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Original Article

Simulation Study of the Effects of Host Availability on Bite Rate of 
Aedes albopictus (Skuse) (Diptera: Culicidae) and Risk of 

Dengue Outbreaks in Non-Endemic Areas

INTRODUCTION

A dengue outbreak in Tokyo during 2014 revealed 
that Japanese citizens are exposed to Aedes albopictus 
at rates that are sufficient to spread the disease (1,2). 
There is no reason to assume that high exposure to 
Ae. albopictus only occurs in Tokyo. Given the recent 
increase in the number of imported dengue cases (3,4), it 
is possible that dengue outbreaks can occur anywhere in 
Japan or in other temperate areas where Ae. albopictus is 
abundant. Furthermore, Ae. albopictus is one of the most 
common mosquitoes in Japan, where it has adapted well 
to the urban environment, exhibiting diurnal behavior 
and aggressively biting humans who are outdoors (5–7).

In general, mosquitoes consume a single blood meal 
during a gonotrophic cycle, and the female mosquitoes 
subsequently focuses on egg development and oviposi-
tion. After laying eggs, the female mosquito becomes 
hungry again. There are 2 distinct host-seeking strate-
gies in mosquitoes: searching and ambush (8). Searching 
mosquitoes fly long distances to find hosts, whereas am-
bushing mosquitoes tend to stay in one place and wait 
for the hosts (8). It is thought that Ae. albopictus is an 
ambush mosquito, as it has a low flight ability (7,9,10). 
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In this context, low host availability would be expected 
to lead to an increasing number of ambush mosquitoes, 
which would increase the number of mosquitoes that 
actively attack a new host when it appears. Thus, host 
availability may strongly affect the bite rate per host, 
and the potential risk of disease transmission. Although 
several studies have incorporated mosquito population 
dynamics into disease transmission models (11–14), no 
studies have considered the effects of host availability of 
ambush mosquitoes on disease risk. 

The present study used a simple model to analyze 
whether hypothetical human host availability affected the 
bite rate and the potential risk of disease outbreaks. This 
approach has 2 important implications for public health. 
First, it may help to identify mosquito populations at 
elevated risk in terms of dengue outbreak that should be 
targeted for priority vector control. Second, it may help 
us to understand how the data from human-bait-sweep 
collection of mosquitoes can be used in the context 
of disease control. Although this collection method is 
commonly used by Japanese health officers to monitor 
populations of dengue vectors (15), its epidemiological 
significance remains unclear. 

MATERIALS AND METHODS

The model: This study aimed to evaluate the 
relationship between human host availability and 
disease risk using a simple model. The model assumes 
an isolated mosquito population that is strongly limited 
by its larval habitat and has a constant emergence rate 
(e), a constant mortality rate (d), and thus a constant 
equilibrium population density (e/d). A single human 
host visits the mosquito population at a constant time 
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interval and remains in the area for a short period (＜ 5 
min). During the host visit, a proportion (a) of ambush 
mosquitoes bite the host and instantly enter a resting 
stage. Resting mosquitoes becomes ambush mosquitoes 
at a constant rate (b) that is equivalent to the reciprocal 
of the duration of a gonotrophic cycle. Bites only 
occur during the 12 h of day time on each day. There 
are no alternative hosts, and mosquitoes do not leave 
the area. The first human host to visit the area after 12 
AM on day 25 is infectious with dengue virus, and no 
other infectious human host visits the area. Therefore, 
transmission of the virus from the host to mosquitoes 
occurs only once. Mosquitoes that bite the infectious 
human host become infected (exposed) at a probability 
(c1). After a fixed incubation period (τ), these exposed 
mosquitoes become infectious and can infect human 
host at a probability (c2) per bite.

The simulation is divided into 5 phases. The formulas 
for each phase are shown below. In each simulation, a 
single time step is set to 5 min. During phase A (t ＜ X;  
X is the time when an infectious human host visits 
the area), the susceptible ambush mosquitoes [As(t)] 
and susceptible resting mosquitoes [Rs(t)] at time t are 
described as: 

As(t＋1)＝As(t)＋e－aNs(t) As(t)＋bRs(t)－dAs(t) (Eq. 1)

Rs(t＋1)＝Rs(t)＋aNs(t) As(t)－bRs(t)－dRs(t) (Eq. 2)

In these formulas, Ns(t) reflects the number of 
susceptible host visits at time t, and equal to 1 when 
a host is present and 0 when no host is present. When 
hosts visit every 5 min, Ns(t)＝1 for all time steps in the 
day-time; when hosts visit every 5 days, a time step with 
Ns(t)＝1 is followed by 1,439 time steps of Ns(t)＝0. In 
phase B (t＝X), which occurs when a single infectious 
human host visits the area [Ni(X)＝1], some susceptible 
ambush mosquitoes become exposed resting mosquitoes 
[Re(X＋1)]:

As(t＋1)＝As(t)＋e－aNi(t) As(t)＋bRs(t)－dAs(t) (Eq. 3)

Rs(t＋1)＝Rs(t)＋a(1－c1)Ni(t) As(t)－bRs(t)－dRs(t)
 (Eq. 4)

Re(t＋1)＝ac1Ni(t)As(t) (Eq. 5)

During phase C (X＜ t＜X＋τ), which is the extrinsic 
incubation period of the virus, both susceptible [As(t) 
and Rs(t)] and exposed [Ae(t) and Re(t)] mosquitoes 
coexist, and no new infections occur either among 
mosquitoes or human hosts:

As(t＋1)＝As(t)＋e－aNs(t) As(t)＋bRs(t)－dAs(t) (Eq. 6)

Rs(t＋1)＝Rs(t)＋aNs(t) As(t)－bRs(t)－dRs(t) (Eq. 7)

Ae(t＋1)＝Ae(t)－aNs(t) Ae(t)＋bRe(t)－dAe(t) (Eq. 8)

Re(t＋1)＝Re(t)＋aNs(t) Ae(t)－bRe(t)－dRe(t) (Eq. 9)

In phase D (t＝X＋τ), the virus’ extrinsic incubation 
period has completed, and all the exposed mosquitoes 
become either infectious ambush mosquitoes (Ai) or 

infectious resting mosquitoes (Ri):

As(t＋1)＝As(t)＋e－aNs(t) As(t)＋bRs(t)－dAs(t)
 (Eq. 10)

Rs(t＋1)＝Rs(t)＋aNs(t) As(t)－bRs(t)－dRs(t) (Eq. 11)

Ae(t＋1)＝0 (Eq. 12)

Re(t＋1)＝0 (Eq. 13)

Ai(t＋1)＝Ae(t)－aNs(t) Ae(t)＋bRe(t)－dAe(t) (Eq. 14)

Ri(t＋1)＝Re(t)＋aNs(t) Ae(t)－bRe(t)－dRe(t) (Eq. 15)

During phase E (X＋τ ＜ t ＜ Tmax), the susceptible and 
infectious mosquitoes coexist in the population: 

As(t＋1)＝As(t)＋e－aNs(t) As(t)＋bRs(t)－dAs(t)
 (Eq. 16)

Rs(t＋1)＝Rs(t)＋aNs(t) As(t)－bRs(t)－dRs(t) (Eq. 17)

Ai(t＋1)＝Ai(t)－aNs(t) Ai(t)＋bRi(t)－dAi(t) (Eq. 18)

Ri(t＋1)＝Ri(t)＋aNs(t) Ai(t)－bRi(t)－dRi(t) (Eq. 19)

The simulation was continued until the 125th day 
from the beginning (Tmax＝Day 125) because by this day, 
most (＞ 99.9%) of the infectious mosquitoes have died 
even with low mortality rate (0.1/day).

To evaluate the potential risk of dengue outbreaks, the 
model also calculates the number of secondary infected 
human hosts. As a single infectious human host only 
visits the area once in this model, mosquito infections 
can only occur at phase B. Hosts that visit the area and 
bitten after the extrinsic incubation period (phase E) 
become infected at probability of c2 per bite, and the 
probability of a human host becoming infected at time t 
with aAi(t) bites by infectious mosquitoes is:

Ih(t)＝1－(1－c2)aAi(t) (Eq. 20)

If the host is bitten by one infectious mosquito, Ih(t) 
is c2. If the host is bitten by many (＞＞ 1) infectious 
mosquitoes, Ih(t) asymptotically approaches 1. This 
relationship is extended to the decimal values of aAi(t) 
to calculate the expected number of secondary host 
infections, which are summed for the all human hosts 
that visit the area during phase E:

Ihtotal＝
T max

∑
t＝X＋τ

 Ns(t)Ih(t) (Eq. 21)

This value is similar to the basic reproductive number 
(R0) of vector-borne diseases (16), but differs from it 
in the following way: the basic reproductive number is 
defined as the number of the secondary infected hosts 
caused by the first infectious host until that the host has 
recovered from the disease, whereas Ihtotal in the present 
study counts the number of secondary infected human 
hosts caused by a single visit of an infectious host to an 
area with a mosquito population. Thus, this value can 
be interpreted as a local basic reproductive number. If 
the value is summed for all mosquito populations that 
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the infectious host encounters before recovering from 
the disease, the sum would be equivalent to R0. For the 
present study, Ihtotal is defined as local R0. 

To examine the relationship between bite rate per host 
and the risk of disease outbreaks, the average bite rate 
per host visit (BR) was calculated as follows.
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 (Eq. 22)

The parameters that were used in the simulations 
are as follows: the duration of the gonotrophic cycle  
(b-1), 3 days (17); probability of virus transmission from 
host to vector (c1) and from vector to host (c2), 0.86 and 
0.43, respectively (14); extrinsic incubation period (τ), 
9 days (13); daily mortality (d), 0.2 (7). As there is no 
reasonable assumption that can be used to estimate the 
bite rate per ambush mosquito (a), it was arbitrarily set 
to 0.5. As vector density can vary greatly in the field, 
the emergence rate (e) was altered to provide various 
population density values (e/d＝ 5, 25, 50, 75, 100, 
and 150). The effects of the host visit interval (ranging 
from 5 min to 10 days) on bite rate per host visit and 
the number of secondary infected hosts (local R0) were 
examined for various mosquito population densities. 
To test the robustness of the latter results, different 
combinations of bite rate per ambush mosquito (a＝ 
0.3, 0.5, and 0.7) and mortality (d＝ 0.1, 0.2, and 0.3) 
were examined. In each simulation, the parameters 
for the daily rates (b, d, and e) were multiplied with 
0.003472222 (＝1/24/12) to convert the time scale 
from daily basis to 5 min basis.

The simulations were performed using Microsoft 
Excel (Microsoft, Redmond, WA, USA). The initial 
proportion of ambush mosquitoes was set to 50%. 

RESULTS

Effects of host availability on the proportion of 
ambush mosquitoes: Fig. 1 shows the proportions of 
the ambush mosquitoes with different frequencies of 
host visits. The proportion fluctuated depending on the 
host visit interval, and tended to increase with increasing 
host visit interval. The proportion did not depend on 
mosquito population density (data not shown).

Effects of host availability on bite rate: The average 
bite rate per host visit increased with the host visit 
interval for each mosquito population density (Fig. 2). 
The increase was nearly linear at short visit intervals 
and then asymptotically approached a constant value 
that was the total population multiplied by a (0.5 in Fig. 
2). The results indicate that, even at a constant mosquito 
population density, the bite rate per host can vary widely 
based on host availability.

Effects of host availability on the risk of dengue 
outbreak: The number of the secondary infected hosts 
(local R0) showed a complex relationship with the host 
visit interval (Fig. 3). The local R0 increased for intervals 
that ranged from 5 min to 24 h, and a gradual decline 
with some small peaks was observed for intervals of 
＞ 24 h. The small peak at the host visit interval of 9 

days can be explained as follows: as the infectious host 
visits only once and the extrinsic incubation period was 
fixed to 9 days, the number of infectious mosquitoes is 
largest on the 9th day after the infectious host’s visit; 
if another host visits on this day, a large number of 
infectious mosquitoes would bite and infect the host. 
To test the robustness of this relationship, simulations 
were performed for the different combinations of a 
and d, which revealed a similar trend (Fig. 4). Most of 
the conditions exhibit a peak of local R0 at a host visit 
interval of 24 h, with the exception of a peak value at 12 
h for the simulation with a ＝ 0.3 and d ＝ 0.1.
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Fig. 2.  Relationship between the host visit interval and bite rate 
per host for different mosquito population densities (e/d). Bite 
rate per ambush mosquito (a) is 0.5 and mortality (d) is 0.2.
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Vector density and bite rate as indicators of 
outbreak risk: To compare the predictability of disease 
risk using 2 entomological indicators, local R0 values 
(based on different mosquito population densities and 
host visit intervals) were plotted against mosquito 
population density (Fig. 5A) and against bite rate 
per host visit (Fig. 5B). Mosquito population density 
was significantly, albeit weakly, correlated with local 
R0 when the host visit interval was limited to ≤ 24 h 
(Spearman’s rank correlation; ρ＝ 0.517, P ＜ 0.0001), 
and when it was not limited (ρ＝ 0.535, P ＜ 0.0001). 
The bite rate per host visit was more strongly correlated 
with the local R0 (ρ＝ 0.733, P ＜ 0.0001), especially 
when the target visit interval was limited to ≤ 24 h (ρ
＝ 0.994, P ＜ 0.0001). This strong correlation persisted 
when different combinations of a and d were used (Table 
1).

DISCUSSION

The present study’s findings indicate that host 
availability affects the bite rate of the ambush 
mosquitoes and the number of secondary host infections 
originating from a single visit by an infectious host. 
The present study is the first to evaluate the relationship 
between host availability of ambush mosquitoes and 
disease risk.

The present study has assumed an isolated mosquito 
population that was occasionally visited by human 
hosts. This situation is a simple model of public urban 
spaces such as parks, cemeteries, and bus stops. It 
is not surprising that mosquito populations with low 
host availability would develop high proportions of 
ambush females that are ready to attack available hosts. 
However, it is important to note that host availability 
can vary among different mosquito populations, which 
may determine the location-specific variations in the 
risks of dengue outbreaks. The present study revealed 
that the risk of dengue outbreaks peaked at specific host 
visit intervals. This unimodal pattern can be explained 
as follows. Very frequent host visits are associated with 
a relatively small proportion of ambush mosquitoes, 
and that the infectious human host is only bitten by a 
few mosquitoes. When the frequency of host visit is 
very low, an infectious human host would be bitten by 
many ambush mosquitoes, although few hosts would 
visit the area and become infected during the period 
when the infectious mosquitoes remain abundant. Thus, 
the number of secondary infected hosts would peak at 
an intermediate value for host availability. Based on 
biologically plausible parameters, it appears the host 
visits of approximately once per day are associated with 
an elevated risk of spreading the dengue virus. Disease 
control efforts tend to focus on public places where 
many people visit frequently (15). However, the present 
study’s finding indicate that relatively infrequent host 
visits are associated with a greater risk of dengue spread 
after an infectious human host has visited the mosquito 
population. 

Another important finding is that bite rate per host 
visit was a good indicator of outbreak risk, even better 
than population density of the vector mosquito. The 
human-bait-sweep collection method is often used 
for monitoring the Ae. albopictus population (2,15).  

Table 1.  Correlation between biting rate per host visit and secondary 
host infections (local R0) with different combinations of 2 
parameters

Parameter 1)

Spearman’s rank 
correlation (ρ)Bite rate per ambush 

mosquito (a)
Mosquito 

mortality (d)

0.3 0.1 0.995
0.2 0.995
0.3 0.994

0.5 0.1 0.995
0.2 0.994
0.3 0.994

0.7 0.1 0.996
0.2 0.996
0.3 0.996

1): The host visit interval ranged from 5 min to 24 h.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

d = 0.1

d = 0.2

d = 0.3

a = 0.7
a = 0.5
a = 0.3

a = 0.7
a = 0.5
a = 0.3

a = 0.7
a = 0.5
a = 0.3

Host visit interval (h)

N
um

be
r o

f s
ec
on

da
ry
 h
os
t i
nf
ec
tio

ns
  (
lo
ca
l R

0)

Fig. 4.  Relationship between the host visit interval and 
the number of secondary host infections (local R0) with 
different combinations of bite rate per ambush mosquito (a) 
and mortality (d). The mosquito population density (e/d) is 
set to 100 for all combinations.

0

1

2

3

4

5

0 10 20 30 40 50 60 70

0

1

2

3

4

5

0 50 100 150

> 24 h

≤ 24 h

> 24 h

24 h

Mosquito population density (e/d)

Bite rate per host visit (BR)

Host visit 
Interval

Host visit 
Interval

B

A

N
um

be
r o

f t
he

 se
co
nd

ar
y 

ho
st
 in
fe
ct
io
ns
 (l
oc
al
 R

0)
N
um

be
r o

f t
he

 se
co
nd

ar
y 

ho
st
 in
fe
ct
io
ns
 (l
oc
al
 R

0)

≤

Fig. 5.  (A) Relationship between mosquito population density 
and the number of secondary host infections (local R0). (B) 
Relationship between bite rate per host visit and the number 
of secondary host infections (local R0).



32

This method has the advantage that it can efficiently 
collect biting mosquitoes in a short period (8 min per 
site is recommended; 2,15). A possible disadvantage 
might be that the data from this sampling method does 
not reflect the density of whole mosquito population 
because it does not catch resting mosquitoes. Although 
the sampling method is practical and convenient, 
interpretation of the data in the context of disease risks 
has not been clear. This collection method would be a 
good proxy of bite rate per host visit in the present study 
as it collects ambush mosquitoes that actively attack 
the collector. Therefore, the present study provides 
theoretical proof that the human-bait-sweep collection 
method is a good indicator of the site-specific risks of 
dengue outbreaks. In urban environments, most public 
areas are likely visited by humans at least once per 
day. In the present study’s results, the bite rate per host 
visit was strongly correlated with the local R0 when 
the host visit interval was ≤ 24 h. Therefore, the bite 
rate per host, which can be measured by human-bait-
sweep collection, could be a useful indicator of disease 
risk associated with public spaces in most urban public 
spaces.

There are several potential limitations due to over-
simplification of the model. It may be unrealistic that 
the emergence rate is not affected by host availability. 
Although it was reported that Ae. albopictus popula-
tions can be maintained with a relatively low frequency 
of blood meals (18), very long intervals between host 
visits may cause low mosquito population density and, 
hence, low disease risks. However, as mosquitoes do not 
lay eggs more than once in a gonotrophic cycle (around 
3 days), variation in the host visit interval within a few 
days would not affect mosquito fecundity remarkably. 
Therefore, the main findings of the present study, the 
highest disease risk at a host visit interval of 24 h and a 
high correlation between bite rate per host and disease 
risk for host visit interval within 24 h, are probably true 
in real populations.

In addition, with no consideration of dispersing 
mosquitoes, the fixed time interval of the host visit, 
and the absence of non-human alternative hosts might 
be unrealistic in a natural population. The influence of 
these real-world complexities on disease risks remain as 
subjects for future studies. 

The 2014 outbreak of dengue in Tokyo revealed that 
outbreaks can occur whenever and wherever the vector 
mosquitoes are abundant. The present study’s findings 
indicate that a mosquito population with a relatively low 
host availability has an elevated risk of disease outbreak, 
and that the risk can be evaluated using bite data from 
human-bait-sweep collection. This information may be 
useful for preventing future outbreaks of dengue and 
other mosquito-borne diseases.
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