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ABSTRACT 

Background: Progressive familial heart block type I (PFHBI) is a hereditary arrhythmia 

characterized by progressive conduction disturbances in the His-Purkinje system. 

PFHBI has been linked to genes such as SCN5A that influence cardiac excitability, but 

not to genes that influence cell-to-cell communication. Our goal was to explore whether 

nucleotide substitutions in genes coding for connexin proteins would associate with 

clinical cases of PFHBI and if so, to establish a genotype-cell phenotype correlation for 

that mutation.  

Methods and Results: We screened 156 probands afflicted with PFHBI. In addition to 12 

sodium channel mutations, we found a germline GJA5 (connexin40; Cx40) mutation 

(Q58L) in an afflicted family. Heterologous expression of Cx40-Q58L in 

connexin-deficient neuroblastoma cells resulted in marked reduction of junctional 

conductance (Cx40-WT: 22.2±1.7 nS, n=14; Cx40-Q58L: 0.56±0.34 nS, n=14; p<0.001) 

and diffuse localization of immunoreactive proteins in the vicinity of the plasma 

membrane without formation of gap junctions. Heteromeric co-transfection of Cx40-WT 

and Cx40-Q58L resulted in homogenous distribution of proteins in the plasma 

membrane rather than in membrane plaques in about 50% of cells; well-defined gap 

junctions were observed in other cells. Junctional conductance values correlated with 
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the distribution of gap junction plaques.  

Conclusions: Mutation Cx40-Q58L impairs gap junction formation at cell-cell interfaces. 

This is the first demonstration of a germline mutation in a connexin gene that associates 

with inherited ventricular arrhythmias, and emphasizes the importance of Cx40 in 

normal propagation in the specialized conduction system.  

 

Key Words: Heart block, Genes, Ion channels, Sudden death, Gap junctions  
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INTRODUCTION 

Cardiac myocyte excitability in atria, His-Purkinje system and ventricles is largely 

determined by the properties of voltage-gated Na channels. Once activated, excitatory 

currents rapidly propagate to neighbouring cells via low-resistance intercellular 

channels called gap junctions, which facilitate the synchronous contraction of the heart.1, 

2 Loss of expression/function of cardiac gap junctions and/or sodium currents can 

severely impair action potential propagation, which sets the stage for life-threatening 

arrhythmias.1, 2 Although multiple mutations in genes coding for components of the 

voltage-gated sodium channel complex have been previously described in relation to 

arrhythmias and sudden death in the young,3 and connexin40 (Cx40) mutations have 

been implicated in atrial fibrillation,4, 5 no study has identified an association between 

germ-line mutations in gap junction proteins and inherited ventricular arrhythmias in 

humans.  

In this study, we investigated a group of patients diagnosed with “Progressive 

Familial Heart Block type I” (PFHBI, OMIM 113900), also known as progressive cardiac 

conduction defect (PCCD) or Lenégre-Lev disease6, 7 is a dominant inherited disorder of 

the His-Purkinje system. Affected individuals show electrocardiographic evidence of 

bundle branch disease, i.e., right bundle branch block, left anterior or posterior 
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hemiblock, or complete heart block, with broad QRS complexes. The disease can 

progress from a normal electrocardiogram to right bundle branch block and from the 

latter to complete heart block. Affected individuals often present with family history of 

syncope, pacemaker implantation and/or sudden death.8 While structural abnormalities 

have been invoked as cause of the disease,6, 7 a number of cases present with normal 

cardiac structure and contractile function. Linkage analysis in a large South African 

PFHBI kindred9 and a Lebanese kindred10 mapped a causal locus on chromosome 

19q13.3, and further work identified mutations in genes encoding for the “transient 

receptor potential non-selective cation channel, subfamily M, member 4 gene” 

(TRPM4)11 at this locus. Haplo-insufficiency of SCN5A and aging have been implicated 

in PFHBI,8 and age-dependent manifestations of the disease have been recapitulated in 

mice.12  

Here, we sought to expand on the association between PFHBI, and 

mutations in genes relevant to action potential propagation; in particular, we 

assessed the possible association between nucleotide substitutions in 

connexin-coding genes, and PFHBI. We evaluated 156 probands of diverse ethnic 

backgrounds from Asia, Europe and North America with clinical diagnosis of PFHBI. In 

addition to sodium channel mutations previously reported,13-15 we identified a germline 
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missense mutation in GJA5 in a family with severe, early-onset disease. This gene 

codes for the gap junction protein connexin40 (Cx40), which predominantly expresses 

in atria and His-Purkinje system.16 Heterologous expression experiments revealed that 

this novel mutation (Cx40-Q58L) significantly impaired the ability of Cx40 to form gap 

junction channels. Confocal microscopy showed that the Cx40-Q58L mutant but not the 

wild type (WT) failed to form plaques at sites of cell-cell apposition. Co-expression 

experiments indicated that Cx40-WT protein provided only partial rescue of the 

Cx40-Q58L cellular phenotype. This is the first description of a germline mutation in a 

connexin gene associated with inherited ventricular arrhythmias. Our results open the 

possibility of GJA5 as a candidate gene for screening in PFHB1 patients; yet, in the 

absence of further evidence, screening may be limited to the research environment 

rather than include it as a part of the routine diagnostic examination17. Our data also 

emphasize the importance of Cx40 in the maintenance of normal propagation in the 

specialized conduction system of the human heart. 

 



8 
 

METHODS 

Genetic screening of PFHB1   

Genomic screening by PCR and DNA sequencing was performed for GJA5 

(Cx40), GJA1 (Cx43), GJC1 (Cx45), KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, 

KCNJ2, SCN1B, SCN4B, HCN4. (Primer information in online supplement.) All 

participating probands and family members gave written informed consent, in 

accordance with standards (Declaration of Helsinki) and local ethics committees.  

 

Plasmid construction 

A 1.1-kilobase Cx40-DNA fragment was subcloned into bicystronic plasmids 

pIRES2-EGFP and pIRES2-DsRED2. An EGFP or FLAG epitope was added at Cx40 

C-terminal to generate EGFP- or FLAG-tagged Cx40. Site-directed mutagenesis (Q58L) 

was performed with QuikChange. Primer information and additional details in online 

supplement.  

 

Cell culture and transfection 

Constructs were introduced into connexin-deficient HeLa cells, or mouse 

neuroblastoma (N2A) cells using Lipofectamine as per manufacturer’s protocol.  
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Electrophysiology 

Gap junction currents were recorded from transiently-transfected N2A cell pairs 

using whole-cell double patch clamp techniques as previously described.18, 19 Further 

details in online supplement.  

 

Immunocytochemistry and Western blotting 

HeLa cells, transfected with pEGFPN1-Cx40-WT, pCMV-FLAG-Cx40-Q58L, or 

both, were stained with anti-FLAG M2 antibody and Alexa546-labeled secondary 

antibody. EGFP and Alexa546 fluorescence images were recorded by confocal 

microscopy. For western blotting, N2A cells were transiently transfected with 3μg Cx40 

plasmids. Two days after transfection, cells were lysed, proteins extracted and 

separated by conventional methods. Further details in online supplement.  

 

Statistical analysis 

Results are presented as mean±SEM. Mann-Whitney rank-sum tests with 

Bonferroni’s post-hoc correction were used in comparisons for which normality or equal 

variance assumptions were invalid. In other instances, differences between groups were 
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assessed by one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc 

correction. Statistical significance was assumed for P < 0.05. 
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RESULTS 

Genetic screening of PFHBI probands 

We genetically screened 156 probands with clinical diagnosis of PFHBI. We 

identified 4 novel and 5 previously-reported mutations in SCN5A,13, 15 3 mutations in 

SCN1B,14 and a novel germline heterozygous missense mutation in exon 2 of the Cx40 

gene, GJA5 (Supplemental Table S1). Mutations were not found in connexin genes 

GJA1 (Cx43) or GJC1 (Cx45) or in other genes screened (KCNQ1, KCNH2, KCNE1, 

KCNE2, KCNJ2, HCN4 or SCN4B). Of the novel SCN5A mutations, one caused a 

modification of the amplitude and voltage gating kinetics of the sodium current in 

heterologously expressing cells (supplemental Figure S1); three other mutant 

constructs failed to express functional channels, suggesting that patients carrying the 

mutation were functionally haploinsuficient for Nav1.5 (supplemental Figure S1). The 

GJA5 mutation (c. 173 A>T) caused an amino acid substitution (glutamine (Q) replaced 

by leucine (L)) at position 58 in Cx40 (Cx40-Q58L; Figures 1A-1B). The mutation was 

absent in 400 alleles from unaffected controls and in other 155 PFHBI probands. 

Screening of the entire gene panel (including SCN5A and SCN1B) revealed no other 

sequence modification in the DNA of this proband. Topological analysis placed amino 

acid 58 of Cx40 within the first extracellular loop (Figure 1C). The presence of glutamine 
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in this position is highly conserved among GJA5 orthologs, and two other cardiac 

connexins, Cx43 and Cx45 (Figure 1D). The clinical and genotypic characteristics of 

proband and tested family members are described below.    

 

Clinical phenotypes and genotype of the PFHBI pedigree with the GJA5 mutation  

The proband, an 11-year-old male at time of death, was first referred for 

evaluation when he was 6 years-old because of ECG abnormalities. Although 

asymptomatic at that time, his ECG showed advanced atrioventricular (AV) block, 

complete left bundle branch block (LBBB) and left axis deviation (Figure 2A). 

Echocardiography and cardiac scintigraphy did not reveal signs of structural heart 

disease. He experienced an episode of syncope at age 9; implantation of a permanent 

pacemaker was recommended by the physician but not authorized by the legal guardian. 

The proband died suddenly two years later during exercise (running) and the family 

declined postmortem examination. The proband’s younger sister shares the Cx40-Q58L 

mutation. She is asymptomatic with a QRS duration at the upper limit of normal, left axis 

deviation that has been progressive (Supplemental Table S2) and QRS notch. These 

findings are consistent with impaired intraventricular conduction (Figure 2B). The 

mother died suddenly at age 30, after delivering the second child. An ECG on record, 
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obtained when she was 16 years old, was similar to that of the proband (compare Figure 

2C with 2A). In addition, a ventricular tachycardia was recorded during the recovery 

phase of an exercise stress test (Supplemental Figure S2). DNA from the mother was 

not available for examination. Other family members, including proband’s father, 

showed normal ECG. DNA analysis of proband’s father and maternal grandparents 

revealed absence of the Cx40-Q58L mutation. Based on clinical data, and genotypic 

features of proband and sister, it is most likely that mutation Cx40-Q58L appeared de 

novo in the proband’s mother. The data also indicate an early onset of PFHBI in this 

family, when compared to the natural history of the disease in most other cases.8 As an 

initial step to assess the functional implications of mutation Cx40-Q58L, modified 

constructs were transiently expressed in an exogenous system and evaluated for 

localization and function.  

 

Electrophysiological properties of mutant Cx40-Q58L channels   

Connexin-deficient neuroblastoma (N2A) cells were transiently transfected with 

cDNA for Cx40-WT or Cx40-Q58L; electrophysiological properties of homologous Cx40 

channels were analyzed by conventional dual whole-cell patch clamp. Figure 3A shows 

representative junctional current traces elicited by a transjunctional voltage gradient of 
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-60 mV. Average junctional conductance (Gj) decreased from 22.2±1.7 nS in Cx40-WT 

(n=14) to 0.56±0.34 nS in cells expressing the Cx40-Q58L mutant (n=14; p<0.001). The 

probability of functional coupling, calculated by dividing the number of 

electrically-coupled pairs by the number of pairs tested, was 100% and 57.1% for WT 

and Q58L, respectively.    

Figure 3B depicts representative single channel recordings elicited by a 

transjunctional voltage of -60 mV in cell pairs expressing Cx40-WT or Cx40-Q58L. 

Unitary events for WT channels displayed current transitions corresponding to two 

conducting states (O1 and O2) of 43.3 pS and 119.5 pS, respectively. Figure 3C shows 

the event histograms for both cell types (Cx40-WT: N=3 cell pairs, n=303 events; 

Cx40-Q58L: N=3, n=416). The histogram for the Cx40-WT channels was best described 

by two Gaussian distributions centered at 136.2±2.3 pS and 53.1±5.3 pS. In contrast, 

the histogram for Cx40-Q58L channels was best described by a single Gaussian 

function, centered at 40.2±0.3 pS. Moreover, the length of time that a channel dwelled in 

the open state (dwell open time) was substantially longer for Cx40-Q58L than for WT 

channels (dwell open time for WT, 27.9±0.5 msec, N=4, n=186; for Q58L, 92.0±7.8 

msec, N=3, n=163; Figure 3D). Of note, mutation Q58L had a strong dominant effect on 

formation of heterotypic functional gap junctions. Cells were transfected with either 
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pIRES2-EGFP-Cx40WT or pIRES2-DsRED2-Cx40Q58L, and heterotypic pairs 

identified by fluorescence microscopy (an EGFP-expressing cell paired with a 

DsRED2-expressing cell). We recorded from 8 cell pairs and detected unitary current 

events in only two pairs. A total of 57 events were recorded, and average macroscopic 

junctional conductance was 0.04±0.03 nS. Collectively, the data demonstrated that 

mutation Q58L significantly affects the biophysical properties of Cx40 channels and the 

overall ability of Cx40 gap junctions to form a low-resistance pathway between cells. 

 

Electrophysiological properties and gap junction plaque formation in cells 

co-expressing WT and Q58L proteins.   

In the clinical cases identified, mutation Q58L was detected only in one carrier 

allele. Therefore, we assessed the function of gap junctions in cells co-expressing WT 

and mutant proteins. N2A cells were co-transfected with cDNA for both GFP-tagged 

Cx40-WT and Cx40-Q58L (0.5 µg of pEGFPN1-Cx40-WT combined with 0.5 µg of 

pEGFPN1-Cx40- Q58L). Results were compared to those obtained when only one of 

the constructs (1 µg) was transfected. Cells expressing both constructs (WT/Q58L) 

showed intermediate conductance (15.4±3.7 nS, n=16) between WT (28.8±3.6 nS, 

n=16, p<0.001) and Q58L (0.28±0.11 nS, n=14, p<0.001; Figure 4A). These values 
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were comparable to those obtained using the bicistronic pIRES2-EGFP constructs (WT: 

22.2±1.7 nS, n=14; WT/Q58L: 13.0±2.4 nS, n=17; Q58L: 0.56±0.34 nS, n=14). The 

co-expression results were consistent with those obtained using pIRES plasmids that 

tagged the cells both green and red, if co-transfected (Supplemental Figure S1). The 

probability of finding functional coupling in co-transfected cells was 76.5%, which was 

intermediate between WT (100%) and Q58L (57.1%). 

The characteristics of gap junction plaques observed in cells co-expressing WT 

and Q58L varied significantly between pairs (Figure 4B). Nearly half of transfected 

(fluorescence-positive) cells exhibited clear and discrete gap junction plaques (arrow 

(a)) whereas the rest of fluorescent-positive cells showed diffuse expression pattern and 

absence of well-defined plaques (arrow (b)). Fluorescence-positive and gap junction 

plaque-positive cells were counted in 10 different views for each group, and efficacy of 

gap junction plaque formation was statistically analyzed (Figure 4C) by calculating the 

ratio of cells with gap junction plaques to the number of fluorescence-positive cells. In 

the Cx40-WT group, almost all fluorescent-positive cells exhibited clear gap junction 

plaques (94.9±1.9%, n=940), whereas there was a more diffuse and homogenous 

pattern with only occasional plaque formation in the Cx40-Q58L group (6.6±0.7%, 

n=1318, p<0.001 compared with WT). In contrast, results varied widely in cells 
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co-transfected with WT/Q58L; nearly half of fluorescence-positive cells exhibited gap 

junction plaques similar to those observed in cells transfected with the WT construct 

(48.2±2.4%, n=855, p<0.001), whereas the rest showed a diffuse expression pattern 

similar to that of Cx40-Q58L. To establish a better correlation between plaque formation 

and junctional conductance, both variables were measured concurrently in the same 

cell pair, for 39 N2A cell pairs where GFP-tagged plasmids of Cx40-WT and Cx40-Q58L 

were co-transfected. As shown in Figure 4D, about half of GFP-positive cell pairs 

showed a very small junctional conductance (<5 nS) and very few or negligible gap 

junction plaques (a). In the other half of cell pairs, small, dot-like junctional plaques 

correlated with intermediate junctional conductance (Gj) values (b), and there were clear, 

extensive gap junction plaques associated with Gj values larger than 25 nS (c). Overall, 

we found significant heterogeneity in the extent of electrical coupling, although the 

measurements of Gj correlated with the localization of proteins in transfected cells. 

These results indicate that the Q58L mutation significantly impairs the ability of cells to 

form gap junction plaques, though the effect is not purely dominant when both WT and 

mutant proteins are co-expressed.  

 

Subcellular distribution of WT and Q58L Cx40 in transiently-transfected cells.  
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To further analyze the subcellular distribution of Cx40-WT and Cx40-Q58L 

proteins, the C-terminal of Cx40-WT was tagged with GFP, whereas the C-terminal of 

Cx40-Q58L was FLAG-tagged. After transfection of N2A cells with the tagged constructs, 

the distribution of each protein was examined by confocal microscopy. As shown in 

Figure 5, green color indicates the position of GFP-tagged molecules, whereas red 

indicates the position of FLAG-tagged molecules. In cells transfected only with 

GFP-tagged Cx40-WT, fluorescence was consistently detected at sites of cell-cell 

apposition, following the pattern previously described for GFP-labeled gap junction 

plaques (Figure 5A). A similar distribution was found when cells were transfected with 

FLAG-tagged Cx40-WT (not shown). In contrast, most FLAG-tagged Cx40-Q58L signal 

was evenly distributed around the cell, in the vicinity of the plasma membrane (Figure 

5B). Biotinylation experiments showed that the Q58L mutation did not prevent the Cx40 

protein from inserting into the membrane and presenting a domain reachable form the 

extracellular space (Supplemental Figure S2). Micoscopy experiments in cells 

co-expressing GFP-tagged Cx40-WT and FLAG-tagged Cx40-Q58L proteins yielded 

results intermediate to those obtained when only one construct was expressed. Nearly 

half of cell pairs showed both proteins distributed homogenously at or near the cell 

membrane, without formation of well-defined gap junction plaques (Figure 5C). These 
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images resembled those obtained when only Cx40-Q58L proteins were expressed 

(middle column of Figure 5B). In contrast, other cell pairs showed clustering of 

fluorescent signals within closely confined areas that appeared to be gap junction 

plaques (Figure 5D).  

 

The experiments described above led us to speculate that the distribution and 

function of heteromeric connexons is determined by their mutant subunit content, 

whereby formation (or not) of plaques and channels are determined –at least in part- by 

the abundance of expression of one protein over the other. As an initial step to probe 

this hypothesis, we took advantage of the characteristics of the bicistronic plasmid 

pIRES, in which the expression rate of the upstream gene is several-fold greater than 

that of the downstream gene,20 and explored the functional properties of heteromeric 

connexons. WT-Cx40 and GFP-tagged Q58L-Cx40 were subcloned into the pIRES 

vector, either alone or in combination, in the specific orientations shown in Figure 6A. 

Protein expression levels of WT-Cx40 and Q58L-Cx40 were determined by 

immunochemistry. In contrast to the data obtained when WT-Cx40 and GFP-tagged 

Q58L-Cx40 plasmids were co-transfected at a 1:1 ratio (lane 6), expression of 

heteromeric pIRES plasmids WT-IRES-Q58L-EGFP (lane 3) and 
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Q58L-EGFP-IRES-WT (lane 4) resulted in uneven protein expression levels of WT (40 

kDa) and Q58L-EGFP (67 kDa), depending upon their orientation in the pIRES vector. 

Based on these observations, we constructed a homomeric WT-Cx40 plasmid 

(WT-IRES-WT) and heteromeric plasmids of WT-Cx40 and Q58L-Cx40 with different 

orientations (WT-IRES-Q58L and Q58L-IRES-WT; Figure 6B). Junctional conductance 

of cell pairs expressing WT-IRES-Q58L (25.3±2.8 nS, n=17) was nearly 

indistinguishable from that of the homomeric plasmid, WT-IRES-WT (27.8±1.4 nS, n=17, 

NS). By contrast, the converse heteromeric construct Q58L-IRES-WT showed 

substantially reduced junctional conductance (0.29±0.12 nS, n=15; p<0.001), 

comparable with that of the homomeric Q58L (0.56 ± 0.34 nS, Figure 3A). These results 

suggest that the final electrophysiological properties of the heteromeric connexons are 

determined predominantly by the numbers of mutant subunits in each gap junction, 

rather than defined by a dominant-negative effect.   
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DISCUSSION 

Our genetic screening confirmed the association between SCN5A and SCN1B 

with PFHB113-15 and revealed novel mutations within these genes (supplemental Table 

S1). More importantly, we identified a particularly severe, early-onset case of PFHBI 

associated with a germline mutation in GJA5 in two blood relatives (proband and sister) 

with clinical diagnosis of PFHBI. Our data also indicate that the protein expressed 

(Cx40-Q58L) failed to form functional gap junctions in an exogenous expression system 

and decreased the probability of gap junction formation in cells co-expressing the WT 

protein.  

So far, SCN5A, SCB1B and TRPM4 are the only genes associated with 

PFHB111, 13, 14. The National Human Genome Research Institute database shows no 

association of GJA5 SNPs to arrhythmias or conduction system diseases. PR interval 

and QRS have been associated with several loci including SCN5A, SCN10A, NKX2.5, 

TBX5, 21, 22 but not GJA5 which is located at the chromosome 1q21.1. Overall, our 

results suggest that GJA5 is a candidate gene associated with PFHBI, likely in a small 

fraction of the afflicted population. Yet, given the limited co-segregation observed in the 

reported family, we remain cautious in assigning a causative nature to the GJA5 
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mutation. It will be of great interest to expand the screening of GJA5 at the research 

level to identify other cases associated with amino acid changes in Cx40, though it may 

be premature to include GJA5 as a part of the routine diagnostic screen17. Our results 

also emphasize the importance of Cx40 in the maintenance of normal cardiac rhythm.  

This is the first report of a germline mutation in Cx40 associated with a high risk 

of ventricular arrhythmias (Supplemental Figure S2). Other studies have shown somatic 

mutations of Cx40 or Cx43 in patients with idiopathic atrial fibrillation;5, 23 those 

mutations were confined to the atria, and conduction abnormalities in the ventricles or 

His-Purkinje system were not observed. On the other hand, as in all cases involving 

identified genetic substrates for disease, the possibility of compound mutations in 

unexamined genes cannot be excluded. We do emphasize that the mutation led to a 

severe cellular phenotype in an exogenous expression system, supporting the 

argument that just the Q58L substitution can impair the formation of gap junctions, 

necessary for propagation of action potentials between cells.  

Our results show that Cx40-Q58L was abundantly expressed in an exogenous 

system. The protein reached the vicinity of the cell membrane but failed to form gap 

junction plaques (Figure 5B). This result may be due to impaired docking of mutant 
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hemichannels within the intercellular space due to the mutation in the extracellular loop 

(Figure 1C). During trafficking, connexin subunits oligomerize to form a hemichannel (or 

“connexon”). Once at the site of cell contact, connexons from apposing cells dock, 

sealing the hydrophilic path (the channel pore) from the extracellular space. The locking 

of two connexons into one gap junction channel is thought to stabilize connexin subunits 

in place, facilitating aggregation of other oligomers into their vicinity, eventually forming 

a plaque. Amino acid substitutions within the extracellular loop, as in Q58L, can prevent 

hemichannel docking and thus plaque formation.24 Our biotinylation experiments 

indicate that the Q58L protein integrates into the cell membrane, supporting the notion 

that the inability of mutant Q58L to form functional gap junctions is related to events that 

occur after the oligomer is delivered to the cell membrane, and before a functional 

dodecamer converts into a functional channel in a gap junction plaque.  

Results obtained in cells co-expressing both mutant and WT proteins clearly 

show that one subunit can significantly influence the fate of the other (see Figure 5). 

This suggests that Cx40-Q58L subunits retain their ability to oligomerize, not only with 

other mutant subunits but also with the WT protein. Our results also present an 

interesting paradigm, in that neither the WT, nor the mutant construct exerted a 

dominant effect over the other. After transfection with equal amounts of cDNA, we found 
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cells where both WT and mutant proteins displayed the phenotype of the mutant 

construct, whereas in other cases, junctional plaques could be easily discerned 

(although an outline of the cell, likely resulting from the presence of the FLAG-tagged 

mutant protein, could still be observed; see red signal in Figure 5D). These results can 

be explained if we assume that the probability of proper targeting and integration of a 

connexon into a plaque decreases as a function of the number of mutant subunits 

contained. For co-transfection, we used equal amounts of cDNA. However, it is very 

likely that each cell was transfected with variable amounts of each construct and thus 

expressed variable amounts of each protein. We speculate that a majority (though of 

unknown stoichiometry) of WT connexin subunits are required in a connexon for proper 

formation of functional gap junctions. Thus, if a cell captures an abundance of Q58L 

cDNA, most oligomers will contain an excess of mutant subunits and gap junction 

formation will fail. If, on the other hand, that cell captures and expresses more of the WT 

cDNA, the distribution of the subunits within the oligomer will contain a majority of WT 

connexins and the connexon will be properly integrated into a channel. This hypothesis 

will require further testing, although data presented in Figure 6 support the concept that 

success or failure of functional channel formation may relate to relative abundance of 

each protein (WT or mutant). If our hypothesis is correct, it suggests that the distribution 
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of functional gap junctions in the His-Purkinje network of afflicted individuals could vary 

significantly among cells, depending on the extent of expression of each allele in each 

cell. The resulting phenotype may be that of a Purkinje network where gap 

junction-mediated coupling could be heterogeneous, setting the stage for local 

conduction block, micro-reentry and ventricular arrhythmias at the Purkinje network or 

at the Purkinje-muscle junction.1, 2  

Overall, we show that both proband and sister have a genotype that a) is absent 

in hundreds of controls and in the unaffected parent (the father), b) disrupts an 

important functional domain of the protein, and c) disrupts the formation of gap junction 

channels. Our data therefore supports the notion of an association between the Cx40 

mutation, and the clinical phenotype, and emphasizes the importance of future studies 

to assess the possible involvement of Cx40 mutations as causative of the disease. 
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FIGURE LEGENDS 

Figure 1. GJA5 mutation identified in a family with the clinical diagnosis of PFHB1.  

A: Family pedigree. Genetically affected and unaffected individuals shown with closed 

and open symbols, respectively. Hatched circle: Proband’s mother not genotyped; 

clinical data suggest she was a de novo mutation carrier. Number below each symbol: 

age at registration or age of sudden death (parenthesis). B: Sequence 

electropherogram of exon 2 GJA5 of proband. Arrow indicates heterozygous missense 

mutation of leucine (CTG) for glutamine-58 (CAG). C: Cx40 predicted membrane 

topology indicating position Q58 in first extracellular loop. D: Sequence alignment of 

human Cx40 and its homologues (residues 45-70). Notice also conservation in human 

Cx43 and Cx45. Dashes indicate residues identical with the top sequence.  

 

Figure 2. ECGs of proband and affected family members.  A: ECG of proband at 

age 6 showing advanced AV block, complete LBBB and left axis deviation. Patient died 

suddenly five years later. B: ECG of proband’s sister at age 6 showing QRS duration at 

upper limit of normal, left axis deviation that has been progressive, and QRS notch in V4 

and V5 (arrows) consistent with impaired intraventricular conduction. C: ECG of 

proband’s mother at age 16 showing complete LBBB and left axis deviation. She died 
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suddenly at age 30. 

 

Figure 3. Whole-cell and single channel properties of Cx40-WT and Cx40-Q58L 

channels.  A: Voltage pulse (top) and junctional current (bottom) from a homomeric 

WT cell pair (left; Gj=12.9 nS) and a Q58L cell pair (right; Gj=1.2 nS). B: Unitary currents 

recorded from homomeric Cx40-WT (upper) and Cx40-Q58L (lower) channels. O1 and 

O2 refer to two conducting (open) unitary levels of current. C: All-event histograms 

pooled from WT (left; N=3) and Q58L (right; N=3) cells with homologous channels. WT: 

Gaussian peaks centered at 136.2±2.3 pS and 53.1±5.3 pS. Q58L: Best fit by a single 

Gaussian distribution centered at 40.2±0.3 pS (N=3). D: Frequency of events in relation 

to dwell open time. Binned data were fit by single exponentials. τopen: WT=27.9±0.5 

msec, N=4 cells, n=186 events; Q58L= 92.0±7.8 msec, N=3 cells, n=163 events). 

 

Figure 4. Macroscopic conductance and gap junction plaque morphology in cells 

co-expressing Cx40-WT and Cx40-Q58L.  A: Junctional conductance of cells 

transfected with plasmid pEGFPN1-Cx40-WT (1 μg; data labeled “WT”), 

pEGFPN1-Cx40-Q58L (1 μg; column “Q58L”), or co-transfected with WT and Q58L 

(WT/Q58L: pEGFPN1-Cx40-WT 0.5μg+ pEGFPN1-Cx40-Q58L 0.5 μg). Asterisks: 
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p<0.001 compared with WT. B: Phase contrast/fluorescence overlay image of N2A cells 

transfected with WT/Q58L constructs. Arrow “a” points to gap junction plaque; arrow “b” 

shows example of cells transfected but void of gap junction plaque. Calibration bar: 20 

μm. C: Efficacy of gap junction plaque formation was measured as ratio between 

number of gap junction plaque-positive cells and number of fluorescent-positive cells 

(WT: n=940, WT/Q58L: n=855, Q58L: n=1,318). Asterisks: p<0.001 compared with WT. 

D: Representative images of phase contrast (left), EGFP fluorescence (middle), and 

junctional conductance (right) from N2A cells co-transfected with pEGFPN1-Cx40-WT 

(0.25 μg) and pEGFPN1-Cx40-Q58L (0.25 μg). Three different examples (a-c) are 

shown to illustrate relation between plaque morphology and recorded junctional 

conductance.  

 

Figure 5. Subcellular distribution of Cx40-WT and Cx40-Q58L in transiently 

transfected cells.  HeLa cells were transiently transfected with pEFGPN1-Cx40-WT 

(3.0 μg; panels A), pCMV-FLAG-Cx40-Q58L (3.0 μg; panels B) or pEFGPN1-Cx40-WT 

(1.5 μg) plus pCMV-FLAG-Cx40-Q58L (1.5 μg; panels C), immunostained for the 

respective tag protein and visualized by confocal laser scanning microscopy. Notice gap 

junction plaques (A) absent in Q58L transfectants (B) and present in some (D) but not all 
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(C) co-transfected cells. Bars: 20 μm. 

 

Figure 6. Mutant subunit abundance correlated with gap junction function.  A: 

N2A cells were transiently transfected with 3 μg Cx40 constructs in IRES plasmids (see 

below). Cell lysates were analyzed by Western blot using anti-Cx40 (upper panel) and 

anti-GAPDH antibodies (lower panel). The number in each lane corresponds to plasmid 

noted below. Samples from cells co-transfected with plasmids 1 and 2 (1.5 μg each) 

were loaded on lane 6. Double bands of WT-Cx40 (40 kDa) and Q58L-EGFP (67 kDa) 

are shown in lanes 3,4, 6,7. Results were repeated in three separate experiments. 

Overexposure (lane 7) confirmed expression of the high molecular weight protein in 

lane 3. B: Junctional conductance of homomeric and heteromeric constructs 

(WT-IRES-Q58L and Q58L-IRES-WT). Conductance of cell pairs expressing 

WT-IRES-WT (n=17) was comparable to heteromeric constructs WT-IRES-Q58L (n=17). 

However, converse heteromeric construct Q58L-IRES-WT (n=15) showed significantly 

reduced conductance (p<0.001 vs. WT-IRES-WT and WT-IRES-Q58L). *** and NS 

indicate p<0.001 and no statistical significance, respectively.  
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SUPPLEMENTAL MATERIAL 
 
 
 
 

SUPPLEMENTAL METHODS 
 
 
 
 
1.  Genetic screening of PFHB1 

 
The exon 2 of GJA5 and exon 3 of GJC1 that cover the entire coding region of the Cx40 and 

 
Cx45, respectively, were amplified by PCR from genome DNA using following primer sets. 

 
GJA5 Forward (Cx40-F2) 5’-TGGAATCCCAGAACATGATAGA-3’ 

Reverse (Cx40-R2) 5’-TCAGTTCAGAAGGGACACGTCT-3’ 

GJC1 Forward (Cx45-F1) 5'-GAGCCACCCTACCCAACTGA-3' 

Reverse (Cx45-R1) 5'-ACCAGAGCCAAATGTTTACTCAA -3' 

The coding regions of KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, SCN1B, 

SCN4B, HCN4, GJA1 (Cx43) were amplified by PCR using exon flanking intronic primers as 

previously described.1-8 Direct DNA sequencing was performed using ABI 3130 genetic 

analyzer (Applied Biosystems). 

 
 
 
2.  Plasmid construction 

 
A 1.1-kilobase DNA fragment, encompassing the entire coding region of Cx40, was amplified 

by PCR from human genomic DNA using the following primers. 

Forward (Cx40-F7) 5’-GAAGATCTCACCATGGGCGATTGGAGC TTCCT-3’ 
 

Reverse (Cx40-R2X) 5’-GGAATTCACACTGATAGGTCATCTG-3’ 
 

(Underlines represent the restriction recognition sequences for BglII and EcoRI, respectively) 

The PCR fragment was digested with BglII/EcoRI and subcloned into a bicystronic plasmid 

pIRES2-EGFP or pIRES2-DsRED2 (Takara Bio), for visual identification of cells expressing 
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connexins and green (EGFP) or red fluorescent protein (DsRED2), respectively. Site-directed 

mutagenesis was performed by QuikChange (Stratagene) as per manufacturer’s instructions. 

Sequences of PCR-amplified regions were verified for both strands. For EGFP-tagged Cx40 

plasmid, the1.1 kb coding sequence of WT and Q58L Cx40 were PCR-amplified by the 

following primers. 

Forward (Cx40-F2X) 5’-AACAAGCTTCACCATGGGCGATTGGAGCTTCCT-3’ 
 

Reverse (Cx40-R5X) 5’-GCGGATCCACTGATAGGTCATCTGA-3’ 
 
(Underlines represent the restriction recognition sequences for HindIII and BamHI, 

respectively.) The PCR fragment was digested with HindIII/BamHI and subcloned in frame 

into the plasmid pEGFP-N1 (Takara Bio), generating fusion constructs (pEGFPN1-Cx40-WT 

and pEGFPN1-Cx40-Q58L). FLAG-tagged Cx40 plasmids were constructed by replacing the 

0.8 kb EGFP fragment of the pEGFPN1-Cx40 plasmids in frame with the FLAG epitope 

(DYKDDDDK) cDNA at the C-terminal of the Cx40 (pCMV-FLAG-Cx40-WT and 

pCMV-FLAG-Cx40-Q58L, respectively. EGFP-tag or FLAG-tag did not change the 

conductance or the gating properties of Cx40 (data not shown). 

Bicistronic constructs of WT-Cx40 and Q58L-Cx40 were made using the plasmid 

pIRES (Takara Bio). The WT-Cx40 (1.1 kb) and EGFP-tagged Q58L-Cx40 (1.8kb) were 

subcloned either at the upstream or the downstream cloning sites of the IRES (internal 

ribosomal entry site) (Fig 6B, constructs 3 and 4). Homomeric WT-Cx40 construct and the 

heteromeric constructs (WT-IRES-Q58L and Q58L-IRES-WT) in Fig 6C were constructed by 

PCR. WT-Cx40 or Q58L-Cx40 cDNAs were initially PCR-amplified by the primers Cx40-Fa 

and Cx40-Rb, and the PCR products were digested with NheI/EcoRI and subcloned in the 

upper multiple cloning sites NheI/EcoRI of pIRES. 

Forward (Cx40-Fa) 5’-GCGCTAGCCACCATGGGCGATTGGAGC TTCCT-3’ 
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Reverse (Cx40-Rb) 5’-AGAATTCTCACACTGATAGGTCATCTG-3’ 
 
(Underlines represent the restriction recognition sequences for NheI and EcoRI, respectively) 

Similarly, WT-Cx40 or Q58L-Cx40 cDNAs were PCR-amplified by the primers 

Cx40-F8 and Cx40-R3, and the PCR products were digested with XbaI/NotI and subcloned in 

the lower multiple cloning sites XbaI/NotI of pIRES. 

Forward (Cx40-F8) 5’-GCTCTAGACACCATGGGCGATTGGAGC TTCCT-3’ 
 

Reverse (Cx40-R3) 5’-ATAAGATGCGGCCGCTCACACTGATAGGTCATCTG-3’ 
 

(Underlines represent the restriction recognition sequences for XbaI and NotI, respectively) 

Translation rate of the upstream cloned gene is generally greater than that cloned at 

the downstream site. Expression levels of WT-Cx40 (40 kDa) and Q58L-Cx40-GFP (67 kDa) 
 
are determined by western blotting using ant-Cx40 antibody. 

 
 
 
 
3.  Cell culture and transfection 

 
Connexin 40 constructs were introduced into connexin-deficient HeLa cells or mouse 

neuroblastoma (N2A) cells, maintained in F-12 or Minimum Essential Medium, respectively, 

supplemented with 10% fetal bovine serum. HeLa and N2A cells were transfected with 

plasmids using Lipofectamine LTX or Lipofectamine 2000 (Invitrogen) as per the 

manufacturer’s protocol. 

 
 
 
4.  Electrophysiology 

 
Gap junction currents from heterologously expressed N2A cell pairs were recorded 

using whole-cell double patch clamp techniques as previously described.9, 10 Recordings were 

carried out independently in each cell of a pair using two Axopatch 200B amplifiers (Axon 

Instruments). Current signals were filtered at 100-200 Hz and digitally sampled at 1-2 KHz 
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using an analog-to-digital interface (Digidata 1322A, Axon Instruments). The data were 

analyzed using Clampfit 9.2 (Axon Instruments) and Origin 7.5 (Origin Lab). The external 

solution contained (in mmol/L) 160 NaCl, 10 CsCl, 2 CaCl2, 0.6 MgCl2  and 10 HEPES, at pH 

7.4. The intracellular (pipette) solution contained (in mmol/L) 130 CsCl2, 0.5 CaCl2, 10 
 
HEPES, 10 EGTA, 2 Na2ATP and 3 MgATP (added daily), (pH = 7.2). Pipette resistance was 

 
5-10 MΩ. Octanol was added directly to the external solution at the final concentration of 1 

mmol/L at each experiment. Experiments were carried out at room temperature (20-22 ºC). 

All the chemicals were purchased from Sigma or Wako (Tokyo, Japan). 

Gap junction channel conductance (gj) was determined by conventional methods. 

Briefly, both cells in the pair (cell1  and cell2) were independently voltage-clamped at the same 

holding potential (-40 mV). Cell1  was then stepped to a new voltage, thus creating a potential 

difference across the junction (Vj). The current in cell2  was considered equal and opposite to 

the junctional current (Ij), and gj  was measured from the ratio Ij/Vj. The pulses were 2 or 5 sec 

in duration with an interpulse interval of 15 sec. Unitary conductance was obtained from pairs 

where only one or two functional channels were spontaneously detected. In some cases, cells 

were uncoupled by exposure to 1 mmol/L octanol. Histograms of events were obtained from 

channels recorded during repetitive 10-20 sec steps to Vj= +60 mV. To measure unitary 

conductance, only junctional current traces with events that lasted for longer than 20 ms were 

included. 9, 10 All-points histograms of digitized current traces and the frequency distribution 

histograms were constructed using Origin 7.5. 

To analyze the electrophysiological properties of heterotypic gap junctions consisting 

of Cx40-WT and Cx40-Q58L, N2A cells were transiently transfected with either Cx40-WT 

(pIRES2-EGFP plasmid) or Cx40-Q58L (pIRES2-DsRED2 plasmid). Sixteen hours later, 

both cells were split with trypsin/EDTA and co-cultured. On the following day, the 
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heterotypic cell pairs of Cx40-WT (green) and Cx40-Q58L (red) were visually identified 

under fluorescent microscopy. Experiments were carried out at room temperature (20-22 ºC). 

 
 
 
5.  Immunocytochemistry 

 
HeLa cells were cultured on a glass-bottom dish (Asahi Techno Glass, Chiba, Japan) 

and transfected with the fusion plasmids of pEGFPN1-Cx40-WT, pCMV-FLAG-Cx40-Q58L, 

or both. Next day, the cells were washed with phosphate-buffered saline (PBS), fixed in PBS 

containing 2% formaldehyde for 30 min at 4 °C, and permeabilized with 0.05% Triton X-100 

for 30 min at 4 °C. After blocking with PBS containing 4% bovine serum albumin for 1 h at 

room temperature, the cells were stained with anti-FLAG M2 antibody (mouse monoclonal, 

1:200, Sigma) for 1 h at room temperature. Protein reacting with antibody was visualized with 

Alexa 546-labeled secondary antibody (goat, 1:300, Invitrogen). EGFP and Alexa 546 

fluorescence images were recorded with a FluoView FV1000 confocal microscope (Olympus 

Co, Tokyo) with a 60x oil immersion objective. 

 
 
 
6.  Western blotting 

 
N2A cells maintained in a 6 well dish were transiently transfected with 3 μg Cx40 

plasmids. Two days after transfection, cells were washed with PBS, and total cell lysate was 

extracted with lysis buffer including 50 mM Tris (pH7.5), 150 mM NaCl, 1% TritonX-100, 

0.1 μg/ml aprotinin, 1x complete protease inhibitor (Roche Applied Science). Lysates 

precleared by centrifugation at 15,000 xg for 10 min were subjected to SDS-PAGE and 

immunoblotting with rabbit anti-Cx40 antibody (Millipore). Proteins reacting with primary 

antibodies were visualized by ECL system (GE Healthcare). The membrane was reprobed by 

anti-GAPDH antibody (Sigma). 
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7.  Surface biotinylation 

 
HeLa cells plated on 100 mm dishes were transiently transfected with 11 μg of 

pEGFPN1-Cx40-Q58L using Lipofectamine 2000 (Invitrogen). Surface biotinylation was 

performed 48 hours after transfection using the Pierce Cell Surface Protein Isolation Kit 

(Thermo Scientific, #89881) as per the manufacturer’s protocol. Briefly, after 30 min of biotin 

labeling reaction at 4 °C, cell were lysed, mixed with NeutrAvidin agarose, and loaded on a 

column. The biotinylated proteins were eluted with the elution buffer. Fractions of the 

flowthrough, elute, and input lysate (1:1 diluted with lysate buffer) were subjected to a 4-12% 

gradient SDS-PAGE and immunobotting with anti-Cx40 antibodies (Cx40-A, 1:50 dilution, 

Alpha Diagnostic International). Proteins reacting with primary antibodies were visualized by 

LI-COR infrared imaging technology. Detection was done using anti-rabbit IRDye 800CW 

(1:10,000) antibodies (LI-COR Biosciences, # 926-32213). 

 
 
 
8. Functional evaluation of novel SCN5A mutations associated with PFHB1 

 
Three novel SCN5A mutations associated with PFHB1 were identified; a missense 

mutation F777L, a compound heterozygous frame shift mutation p.P701fsX710 plus 

p.P2006fsX2037, and a frame shift mutation pV1764fsX1786. These mutations were not 

found in 400 unaffected control alleles. Functional properties of these mutations were 

evaluated by whole-cell patch clamp. The mammalian expression plasmids encoding the 

mutations were constructed by site-directed mutagenesis as we described previously using a 

human Na channel α subunit (Nav1.5) cDNA.11 The human cell line tsA-201 was transiently 

transfected together with Na channel β1 subunit, and the whole-cell Na currents were 

recorded as we previously described.11 Electrode resistance ranged from 0.8 to 1.5 MΩ. Data 
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acquisition was carried out using an Axopatch 200B patch clamp amplifier and pCLAMP10 

software (Axon Instruments). Currents were filtered at 5 kHz (–3 dB; 4-pole Bessel filter) and 

digitized using an analog-to-digital interface (Digidata 1440A; Axon Instruments). 

Experiments were carried out at room temperature (20–22°C). Voltage errors were minimized 

using series resistance compensation (generally 80%). Cancellation of the capacitance 

transients and leak subtraction were performed using an online P/4 protocol. The pulse 

protocol cycle time was 10 s. The data were analyzed using Clampfit 10 (Axon Instruments) 

and SigmaPlot 11 (SPSS Science). The holding potential was –120 mV. The bath solution 

contained (in mmol/l): 145 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose, pH 

7.35 (adjusted with NaOH). The pipette solution (intracellular solution) contained (in 
 
mmol/l): 10 NaF, 110 CsF, 20 CsCl, 10 EGTA, and 10 HEPES, pH 7.35 (adjusted with 

CsOH). The time from establishing the whole-cell configuration to onset of recording was 

consistent cell-to-cell to exclude the possible time-dependent shift of steady-state inactivation. 

To determine activation parameters, the current-voltage relationship was fit to the Boltzmann 

equation I = (V – Vrev) × Gmax × (1 + exp[V – V1/2] / k)–1, where I is the peak Na current during 

the test pulse potential V. The parameters estimated by the fitting are Vrev (reversal potential), 
 
Gmax (maximum conductance), and k (slope factor) (Supplemental Figure 1B). Steady-state 

availability for fast inactivation was measured with a standard double-pulse protocol 

(Supplemental Figure 1C, left inset), and the data were fit with the Boltzmann equation 

I/Imax = (1 + exp[(V – V1/2) / k])–1, where Imax is the maximum peak Na current, to determine 

the membrane potential for V1/2 and k. Functional properties of other mutations in SCN5A or 

SCN1B were previous reported (Supplemental table S1). 
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SUPPLEMENTAL FIGURE LEGEND 
 
 
 
 
Supplemental Figure S1 

 
Functional properties of the novel SCN5A mutations 

 
Panel A shows whole-cell Na currents recorded from tsA201cells expressing wild type (WT) 

Nav1.5 (left) or Nav1.5 mutant F777L (right). Currents were elicited by step pulses from -90 

mV to +60 mV (10 mV step) from a holding potential of -120 mV. Bars: 5 msec and 2 nA. 

Non-inactivated late currents were not observed. Panel B shows current-voltage relationship. 

Average peak current density was significantly reduced in F777L (p<0.001). WT: 391.7±47.1 

pA/pF, n=15 (open circles). F777L: 301.2±30.0 pA/pF, n=9 (closed circles). Panel C shows 

that the voltage-dependence of activation of F777L channels (closed circles) was not different 

from control, whereas steady-state inactivation curve was significantly shifted in the 

hyperpolarizing direction in F777L (WT: V1/2= -87.1±0.5 mV, n=25; F777L: V1/2= -92.4 ± 1.3 

mV, n=9; p<0.001). These biophysical properties suggest a decrease in the number of 

functional (conductive) sodium channels during the action potential upstroke consequent to 

the mutation. Previous studies have revealed that mutations A1180V12 and D1275N13, also 
 
found in our series (see supplemental Table S1), exhibit minor functional abnormalities when 

expressed in cultured cells, though more drastic changes are observed when the channels are 

expressed in cardiomyocytes14. Cells expressing compound heterozygous mutations 

p.P701fsX710 and p.P2006fsX2037, or a frame shift mutation pV1764fsX1786, exhibited no 

Na current, suggesting haploinsufficiency of cardiac Na current in the afflicted population. 

 
 
 
Supplemental Figure S2 

 
Exercise stress test of the proband’s mother 
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Electrocardiographic recording obtained from the probands’s mother during a treadmill 

exercise stress test at the age of 16. A heart rate of 177 bpm was achieved after 9 min 20 sec 

of exercise test by Bruce protocol. During the recovery phase at 1 min 17 sec, superior axis 

narrow QRS ventricular tachycardia with a rate of 110 bpm was observed (upper 

panel) .Ventricular tachycardia was spontaneously terminated at 20 min 23 sec of the recovery 

phase (lower panel). 

 
 
 
Supplemental Figure S3 

 
Co-expression of Cx40-WT and Cx40-Q58L in N2A cells. 

 
Panels A-C show fluorescence images from a cell pair recorded from cells co-transfected with 

pIRES2-EGFP-Cx40-WT and pIRES2-DsRED2-Cx40-Q58L (0.5 μg each). Notice expression 

of both the green (A) and the red marker (B), giving a yellow color in the overlay (C). 

Calibration bar: 20 μm. Panel D: Junctional conductance recorded from cell pairs as that 

shown in panels A-C was 18.9±5.4 nS (n=6). This number was not statistically different from 

that obtained from pairs expressing WT-GFP and Q58L-GFP (average Gj= 13.0±2.4 nS; 

n=17). 
 
 
 
 
Supplemental Figure S4 

 
Surface biotinylation of Q58L-Cx40 expressed in HeLa cells. 

 
HeLa cells transfected with pEGFPN1-Cx40-Q58L were surface-labeled with biotin, and 

lysed. Cell lysate was mixed with NeutrAvidin agarose and loaded on a column. Flowthough, 

elute (biotin-labeled membrane fraction) and the input lysate (1:1 diluted with lysate buffer) 

were subjected to SDS-PAGE and immunoblotting. A single 67KDa band of similar intensity 
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was detected in both elute and the input lysate, but not in the flowthrough. These data indicate 

 
that mutation Q58L did not prevent surface expression of the Cx40 protein. 
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Supplemental Table S1. Genetic mutations identified in PFHBI probands 

 
 
 
Patient   Gene  Exon   cDNA mutation  Amino acid change  Mutation type  Phenotype  Reference   

 

1 † GJA5 2 c.173 A>T Q58L Missense PFHBI this study 
 

2 SCN5A 15 c.2329T>C F777L Missense PFHBI +DCM+MMD this study 
 

3 †* SCN5A 14 c.2102 del C p.P701fsX710 Deletion PFHBI +BrS this study 
 

SCN5A 28 c.6017 delC p.P2006fsX2037 Deletion this study 
 

4 SCN5A 28 c.5290 delG p.V1764fsX1786 Deletion PFHBI +BrS+MMD this study 
5 SCN5A 20 c.3539C>T A1180V Missense PFHBI +DCM 11

 

6 SCN5A 21 c. 3823G>A D1275N Missense PFHBI +DCM 12
 

7 SCN5A Int22 IVS22+2T>C Exon skipping PFHBI 13
 

8 SCN5A 28 c.5280 delG p.A1711fsX1786 Deletion PFHBI 13
 

9 SCN5A 28 c. 5129C>T S1710L Missense PFHBI +IVF 14
 

10 SCN1B 3 c.259G>C E87Q Missense PFHBI 5
 

11 SCN1B 3A c.536G>A W179X Missense PFHBI+BrS 5
 

12  SCN1B    3A  c.537G>A  W179X  Missense  PFHBI  5  
 

 

GJA5: connexin 40, SCN5A: cardiac voltage-gated Na channel α subunit, SCN1B: voltage-gated Na channel β1 subunit 
 

†: Patients 1 and 3 are sudden cardiac death victims 
 

*: Patient 3 is a compound heterozygous carrier of SCN5A mutations 
 
 

DCM: dilated cardiomyopathy, MMD: myotonic muscular dystrophy, BrS: Brugada syndrome, IVF: idiopathic ventricular fibrillation, Int22: 
Intron 22 
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Supplemental Table S2. ECG parameters of the family members 

 
 
 
 
 
 
Family  Age  HR (bpm)  PR (ms)  QRS (ms)  QTc (ms)  Axis (degree)  ST depression   
Proband  6  87  *  126  421  -8  II,III,aVF, V3-6 

8 77 * 128 396 -21 II,III,aVF, V2-6 
 

Sister 6 86 130 86 404 -25 II,III,aVF, V3-6 
 

11 85 142 88 416 -49 II,III,aVF, V3-6 
 

Mother  16  63  248  152  471  -25  II,III,aVF, V3-6   
 
 
 
 
 
 

*: advanced AV block 
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