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Abstract

Suppose that X1,X2,... are conditionally i.i.d. random variables with

distribution Pθ given �＝θ，where �is an unknown parameter. If Pθ

is a normal distribution with meanθ and known varianceσ2, and if the

prior of �is chosen from the conjugate family N(μ,v2) or proportional

to the Lebesgue measure, then it follows that the posterior distributions

given X1,...,Xn obey a large deviation principle with a rate function. If

Pθ is a normal distribution with known mean and unknown precisionθ,

and if as a prior we choose the gamma distribution with parametersα

andβ or the improper distribution (1/θ)dθ，the Jeffereys' prior, then

the posterior distributions of �given X1,...,Xn are shown to satisfy a

large deviation principle. The G �artner-Ellis theorem plays the key role

to prove these large deviation principles for the posterior distributions.

Keywords: large deviations; posterior distributions; the G �artner-Ellis

theorem.

１ Introduction

Let �be an unknown parameter with priorπ and X1,X2,... are condition-

ally i.i.d. random variables with conditional distribution Pθ given �＝θ．In

this paper, we will show the large deviation principles for the posterior dis-
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tribution of �given X1,...,Xn when Pθ is either N(θ,σ2) with knownσ2

or N(μ,1/θ) with knownμ. There is comparatively little literature on the

exponential rate of convergence of posterior distributions. Fu and Kass

(1988) studies the rate of convergence of posterior distributions in the

neighborhood of the mode. In the nonparametric Bayesian framework, Shen

and Wasserman (2001) studies the rate at which the posterior distribution

concentrates around the true parameter, and Ganesh and O'Connell (1999)

proves the large deviation principle for posterior distributions given i.i.d.

random variables taking values in a finite set. Moderate deviation asymptot-

ic results in a Bayesian setting are studied by Eichelsbacher and Ganesh

(2002).

We begin with constructing the Bayesian framework appropriate for for-

mulating and proving our results. Let (Θ,�) and (�,� ) be Polish spaces

(complete separable metric spaces) endowed with the Borelσ-algebras �

and �．A stochastic kernel from (Θ,� ) to (�,� ) is a family (Pθ:θ∈Θ) of

probability measures on (�,� ) indexed byθ∈Θ，namely a mappingθ∈Θ

Pθ∈��，where �� is the set of probability measures on (�,� )，such

that for each A∈�，θ∈Θ Pθ(A)∈[0,1] is measurable. The space �� e-

quipped with the weak topology is metrized by the L �evy-Prohorov metric,

and with respect to the metric �� is Polish. Further, a family (Pθ:θ∈Θ) of

probability measures is a stochastic kernel from (Θ,� ) to (�,� ) if and only

ifθ∈Θ Pθ∈�� is measurable with respect to � and the Borelσ-algebra

generated by the weak topology of ��．In the literature of statistics，(Θ,� )

is called a parameter space and a stochastic kernel from (Θ,� ) to (�,� ) is

called a statistical model on (�,� )．Let (� (n),� (n))＝(�,� )×・・・×(�,� )

be the n-dimensional product measurable space and let P(n)θ ＝Pθ×・・・×Pθ

be the n-dimensional product measure of Pθ with itself. It is easy to show
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that (P(n)θ :θ∈Θ) is a stochastic kernel from (Θ,� ) to (� (n),� (n))．We as-

sume that each Pθ is absolutely continuous with respect to aσ-finite meas-

ureλ on (�,� )，i.e., Pθ≪λ for allθ∈Θ．If f(x｜θ) is a density of Pθ

with respect toλ

P(n)θ (A)＝∫A

n

Π
i＝1

f(xi｜θ)d(λ×・・・×λ)，A∈�
(n)．

We further assume that f(x｜θ) is measurable as a function of (θ,x)∈Θ×

�.

Letπ be a prior distribution on (Θ,� )．Define probability measures (n)

on (Θ×�
(n),�×�

(n)) by

(n)(C)＝∫C

n

Π
i＝1

f(xi｜θ)d(π×λ×・・・×λ)，C∈�×�
(n)，n�1．

Since the sequence (1), (2),... is consistent, that is,

(n＋1)(C×� )＝ (n)(C)

for all n�1 and C∈�×�
(n)，it follows by Kolmogorov's consistency the-

orem that there is a unique probability measure ＝ π on the infinite

product space (Ω,� )＝(Θ×�
(∞),�×�

(∞)) such that

(C×�×�×・・・)＝ (n)(C)，n�1，C∈�×�
(n)．

Now let us introduce the coordinate functions. Forω＝(θ,(xi))∈Ωdefine

�(ω)＝θ∈Θ，

Xi(ω)＝xi∈�，i＝1,2,....

We think of �as the unknown parameter and X1,X2,... as data. If U∈�

and A∈�
(n)，then
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(�∈U,(X1,...,Xn)∈A)＝ (U×A×�×�×・・・)

＝ (n)(U×A)＝∫U×A

n

Π
i＝1

f(xi｜θ)d(π×λ×・・・×λ)

＝∫U∫A

n

Π
i＝1

f(xi｜θ)d(λ×・・・×λ)dπ

＝∫U
P(n)θ (A)π(dθ)．

In particular, the marginal distributions of �，(X1,...,Xn) and Xi are

given as follows:

(�∈U)＝π(U)，U∈�，

((X1,...,Xn)∈A)＝∫ΘP(n)θ (A)π(dθ)，A∈�
(n)，

(Xi∈A)＝∫ΘPθ(A)π(dθ)，A∈�，i＝1,2,....

For eachω，P(n)�(ω) is a probability measure on (� (n),� (n))．If A∈�
(n)，

P(n)�(ω)(A) isσ(�)-measurable as a function ofω and

∫�∈U
P(n)�(ω)(A)d ＝∫U

P(n)θ (A)π(dθ)＝ (�∈U,(X1,...,Xn)∈A))，

which shows that P(n)� (A) is a conditional probability of (X1,...,Xn)∈A

given �．Thus P(n)�(ω)(A) is a regular conditional distribution of (X1,...,Xn)

given �．In the same way, P�(ω)(A) ，A∈� is shown to be a regular con-

ditional distribution of Xi given �．In particular, (Xi∈A｜�)＝P�(A)

a.s., A∈�. Since

((X1∈A1,...,Xn∈An｜�)＝P(n)� (A1×・・・×An)

＝P�(A1)・・・P�(An)
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＝ (X1∈A1｜�)・・・ (X1∈An｜�) a.s.,

it follows that X1,X2,... are conditionally i.i.d. given �．

Since �is a random variable with values in a Polish space (Θ,� )，there

is a regular conditional distribution of �given X1,...,Xn, which we will call

the posterior distribution of �given X1,...,Xn and denote it by �　(�∈dθ｜

X1,...,Xn)(ω) orπωn (dθ)．

２ The large deviation principle

Let (Qn) be a sequence of probability measures on a Polish space (S,�

(S))，where �(S) is the Borelσ-algebra. A function I : S→[0,∞] is

called a rate function on S if for each M＜∞ the level set {x∈S : I(x)�M} is

a compact subset of S. It follows necessarily that I is a lower semicontinuous

function. In most applications, I is a convex function. The large deviation

principle focuses on the asymptotic behavior of the sequence (Qn) in terms

of a rate function I. The precise formulation is as follows.

Definition 1．Let (Qn) be a sequence of probability measures on S and I a

rate function on S. We say that (Qn) satisfies the large deviation principle

with rate function I if the following two conditions hold.

(i) For each closed subset F⊂S

lim sup
n→∞

1
n

log Qn(F)�－inf
x∈F

I(x)．

(ii) For each open subset G⊂S

lim inf
n→∞

1
n

log Qn(G)�－inf
x∈G

I(x)．

It is well known that if (Qn) satisfies the large deviation principle with a
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rate function, then the rate function is uniquely determined. We refer the

reader to Dembo and Zeitouni (1998) or Deuschel and Strook (2000) for bas-

ic results and a wide variety of large deviation techniques.

A convex functionψ:�→(－∞,∞] is said to be essentially smooth if

(i) E°ψ is not empty, where E°ψ is the interior of Eψ
△
＝{t∈� :ψ(t)＜∞};

(ii) ψis differentiable on E°ψ;

(iii) ψis steep, namely

lim
n→∞
｜ψ′(tn)｜＝∞

whenever (tn) is a sequence in E°ψ converging to a boundary point of E°ψ．

Here we state the G �artner-Ellis theorem, an extension of Cr �amer's theorem

to non-i.i.d. random variables. This is a key theorem in this paper for prov-

ing the large deviation principles for posterior distributions of the normal

parameters.

Theorem 2．Let (Qn) be a sequence of probability measures on (�,�(�))

such that the cumulant generating function

ψ(t)＝ lim
n→∞

1
n

log∫∞－∞ entxQn(dx) (1)

exists in [－∞,∞] for each t∈�. If E°ψ contains the origin, thenψ(t)＞－∞，

ψ is convex, and the Fenchel-Legendre transform ofψ(the conjugate function of

ψ)

I(x)
△
＝sup

t∈�

[tx－ψ(t)] (2)

is a rate function on �.

Theorem 3 (G �artner-Ellis)．Let (Qn) be a sequence of probability meas-

ures on (�,�(�)) such that (1) exists for all t∈�. If E°ψ contains the origin,

then the followings hold with the rate function I defined by (2)．
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(i) For each closed subset F⊂S

lim sup
n→∞

1
n

log Qn(F)�－inf
x∈F

I(x)．

(ii) For each open subset G⊂S

lim inf
n→∞

1
n

log Qn(G)�－ inf
x∈G∩H

I(x)，

where H is the set of exposed points of I:

H＝{x∈� : ∃t∈E°ψ∀y≠x ty－I(y)＞tx－I(x)}．

If, in addition，ψ is essentially smooth and lower semicontinuous, then (Qn)

satisfies the large deviation principle with the rate function I.

For the proofs of Theorem 2 and Theorem 3，see Dembo and Zeitouni

(1998)．Our purpose is to obtain the large deviation principles for posteriors

of the normal parameters given data. Accordingly, we have to slightly modi-

fy the definitions of rate function and the large deviation principle in order to

cover a sequence of conditional distributions. Let (Ω,�, ) be a probability

space, (�n) an increasing sequence of subσ-algebras, and Y random varia-

ble taking values in (S,�(S))．Then for each n�1 there exists a function

Qn:(ω,B)∈Ω×�(S) Qωn (B)∈[0,1] such that

(i) for eachω∈ΩQωn (B) is a probability measure on (S,�(S));

(ii) for each B∈�(S)Qωn (B) is a version of (Y∈B｜�n )(ω).

The function Qn is called a regular conditional distribution of Y given �n.

We define a measurable function I : Ω×S→[0,∞] to be a rate function

on S if I(ω,･) is a rate function for eachω∈Ω．It is natural to define the

large deviation principle for a sequence of conditional distributions (Qn) as

follows.

Definition 4．Let I :Ω×S→[0,∞] be a rate function on S. We say that a
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sequence (Qn) satisfies the large deviation principle with rate function I if

the following two conditions hold.

(i) For each closed subset F⊂S

lim sup
n→∞

1
n

log Qωn(F)�－inf
x∈F

I(ω,x) a.s.

(ii) For each open subset G⊂S

lim inf
n→∞

1
n

log Qωn(G)�－inf
x∈G

I(ω,x) a.s.

３ The normal model with unknown mean and known

variance

Suppose that (Θ,� )＝(�,� )＝(�,�(�))，where �(�) is the Borelσ-al-

gebra of �. Let Pθ＝N(θ,σ2)，the normal distribution with meanθ∈Θand

known varianceσ2．If we choose the normal distribution N(μ,v2) for the

prior distribution of �，then the posterior distribution of �given X1,...,Xn

is the normal distribution N(μn,v
2
n)，where

μn ＝
σ2/n
σ2/n＋v2

μ＋ v2

σ2/n＋v2
�Xn， �Xn＝

X1＋・・・＋Xn

n
，

1
v2n
＝ 1

v2
＋ 1
σ2/n．

Since X1,X2,... are conditionally i.i.d. given �and X1 is integrable under

, the law of large numbers for conditionally i.i.d. random variables entails

the convergence �Xn→ (X1｜�)＝�a.s., and hence we have

μn→� a.s.

Since
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∫∞－∞ entθπωn (dθ)＝exp(μnnt＋v2nn
2t2

2 )
we have the cumulant generating function

ψ(t)＝lim
n→∞

1
n

log∫∞－∞ etθπωn (dθ)＝�t＋σ
2t2

2 (3)

which is that of N(�,σ2)．If we select the Lebesgue measure on � as the

prior for �，then the posterior distribution is given by N( �Xn,σ
2/n)，which

is the limiting distribution of N(μn,v
2
n) as v2→∞．It follows that the cu-

mulant generating function of the posterior distribution is the same as (3)．

It is easy to see that E°ψ＝�,ψ is differentiable and steep for eachω，so that

ψ is essentially smooth and continuous for eachω．It is not difficult to show

that the Fenchel-Legendre transform ofψ for eachωis given by

I(ω,x)＝(x－�(ω))2

2σ2 ． (4)

Now we obtain the following theorem.

Theorem 5．Suppose that X1,X2,... are conditionally i.i.d. with distribu-

tion N(θ,σ2) given �＝θ∈Θ＝�. If N(μ,v2),μ∈�,v2＞0，is the prior for �，

then the posterior distributions satisfy the large deviation principle with rate

function (4)．If we choose the Legesgue measure as the prior for �，the same

result follows.

４ The normal model with known mean and unknown

precision

Let X1,X2,... be conditionally i.i.d. random variables sampled from Pθ＝

N(μ,1/θ)，θ∈Θ＝(0,∞)．Assume that the prior distribution of the preci-

sion �is a gamma distribution G(α,β),α＞0,β＞0．Then the posterior dis-
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tribution of �given X1,...,Xn is a gamma G(αn,βn)，where

αn ＝ α＋n
2，

βn ＝ β＋n
2 S 2n，S 2n＝

1
n

n

Σ
i＝1

(X1－μ)
2．

Note that by the law of large numbers for conditionally i.i.d random varia-

bles

S 2n→ [(X1－μ)
2｜�]＝1

�
a.s.

By the moment generating function of G(αn,βn)，we have

∫∞0 entθπωn (dθ)＝

�
�
�
�
�

( βn

βn－nt)
αn

，t＜βn

n
，

∞， t�
βn

n
，

and hence we obtain the cumulant generating function

ψ(t)
△
＝ lim

n→∞

1
n

log∫∞0 entθπωn (dθ)

＝

�
�
�
�
�

log( 1/(2�)1/(2�－t)
1/2
，t＜ 12�， (5)

∞， t�
1
2�．

This is the cumulant generating function of G(1/2,1/(2�))．If we utilize

the improper prior

π(dθ)∝1θdθ (6)

which is the Jefferys' prior for �and obtained formally by lettingα→0 and

β→0 in G(α,β)，then the same cumulant generating function as (5) is ob-

tained. The Fenchel-Legendre transform ofψhas the following form.
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I(ω,x)＝

�
�
�
�
�

1
2[ x

�(ω)－log
x

�(ω)－1]，x＞0，
(7)

∞， x�0．

I(ω,･) defined by (7).

By Theorem 2，I(ω,･) is a convex rate function for eachω，and by The-

orem 3 we have the following result.

Theorem 6．Suppose that X1,X2,... are conditionally i.i.d. with distribution

N(μ,1/θ) given �＝θ∈Θ＝(0,∞)．If a gamma distribution G(α,β),α＞0,

β＞0 is the prior for �，then

lim sup
n→∞

1
n

log �　(�∈�｜X1,...,Xn)(ω)�－inf
x∈G

I(ω,x) a.s.

for all open sets G⊂(0,∞)，and

lim inf
n→∞

1
n

log �　(�∈�｜X1,...,Xn)(ω)�－ inf
x∈F∩Hω

I(ω,x) a.s.

for all closed sets F⊂(0,∞)，where Hω is the set of exposed points of I(ω,･)．

If we select the Jeffreys's prior (6) for �，the same result follows.
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