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A highly diastereoselective synthesis of 2,3-disubstituted piperidines has been accomplished through nucleophilic additions to N-

acyliminium ions with aryl- and alkenyl boronic acids. A reversal of stereoselectivity depending on a B-substitute on the piperidine ring
was observed in the alkenylation reactions with (E)-styrylboronic acid. Our strategy was applied in the key step for the synthesis of the

nuerokinin NK1 receptor antagonist (+)-L-733,060.

10 Introduction

Substituted piperidines are found in numerous alkaloids and
biologically  active  compounds, of which 2-aryl-3-
hydroxypiperidines have been prominent structural motifs. For
example, (+)-L-733,060 (1) and its N-analogue (+)-CP-99,994°
are selective neurokinin-1 substance P receptor antagonist (Fig.
1).
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Fig. 1 Biologically active 2,3-disubstituted piperidines.
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One of the most powerful methodologies to furnish the
substituted piperidines is the nucleophilic addition to N-
acyliminium ions® To date, a broad range of C-based
nucleophiles have been known to react with cyclic N-
acyliminium ions. We also have achieved the asymmetric
intermolecular reactions with a variety of enol derivatives.*
Petasis reaction,” which constitute efficient synthesis of
allylamines and a-amino acids by the three-component coupling
of an amine, an aldehydes and an organoboronic acid, is highly
3 attractive because of the use of organoboronic acids as
nucleophiles which are readily available and little sensitive
toward air and water. Batey and co-workers have developed the
procedure for the diastereoselective formation of functionalized
N-heterocycles with alkenyl- and aryl boronates.® Moreover the
35 asymmetric additions to chiral iminium ions derived from (S)-5-
phenylmorpholin-2-one and aliphatic aldehydes with 2-furyl
boronic acid have been reported by Harwood.” In spite of some
examples of the arylation reactions to N-acyliminium ions? a
synthetic protocol for the asymmetric arylation onto piperidine
40 rings with organoboronic acids as nucleophiles has not yet been
reported. We herein disclose a novel approach to 2-aryl-3-
hydroxypiperidines by the diastereocontrolled introduction of
aromatic moieties in organoboronic acids to N-protected
piperidinium ions mediated by a Lewis acid via a Petasis-type
45 reaction (Scheme 1).
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Scheme 1 Diastereoselective introduction of aryl moieties onto the 2-
position of N-protected piperidinium ions.

s Results and discussion

To start with, the preparation of tetrahydropyridines from the
respective N-protected piperidines was achieved according to our
previously reported method which consists of electrochemical
ss methoxylation ~ and  elimination  of methanol® The
tetrahydropyridines were thus treated with oxone in methanol,
yielding N,O-acetals 2—4 as N-acyliminium ion precursors (egn
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As shown in Table 1, we demonstrated the Lewis acid-mediated
reactions of 2—4 with phenylboronic acid. An initial survey using
substrate 2 indicated that the reaction in the presence of

es BF3-Et,O did not proceed. The N,O-acetal 3 possessing a N-
phenoxycarbonyl group reacted slightly with phenyboronic acid,
providing the desired product 6a. The corresponding boronate did
not lead to any increase of yield.X In contrast, the reaction of N-
Cbz piperidine 4 proceeded with good diastereoselectivity

70 (cis:trans=8.3:1 by 'H NMR), and gave the cis-adduct 7a in 69%
yield as a single isomer after purification by column
chromatography. Otherwise, TiCl, was found to be a poor
mediator.



Table 1 Diastereoselective nucleophilic substitution of N,O-acetals with consistent with literature examples. The coupling constant J, 3
phenylboronic acid. values for cis-isomers were 5.6-5.8 Hz, compared with <1.0 Hz
for the corresponding trans-isomers.® ** The stereochemistry of

OH
W H - . -
(_?H BF 3 ELO (1.0 eq) w0 s 7C, Yg, 7.f—|, 7K, 7m—r.and 8 was readlly.determlned by the
+ B examination of the coupling constant J, 3, which was 5.2-6.1 Hz,

AN iy, - - .
N° OMe HO™ “Ph CH.Cl N7 “ph consistent with J, 5 values for cis-isomers.
-30°Ctort |
COR CO.R
2—4 5a—Ta Table 2 Scope of organoboronic acids in nucleophilic substitution

55 reactions of substrate 4.
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Entry R (Substrate) Time (h) Product dr (cis: trans)? Yield (%) (I . (l)H BE,ELO (1.0eq) O
B
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1 Me (2) 18 5a - Trace N OMe  HOW Ar CHCl N A
2 Ph (3) 18 6a 72:1 14 Cbz =30 °Ctort Cbz
3 Bn (4) 24 7a 83:1 69 4 7
£  Bn (4 24 7a — 0

5 @ The diastereomer ratio was determined by *H NMR spectroscopy of the
crude mixture. ® Yield of isolated product after purification by column Entry Ar Time ()  Product Yield (%)*
chromatography. © The reaction performed with 1.0 equivalent of TiCl,
instead of BF3-Et,0.

1 4-MeOCgH4 5 7b 86
2 4-MeSC¢H, 5 7c 71
10 By using substrate 4, we next examined the scope and limitation 3 4-MeC¢H, 19 7d 67
of this process with respect to substitution on the benzene ring of g gmgg::j gj ;? 28
aryl boronic acids (Table 2, Entries 1-13). Overall adducts 7 were 6 3-Biphenyl 24 79 43
cis-formed as single diastereomers (>98:2 cis:trans by 'H NMR) 7 1-Naphthyl 24 7h 71
in moderate to high yields. When a nucleophile with a methoxy 8 2-Naphthyl 24 7i 71
15 substituent was used, the 2-arylated piperidine 7b was obtained in ?0 3('::%":_‘; 53 ;{( gg
86% yield. Moreover, nucleophiles bearing a methylthio, a 11 4-NC(§6F4|4 24 71 0
methyl and a phenyl group provided the corresponding desired 12 3,4-(Me0),C¢H; 5 m 64
products 7c—g in moderate yield. Both 1- and 2-naphthylboronic
acids also were well-tolerated in this process. It should be noted 13 \©:O> 14 n 62
2 that acceptable substitutions on the phenyl group are o
characterized by electron-neutral or —donating groups. Substrates
with electron withdrawing groups are challenging for this 14 (E)-PhCH=CH 24 70 81
reaction. For instance, the reaction of 4-fluoro and 4- 15 3-Thienyl 5 7p 57
chlorophenyl boronic acid gave adducts (7j and 7K) in less than 12 g:g:z;gm’;‘%‘l éj ;ﬂ gg

5 40% yield. Additionally, (4-cyanophenyl)boronic acid was

ineffective. An attempt to use disubstituted phenyl boronic acids * Yield of isolated product after purification by column chromatography.
was also successful; arylated piperidines (7m and 7n) were

obtained in 64% and 62% vyields, respectively. The additions of MEOYO
other boronic acids involving an alkenyl and a heteroaryl HO N
30 Substitute were explored (Entries 14-17). The reaction of (E)-2- ‘B | o
styrylboronic acid gave cis-adduct 70 in 81% yield. The electron- HO \ =
rich boronic acids, 3-thienylboronic acid, 2-benzothienylboronic
acid and 2-benzofuranylboronic acid, were effective, providing OH .0 0
the diastereomerically pure 2-heteroarylated piperidines (7p—r) in (j/ BFyEt;0 (1.0 eq) O \[é
s5 good to high yield. ' o ‘N7 OMe CH,Cl, N~ e
In the case of 1-(N-methoxycarbonyl)indole-2-boronic acid, | —30°Ctort, 24 h | | 7N
the reaction successfully proceeded, providing the cyclic Coz 61% Cbz o
carbamate compound 8 in 61% yield (Scheme 2). 4 8

Although we examined the temperature and solvents effect on ¢
4 the diastereoselectivity of 7a, and whether the epimerization of Scheme 2 Addition of 1-(N-methoxycarbonyl)indole-2-boronic acid to
cis-7a caused by BF3-Et,O was present or not in order to explain N,O-acetal 4.
the source of lower diastereoselectivity of 7a, we did not obtain

any significant results. - Next, we explored the scope of B-substitution with respect to the

N-acyliminium ion partner. Indeed, neither the nucleophilic
substitutions of N-benzyloxycarbonyl-2-methoxypiperidine nor -
halosubstituted  piperidine  N,O-acetals 9a—-¢ with 4-
methoxyphenyl boronic acid provided the desired products. The
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45 The synthesis of the cis-isomers (7a, 7b, 7d, and 7j) has been
reported’? and the 'H NMR data of compounds obtained us is



requirement for a p-hydroxyl group adjacent to the a-carbon
implied the coordination to organoboronic acid. The reaction
intermediates |1 and Il which would be responsible for the
reactivity and selectivity are proposed (Scheme 3). First, the N-
acyliminium ion tetracoordinate boronic acid as an intermediate |
would be formed by Lewis acid activation of the N,O-acetal. Next,
successive intramolecular attack of boronate I on the N-
acyliminium ion by the same face bearing the B-oxygen results in
the diastereospecific C-C bond formation to provide the cyclic
intermediate 11. Consequently, 11 undergoes the elimination of
boronic acid leading to a cis-2,3-disubstituted piperidine
derivative with an high level of diastereoselectivity.
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Scheme 3 Plausible mechanism for the diastereoselective arylation of N-
acyliminium ions.

On the other hand, in our research, we found that (E)-2-
styrylboronic acid as a nucleophile was suitable for nucleophilic
additions to N-acyliminium ions derived from N,O-acetals 9a—c.
The reaction of 9a in the presence of BF3-Et,0 gave the desired
product 10a with good diastereoselectivity (dr=12:1) in 62%
yield. Interestingly, the reactions of 3-chloro- and 4-bromo-
piperidine N,O-acetals 9b and 9c provided exclusively a single
isomer in good yield, respectively. The major isomers 10a—c
25 were confirmed to be trans-formed by the examination of their

coupling constant J,3= <1.0 Hz, consistent with literature

examples for trans-2-aryl-3-hydroxypiperidines.
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Further investigation will be required to elucidate the
mechanism on the alkenylation reaction. We envisage that
transient iminium ions (111-V) would be formed due to the high
conformational control (Figure 2). Organofluorine compounds
tend to stabilize the conformations by hyperconjugative and
electrostatic interactions.* For instance, the [NH-FC] dipole
effect in 3-fluoropiperidine derivatives has been observed by
Snyder and Lankin.’® In addition, Gilmour and co-workers
developed a glycosylation stereocontrolled by the polarized C-F
bond which would orient towards the electropositive center in a
gluco-configured 2-fluoro-oxonium ion.** We postulated that an
electrostatic interaction between the partially negatively charged
C-F bond and the N-acyliminium cation would lead to
conformational rigidification of 3-fluoropiperidinium ion Il
because they are positioned closer together in a pseudoaxial
conformer than in a pseudoequatorial conformer. On the other
ss hand, 3-chloro and 3-bromopiperidinium ion intermediates

should be indicated by the two proposed conformational states

(IV and V). The alkenylations of 9b and 9c with
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Scheme 4 Scope of B-position substitutes of N,O-acetals in the

so diastereoselective reaction with (E)-2-styrylboronic acid. * The
diastereomer ratio was determined by *H NMR spectroscopy of the crude
mixture. ® Yield of isolated product after purification by column
chromatography.

s5 (E)-2-styrylboronic acid would proceed via a pseudoaxial
conformer V providing trans-products, and not via the
pseudoequatorial conformer 1V which might cause a steric
repulsion between a halogen substitute and a nucleophile.
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Fig. 2 Conformational control in 3-halopiperidinium ions.

Finally, we aimed at the synthesis of (+)-L-773,060 (1).}” With
diastereomerically pure 7a in hand, the treatment with NaH for
es the deprotonation of B-hydroxyl group to form the alkoxyl anion
which reacted with 3,5-bis(trifluoromethyl)benzyl bromide
afforded the O-benzyl ether product. The subsequent
hydrogenolysis of N-Cbz with ammonium acetate and Pd/C
according to Sajiki’s condition®® afforded the desired product (+)-

70 L-773,060 (1) in excellent yield (Scheme 5).

Br
CF3 Pd/C, H,
NaH NH,4OAc
* Ta (#)-L-773,060 (1)
DMF MeQOH
80°C, 4 h rt, 30 min

79% 96%

Scheme 5 Preparation of 1 from 7a.



Conclusions

In conclusion, we disclosed a versatile approach to cis-2-aryl-3-
hydroxypiperidine derivatives through highly diastereoselective
a-arylations of piperidinium ions with a broad range of readily
s available arylboronic acids involving heteroaryl- and alkenyl
boronic acids. In the alkenylation of N,O-acetals with (E)-
styrylboronic acid, a reversal of stereoselectivity was observed
depending on whether a hydroxyl group or a halogen as -
substitute was present. A concise synthesis of (£)-L-773,060 was
10 realised using our method. Further investigation on the scope of
substrates and the detailed mechanism is currently on-going.
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