA |'| A )d(ux A x [TTIx\)

01

D/l/Aﬁf(xLB)d()\ x [(T0x A )dm

0 / LB @)

In particular, the marginal distributions of 90 (Xi1,...,X,) and X; are

given as follows:

P90 U)On (U)O U020
P((X,...,X,)0 A)IZI/@PG(”)(A)T(aB)D A0 /"0

P(X.0 A)D/ePe (A (®)HDAD 1i01,2,. ...

For each w O P§Q, is a probability measure on (2 ,/")0 If AD /"0

PSRy (A) is o (9)-measurable as a function of w and
[ 1 FA@PO[ | B (A (@)0 P90 U, (X, ..., X,)0 A))D

which shows that P§”(A)is a conditional probability of (Xi,...,X,)0A
given 90 Thus Pf(fg,)(A) is a regular conditional distribution of (X1, ...,X,)
given 9 0 In the same way, Py¢)(A4) O A0 .o/ is shown to be a regular con-
ditional distribution of X; given 9 O In particular, IP(X;0 A09)0OP4(A)
a.s., Al .o/ Since

P(X.0A4,,...,X,0A,09)0 PS(Ax TDx A,)
g P{)(Al):ljjpé)(An)
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0 ]P(X]_D A1D L())j]:’]P(.XlD A,J] 19) a.s.,

it follows that X;,X,, ... are conditionally i.i.d. given 90

Since 9 is a random variable with values in a Polish space (© ,7%)0 there
is a regular conditional distribution of 9 given Xi, ..., X,, which we will call
the posterior distribution of 9 given X, ..., X, and denote it by @({)D ®d0
X1,y X)) orme (D)0

0 The large deviation principle

Let (®,) be a sequence of probability measures on a Polish space (S, %
(S))Od where %4(S) is the Borel 0 -algebra. A function /:S- [0, ]is
called a rate function on S'if for each MO oo the level set {x0 S : I(x) <M} is
a compact subset of S. It follows necessarily that I is a lower semicontinuous
function. In most applications, I is a convex function. The large deviation
principle focuses on the asymptotic behavior of the sequence (@,) in terms
of a rate function I. The precise formulation is as follows.

Definition 10 Let (@,) be a sequence of probability measures on S and [ a
rate function on S. We say that (Q,) satisfies the large deviation principle
with rate function I if the following two conditions hold.

(i) For each closed subset FOI S
lim sup % log Q,(F) <0 inf I

n-w

(ii) For each open subset GO S

lim inf % log @,(G) =0 inf I(x)O
x0G

n-w

It is well known that if (@,) satisfies the large deviation principle with a
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rate function, then the rate function is uniquely determined. We refer the
reader to Dembo and Zeitouni (1998) or Deuschel and Strook (2000) for bas-
ic results and a wide variety of large deviation techniques.

A convex function Y :R - (0 o ,0 ] is said to be essentially smooth if

(i) Eg is not empty, where Eg is the interior of E,0 {{OR : g ()T w };

(ii)  is differentiable on E§;

(iii) Y is steep, namely

lim O’ (£,)00 oo

N0

whenever (%,) is a sequence in E converging to a boundary point of Ej O
Here we state the Gértner-Ellis theorem, an extension of Crdmer’s theorem
to non-i.i.d. random variables. This is a key theorem in this paper for prov-
ing the large deviation principles for posterior distributions of the normal
parameters.

Theorem 20 Let (Q,) be a sequence of probability measures on (R, Z(R))

such that the cumulant generating function

w ()0 lim % log / 7 8Qudn) o

exists in [0 oo ,00 ] for each t0 R. If E§ contains the origin, then P (£)0 O 0 O
W is convex, and the Fenchel-Legendre transform ofp (the conjugate function of

)
100 sup[tx01y (1] @

is a rate function on R.

Theorem 3 (Gartner-Ellis)O Let (Q,) be a sequence of probability meas-
ures on (R, Z(R)) such that (1) exists for all {0 R. If Eg contains the ovigin,
then the followings hold with the rate function I defined by (2)0
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(@) For each closed subset FO S

lim sup % log QP <0 inf ()T

n-w

(ii)) For each open subset GO S

lim inf 1 log @,(G)=0 inf I(x)O
n x0Gn H

now

where H is the set of exposed points of I:
HO{OR:O0MEFOy2 x tyO I(y)O &0 I(x)}0

If, in additionO is essentially smooth and lower semicontinuous, then (Q,)
satisfies the lavge deviation principle with the rate function I.

For the proofs of Theorem 2 and Theorem 300 see Dembo and Zeitouni
(1998) 00 Our purpose is to obtain the large deviation principles for posteriors
of the normal parameters given data. Accordingly, we have to slightly modi-
fy the definitions of rate function and the large deviation principle in order to
cover a sequence of conditional distributions. Let (Q ,.%, IP) be a probability
space, (:4,) an increasing sequence of sub o -algebras, and Y random varia-
ble taking values in (S, 2(S))0 Then for each =1 there exists a function
@,:(,B)0Q x #(S)—Q¥(B)U [0,1] such that

(i) for eachwO Q Q¥(B) is a probability measure on (S, %(S));

(ii) for each BO .Z(S)QY(B) is a version of P(YU BJ1.4,)(®)-

The function @, is called a regular conditional distribution of Y given .4,.

We define a measurable function 7: Q x S— [0, ] to be a rate function
on S if I(w,0) is a rate function for eachw O Q O It is natural to define the
large deviation principle for a sequence of conditional distributions (&,) as
follows.

Definition 40 Let 7 :Q x S— [0, ] be a rate function on S. We say that a
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sequence (Q),) satisfies the large deviation principle with rate function 7 if
the following two conditions hold.

(1) For each closed subset FO S

lim sup%log &I <0O iélﬁ](&),x) a.s.

N0

(i) For each open subset GO S

lim inf%log P(G) =0 inf I(@,x) a.s.
x0G

N0

0 The normal model with unknown mean and known

variance

Suppose that ©,%)0 (2,20 (R, 2(R))0 where 2(R) is the Borel o -al-
gebra of R. Let P, O N@® ,0*)0 the normal distribution with mean® 0O and
known varianceo 0 If we choose the normal distribution N ,¢°) for the
prior distribution of 90 then the posterior distribution of 9 given Xi,...,X,

is the normal distribution N ,,v5)0 where

2 2

o/n v = - - - X0000X,
a0 o /n0 M Dozlnlj sz”D X0 n .
lois-tn

v2 v o%n

Since X;,X5, ... are conditionally i.i.d. given 9 and X; is integrable under
IP, the law of large numbers for conditionally i.i.d. random variables entails

the convergence X, -~ IE(X{J 9)0 9 a.s., and hence we have
Mu—d9 a.s.

Since
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© vt
/D e ()0 exp(p anitd ”2 )

we have the cumulant generating function

. 22
w(HO 1im%10g/m E e (@ )0 wm‘% @)

which is that of N(9,0%)0If we select the Lebesgue measure on R as the
prior for 90 then the posterior distribution is given by N(X,,0 2/n)IZI which
is the limiting distribution of N ,1,1/,21) as v° - o O 1t follows that the cu-
mulant generating function of the posterior distribution is the same as (3)0
It is easy to see that E§0 R, is differentiable and steep for eachw so that
Y is essentially smooth and continuous for eachw It is not difficult to show

that the Fenchel-Legendre transform of ¢ for eachw is given by

I@.2)0 ﬁ%@im )

Now we obtain the following theorem.

Theorem 50 Suppose that X1,X, - .. are conditionally i.i.d. with distribu-
tion N® ,0 2) gwen 906 OGO R. If NQu ,vz),u O R,2’0 00s the prior for 90
then the posterior distributions satisfy the large deviation principle with rate
Sfunction (4)0 If we choose the Legesgue measure as the prior for 90 the same

result follows.

0 The normal model with known mean and unknown

precision

Let X;,X,, ... be conditionally i.i.d. random variables sampled from F, O
N@ ,1/8 )06 060 (0,0 )0 Assume that the prior distribution of the preci-

sion 9 is a gamma distribution G(@ ,8 ),a 0 0,3 O 00 Then the posterior dis-
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tribution of 9 given X, ...,X, is a gamma G(@ ,,8 ,)0 where

n
a, 0O GIZIZIZI

n g2 21 - 2
B, O BDZSnDSnDnzl(lep)D

i0
Note that by the law of large numbers for conditionally i.i.d random varia-

bles
1
S; S EL(X,0u)T 910 g oas.

By the moment generating function of G( ,,B ,)J we have

oy

w JE”—t) 0wmBon

/0 ety ()0 (B n
w [ t>%m

and hence we obtain the cumulant generating function

w( O 1im%10g/0°° Mo (@)

)

o (4—“ 29 )UZD m-tp

g
0 /(2901 28 )
=
o O 12550

This is the cumulant generating function of G(1/2,1/(29))0 If we utilize

the improper prior
1
m(d )0 eﬁB (6)

which is the Jefferys’ prior for 9 and obtained formally by lettinga — 0 and
B -0in G(@ ,B )0 then the same cumulant generating function as (5) is ob-

tained. The Fenchel-Legendre transform of has the following form.
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Olog )IZI 1]D x00 00

I((A) ,X)D 2 19(0))
oo [ x<00

)

o

O] d(w)

I(w ,0) defined by (7).

By Theorem 20 I(w,0) is a convex rate function for eachwO and by The-
orem 3 we have the following result.
Theorem 60 Suppose that X1,X,, - - . ave conditionally i.i.d. with distribution
N ,18) given 906 00O (0,0 ) If a gamma distribution G@ B ),0 00,
B 00 s the prior for 90 then

lim sup log E’(L)IZI GOXi,.. .., X)@)<O :élg Iw,x)as.

N0

Jor all open sets GO (0,00 )0 and

lim 1nf*10g PIO0FOX,,....X)W)=>0 inf IW,x)as.
x0 Fn H,

N0

for all closed sets FU (0,00 )0 where H, is the set of exposed points of I(w ,0)0
If we select the Jeffreys’s prior (6) for 90 the same result follows.
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