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Abstract. This paper provides experimental results showing that we
can use maximal substrings as elementary building blocks of documents
in place of the words extracted by a current state-of-the-art supervised
word extraction. Maximal substrings are defined as the substrings each
giving a smaller number of occurrences even by appending only one char-
acter to its head or tail. The main feature of maximal substrings is that
they can be extracted quite efficiently in an unsupervised manner. We
extract maximal substrings from a document set and represent each doc-
ument as a bag of maximal substrings. We also obtain a bag of words rep-
resentation by using a state-of-the-art supervised word extraction over
the same document set. We then apply the same document clustering
method to both representations and obtain two clustering results for a
comparison of their quality. We adopt a Bayesian document clustering
based on Dirichlet compound multinomials for avoiding overfitting. Our
experiment shows that the clustering quality achieved with maximal sub-
strings is acceptable enough to use them in place of the words extracted
by a supervised word extraction.

Key words: maximal substring, unsupervised method, document clus-
tering, suffix array, Bayesian modeling

1 Introduction

Recently, researchers propose a wide variety of large scale data mining methods,
where documents originating from SNS environments or DNA/RNA sequences
provided by next generation sequencing are a typical target of their proposals.
Many of those methods adopt an unsupervised learning, because it is often dif-
ficult to prepare a sufficient amount of training data for a supervised learning.
This paper focuses on text mining, where we have various useful unsupervised
methods, e.g. document clustering [15], topic extraction [2], topical trend anal-
ysis [23], etc. However, most of such unsupervised methods assume that each
document is already represented as a bag of words, i.e., as a set of the numbers
of occurrences of words. Therefore, we should first extract elementary building
blocks that can be called words from documents.

With respect to English, French, German, etc, we can easily obtain such
building blocks, because each character sequence separated by white spaces can
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be regarded as a word. While we may further conduct a stemming to obtain a
canonical form of the words, this causes no serious burden.

However, with respect to Japanese, Chinese, Korean, etc, it is far from a triv-
ial task to extract such elementary building blocks from documents. Japanese
and Chinese sentences contain no white spaces and thus give no word bound-
aries. While Korean sentences contain many white spaces, most of the character
sequences separated by white spaces consist of two or more words [4].

Therefore, various word extraction methods have been proposed. However,
many of such methods are a supervised one. They require a hand-maintained
dictionary that should be constantly updated or are based on a mathematical
model of character sequences that should be trained with a sufficient amount of
training data, where supervised signals (e.g. 0/1 labels giving word boundaries,
categorical labels giving grammatical roles, etc) are assigned by human annota-
tors. Therefore, any mining method sitting on a supervised word extraction will
show difficulty in scaling up to larger data sets even when the mining method
itself is an unsupervised one.

This paper provides experimental results showing that we can use mazimal
substrings [17] as elementary building blocks of documents in place of the words
extracted by a current state-of-the-art supervised word extraction. The most
important feature of maximal substrings is that they can be extracted in an
unsupervised manner. Therefore, we need no training data aside target data.
Further, maximal substrings can be extracted quite efficiently.

From here, when we use the words extracted by a supervised method to
represent each document as a bag of words, we simply call this bag of words
representation and distinguish it from bag of maximal substrings representation.

For evaluating the effectiveness of maximal substrings, we compare bag of
maximal substrings representation with bag of words representation in document
clustering, where the latter representation is obtained by using a state-of-the-art
supervised word extraction. We compare these two types of representation based
on the quality of document clustering. We run the same Bayesian clustering
algorithm on the same document set and obtain two different clustering results
depending on whether we use bag of maximal substrings representation or bag
of words representation. We then compare the clustering quality in F-scores and
clarify the effectiveness of maximal substrings.

As far as we know, this paper firstly gives a quantitative comparison between
bag of maximal substrings representation and bag of words representation in doc-
ument clustering. While Chumwatana et al. [5, 6] conduct a similar experiment
with respect to Thai documents, the authors fail to make evaluation reliable, be-
cause the data set only contains tens of documents. Further, they do not compare
bag of maximal substrings representation with bag of words representation.

Our comparison was conducted on a set of tens of thousands of Korean and
Chinese newswire articles. To compare with maximal substrings, we extracted
words by applying a dictionary-based morphological analyzer [8] to Korean doc-
uments and by applying a word segmenter, implemented by us based on linear
conditional random fields (CRF) [19], to Chinese documents. Both are a super-
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vised word extraction. The former requires a hand-maintained dictionary, and
the latter requires a sufficient amount of human annotated training data.
Our experiment will provide the following observations:

— Both for Korean and Chinese documents, maximal substrings are as effective
as the words extracted by a current state-of-the-art supervised method as long
as we remove high and low frequency maximal substrings with a little care.

— Document clustering requires longer time and larger memory when we use
maximal substrings, because the number of maximal substrings is larger than
that of the words extracted by a supervised method. This is the cost we should
pay in performing various text mining tasks with maximal substrings.

The rest of the paper is organized as follows. Section 2 reviews the works
related to the extraction of elementary building blocks of documents. Section 3
describes the details of maximal substrings and of document clustering used in
our evaluation experiment. Section 4 includes the procedure and the results of
our experiment. Section 5 concludes the paper with discussions and future work.

This paper improves our preceding paper [11] with respect to the follow-
ing three aspects. First, we added two data sets to make our experiment more
reliable. Second, we provided an additional method for reducing the variety of
maximal substrings extracted from Chinese documents. While we did not obtain
any good results in [11] for Chinese documents, this new reduction method made
maximal substrings as effective as the words extracted by a CRF-based super-
vised method. Third, we conducted an MCMC sampling aside the EM algorithm
in [11] for document clustering and made our experiment more comprehensive.

2 Previous Works

Most text mining methods require word extraction, i.e., extraction of elemen-
tary building blocks that can be called words, as a preprocessing of documents.
For English, French, German, etc, we have words as the character sequences
separated by white spaces. Therefore, we at most need to apply stemming for
obtaining a canonical form of the words. In contrast, for Japanese, Chinese,
Korean, etc, word extraction is never a trivial task.

Word extraction can be conducted, for example, by analyzing language-
specific word sequence structures with a hand-maintained dictionary [8], or by la-
beling character sequences with an elaborated probabilistic model whose param-
eters are in advance optimized with respect to a human annotated training data
set [21]. However, recent research trends point to increasing need for large scale
text mining. Therefore, an intensive use of such supervised methods becomes less
realistic, because it becomes more difficult to prepare a hand-maintained data
set of size and quality sufficient to serve as a dictionary or as a training data set
for exploring very large scale unknown data.

Actually, we already have important results for unsupervised word extraction.

Poon et al. [18] propose an unsupervised word segmentation by using log-
linear models, which are often adopted for supervised word segmentation, in
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an unsupervised learning framework. However, when computing the expected
count, which is required in learning process, the authors exhaustively enumerate
all segmentation patterns. Consequently, this approach is only applicable to the
languages whose sentences are given as a set of short character sequences sep-
arated by white spaces (e.g. Arabic and Hebrew), because the total number of
segmentation patterns is not so large for each of such short character sequences.
In other words, this approach may be extremely inefficient for the languages
whose sentences contain no white spaces (e.g. Chinese and Japanese).

Mochihashi et al. [13] provide a sophisticated Bayesian probabilistic model
for segmenting given sentences into words in a totally unsupervised manner.
The authors improve the generative model of Teh [20] and utilize it for modeling
both character n-grams and word n-grams. The proposed model can cope with
the data containing so-called out-of-vocabulary words, because the generative
model of character n-grams serves as a new word generator for that of word n-
grams. However, highly complicated sampling procedure, including MCMC for
the nested n-gram models and segmentation sampling by an extended forward-
backward algorithm, may encounter an efficiency problem when we try to im-
plement this method by ourselves, though the proposed model is well designed
enough to prevent any exhaustive enumeration of segmentation candidates.

Okanohara et al. [17] propose an unsupervised method from a completely
different angle. The authors extract mazimal substrings, i.e., the substrings each
giving a smaller number of occurrences even by appending only one character to
its head or tail, as elementary building blocks of documents. The extraction can
be efficiently implemented and conducted as is shown in the works related to
suffix array or Burrows-Wheeler transform (7, 1, 14, 16]. While Zhang et al. [25]
also provide a method for extracting a special set of substrings, this is not the
set of maximal substrings. Further, their method has many control parameters
and thus is guided not by a principled methodology, but by a heuristic intuition.

In this paper, we adopt maximal substrings as elementary building blocks of
documents by following the line of [17] and evaluate the effectiveness of maximal
substrings in document clustering, because previous works [17, 25] have proved
the effectiveness only in document classification.

While we can find several works employing maximal substrings in document
clustering, this paper firstly gives a quantitative comparison between bag of
maximal substrings representation and bag of words representation as far as
we know. Zhang et al. [24] present a Chinese document clustering method us-
ing maximal substrings. However, the authors give no quantitative evaluation.
Especially, maximal substrings are not compared with the words extracted by
some elaborated supervised method. While Li et al. [9] also propose a docu-
ment clustering based on the maximality of subsequences, the authors focus not
on character sequences, but on word sequences. Further, the proposed method
utilizes WordNet, i.e., an external knowledge base, for reducing the variety of
maximal subsequences. Therefore, their method is not an unsupervised one.

This paper will show what kind of effectiveness maximal substrings can pro-
vide in document clustering. In the evaluation experiment, we prepared a set of
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tens of thousands of documents as an input for clustering and made our eval-
uation reliable. We only appealed to a simple frequency-based reduction of the
variety of maximal substrings and used no external knowledge base. Further,
we compared the clustering quality achieved with maximal substrings to that
achieved with the words extracted by an elaborated supervised method.

3 Clustering Documents with Maximal Substrings

3.1 Maximal Substrings

Maximal substrings are defined as a substring whose number of occurrences
is reduced even by appending only one character to its head or tail. We can
discuss more formally as follows. Let S denote a string of length I(S) over a
lexicographically ordered character set X'. At the tail of S, a special character $,
called sentinel, is attached, i.e., S[I(S)] = $. The sentinel $ does not appear in the
given original string and is smaller than all other characters in lexicographical
order. For a pair of strings S and T over X, we define the set of all occurrence
positions of T in S as follows:

Pos(S,T)={i:S[i+j—-1]=T[jlforj=1,...,U(T) } . (1)

We denote the nth smallest element in Pos(S,T) by pos,(S,T). Further, we
define RPos(S,T) as follows:

RPos(S,T) = {(n,posn(S,T) —pos1(S,T)) :n=1,...,|Pos(S,T)|[} . (2)

That is, RPos(S,T) is the set of all occurrence positions of T in S relative to
the first smallest occurrence position. Then, T' is a mazimal substring of S when

— |RPos(S,T)| > 1,

— RPos(S,T) # RPos(S,T") for any T" such that I(T") = I(T) + 1 and T[j] =
T'j,7=1,...,1(T) , and

— RPos(S,T) # RPos(S,T") for any T" such that I[(T7) = I(T) + 1 and T[j] =
Tj+1,i=1,....,U(T) .

The last condition corresponds to “left expansion” discussed in [17].

When we extract maximal substrings from a document set, we first concate-
nate all documents by inserting a special character, which does not appear in the
given document set, between the documents. The concatenation order is irrele-
vant to our discussion. We put a sentinel at the tail of the resulting string and
obtain a string S from which we extract maximal substrings. We can efficiently
extract all maximal substrings from S in time proportional to I(S) [17].

After the extraction, the maximal substrings containing special characters
put between the documents are removed. However, the number of the resulting
maximal substrings is in general far larger than the number of the words ex-
tracted by a state-of-the-art supervised method from the same document set.
Therefore, we further reduce the variety of maximal substrings by removing
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the maximal substrings containing white spaces, delimiters (e.g. comma, period,
question mark, etc), and other functional characters (e.g. parentheses, hyphen,
center dot, etc).

Even after the above reduction, we still have a large number of maximal
substrings. Therefore, we propose a simple frequency-based strategy for reducing
the variety by using three integer parameters ny, rg, and rj, as follows:

1. Remove the maximal substrings whose frequencies are smaller than np;

2. Remove the top rg highest frequency maximal substrings; and

3. Remove the maximal substrings of length one among the top 7, highest
frequency maximal substrings, where r;, should be larger than rp.

The third reduction using rp was not proposed in [11]. However, this additional
reduction made maximal substrings as effective as the words extracted by the su-
pervised word segmenter for Chinese documents. Consequently, we could obtain
more interesting results than in [11] with respect to Chinese documents.

While we tried various settings for ny,, rg, and r,, this paper provides a lim-
ited number of settings, because other settings gave no remarkable improvement.
Our reduction strategy was also applied to the words extracted by a supervised
method, because we could obtain better evaluation results with this reduction.

3.2 Bayesian Document Clustering

Dirichlet compound multinomial (DCM) When we represent documents
as a bag of maximal substrings or of words, multinomial distribution [15] is a
natural choice for document modeling, because we can identify each document
with a frequency histogram of maximal substrings or of words. However, it is
often discussed that multinomial distributions are likely to overfit to sparse data.
Here the term “sparse” means that the number of different maximal substrings
or of different words appearing in each document is far less than the total number
observable in the entire document set.

Therefore, we use a Bayesian document model called Dirichlet compound
multinomial (DCM) [10] and avoid overfitting. Let K denote the number of
clusters. We prepare K multinomial distributions each modeling a frequency
distribution for a different document cluster. Further, a Dirichlet prior distri-
bution is applied to each multinomial distribution. By marginalizing out the
multinomial parameters, we obtain a DCM for each document cluster. The pa-
rameters of these K’ DCMs and their mixing proportions are estimated by the
EM algorithm described below.

EM algorithm We prepare notations for discussions. We assume that the given
document set contains J documents and that W different words (or maximal sub-
strings) can be observed in the document set. Let ¢;,, be the number of occur-
rences of the wth word (or maximal substring) in the jth document. The sparse-
ness in our case means that c;,, = 0 holds for most w. Let o = (w1, - - -, pw)
be the hyperparameters of the Dirichlet prior prepared for the kth document
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cluster. The probability that the jth document belongs to the kth cluster is de-
noted by p;r. Note that ), pji = 1. We define ap =3 oy and ¢; = > Cjow-
We update the cluster assignment probabilities and the hyperparameters with
the EM algorithm described below.

E step: For each j, update p;x, k =1,..., K by

Pip Zj Pjk ) I'(ow,) H I'(¢jw + 0kw)
T pik Tlej+ar) AL Dogw)

and then normalize p;i by pji < Djr/ Dk Pjk-

M step: For each k, update agy, w=1,...,W by

> Pik{¥(cjw + hw) — ¥(kw)}
> Pie{¥(c; + ax) — ¥(ax)}

where I'(+) is gamma function and ¥(:) is digamma function. The M step is
based on Minka’s discussion [12]. We ran 200 iterations of the E and M steps.

Before entering into the loop of E and M steps, we initialize all o to 1,
because this makes every Dirichlet distribution a uniform distribution. Further,
we initialize p;, not randomly but by the EM algorithm for multinomial mix-
tures [15]. In the EM for multinomial mixtures, we use a random initialization
for pji. The execution of the EM for multinomial mixtures is repeated 30 times.
Each of the 30 executions of the EM for multinomial mixtures gives a different
estimation of pjj. Therefore, we choose the estimation giving the largest likeli-
hood as the initial setting of p;; in the EM algorithm for DCM. We conduct this
entire procedure three times. Among the three results, we select the one giving
the largest likelihood as the final output of our EM algorithm. We then assign
each document to the cluster giving the largest value among pj1,...,p;k in this
final output. The time complexity of this EM is O(I K M), where I is the number
of iterations and M is the number of unique pairs of document and word (or the
number of unique pairs of document and maximal substring). Note that M is
far smaller than J x W due to the sparseness discussed above.

A < Oy

MCMC sampling We also employed Gibbs sampling, a widely used class of
MCMC samplings, for inference. Our Gibbs sampling updates cluster assign-
ments by picking up the documents in a random order. The assignment of the
jth document is a random multinomial draw determined by the following prob-
abilties for k=1,..., K:

pip o m I(ey” + o) I L(ch, + ¢w + )
! P + e+ ap) (e + )

, 3)

w

where my, is the number of documents assigned to the kth cluster, cg,, is the
number of occurrences of the wth word (or maximal substring) in the documents
assigned to the kth cluster, and ¢, is defined as )", ciw. The notation “
Eq. (3) means that we use the corresponding statistics after removing the jth

—5” in
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document. The probabilities p;1, ..., p;x for each j should be normalized so that
> i Pjk = 1 is satisfied. Based on these K probabilities, we draw a new cluster
assignment of the jth document.

We repeat a series of 50 iterations of this MCMC sampling ten times from
different initializations. We then choose the run giving the largest likelihood
among the ten runs and continue the chosen run until we reach 300 iterations.
We regard the cluster assignments at the 300th iteration of the chosen run as
the final output of our MCMC sampling. The time complexity of the MCMC
sampling is O(IK M), where I is the number of iterations.

4 Evaluation Experiment

4.1 Document Sets

We used four document sets in our experiment: two sets of Korean newswire
articles and two sets of Chinese newswire articles. Each set consists of already
categorized articles downloaded from the Web. Our task for evaluation is to guess
the categories by clustering documents. No documents belong to more than one
categories. Below we describe how we collected each set.

1. The first set is a set of Korean newswire articles downloaded from the Web
site of Seoul Newspaper'. We denote this set as SEOULL. This set consists
of 35,783 articles from the six categories: Economy, Sports, International,
Entertainment, Politics, and Culture. We collected this data set so that the
numbers of the documents contained in each category is almost the same.
Consequently, the ranges of document dates are different for each category.
For example, while the dates observed in Entertainment category range from
July 2007 to May 2011, those in Politics category range from July 2010 to
May 2011. This is because the per day number of articles in Politics category
is larger than that in Entertainment category. Table 1 gives the numbers of
documents in each category. This table also includes the numbers for the
other three document sets.

2. The second one is also a set of Korean newswire articles downloaded from
the Web site of Seoul Newspaper. However, we collected the articles from the
same range of the dates for all categories. We denote this set as SEOUL2.
SEOUL2 consists of 52,730 articles whose dates range from January 2008
to September 2009. Each article belongs to one among the following four
categories: Fconomy, Local Issues, Sports, and Politics.

3. The third one is a set of Chinese newswire articles downloaded from the Web
site of China News?. This set, denoted as CNEWS, consists of 47,171 articles
whose dates range from June to December in 2010. Each article belongs to
one among the following six categories: Economy, International, Entertain-
ment, Information & Technology, Domestic Issues, and Social Issues.

! http://www.seoul.co.kr/
2 http://www.chinanews.com/
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Table 1. Number of documents belonging to each category in the four document sets
prepared for our experiment, i.e., SEOUL1, SEOUL2, CNEWS, and XINHUA.

SEOUL1 Korean document set
Economy|Sports|International | Entertainment|Politics| Culture|| total
5,870 | 5,129 6,309 6,206 6,242 | 6,027 ||35,783
SEOUL2 Korean document set
Economy| Local |Sports|Politics|| total
13,058 |22,993| 6,621 | 10,058 ||52,730
CNEWS Chinese document set
Economy|International |Entertainment|Info& Tech|Domestic|Social || total
11,285 5,515 9,448 10,589 6,955 [3,3791/47,171
XINHUA Chinese document set
Economy |International|Politics|| total
3,290 10,230 6,607 (]20,127

4. The fourth one is a set of Chinese newswire articles downloaded from Xinhua
Net3. We denote this data set as XINHUA. This set consists of 20,127 articles
whose dates range from May to December in 2009. Each article belongs to
one among the following three categories: Economy, International, and Poli-
tics. For this set, it was relatively difficult to discriminate between Economy
category and International category. Therefore, the evaluation results were
not so good even though the number of categories is only three.

For each data set, we set the number of clusters K to the number of categories
and ran the EM algorithm and the MCMC sampling described in Section 3.2.
We regarded article categories as the ground truth for evaluation.

4.2 Extraction and Reduction

For every document in each document set, we obtained two representations, i.e., a
bag of maximal substrings representation and a bag of words representation. We
obtained the former representation by extracting all maximal substrings from the
document set and then counting their numbers of occurrences in each document.
The latter was obtained by applying a supervised word extraction sentence by
sentence and then count their numbers of occurrences in each document.

We applied KLT morphological analyzer [8] to SEOUL1 and SEOUL2. To
CNEWS and XINHUA, we applied a word segmenter implemented based on
an Ll-regularized linear conditional random fields (CRF) [19]. The parameter
optimization in training this Chinese word segmenter is based on a stochastic
gradient descent algorithm with exponential decay scheduling [22]. This seg-
menter achieved the following F-scores for the four data sets of SIGHAN Bakeoff
2005 [21]: 0.943 (AS), 0.941 (HK), 0.929 (PK) and 0.960 (MSR). In our experi-
ment, we used the segmenter trained with MSR data set, because this gave the

3 http://www.xinhuanet.com/
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Fig. 1. A part of the maximal substrings of length one removed from CNEWS data
set by our new reduction method proposed for Chinese documents.

highest F-score. For Korean language, we could not find any training data com-
parable with SIGHAN training data in its size and quality. Therefore, we used
a dictionary-based morphological analyzer for Korean documents.

The wall clock time required for extracting all maximal substrings was only
a few minutes for all data sets on a PC equipped with Intel Core i7 920 CPU.
This wall clock time is not widely different from the time required for word
extraction by our CRF-based Chinese word segmenter, though the time required
for training the segmenter is not included. However, the wall clock time required
for extracting all maximal substrings is much less than the time required by the
Korean morphological analyzer, because this morphological analyzer achieves its
excellence by dictionary lookups. While this morphological analyzer can provide
part-of-speech tags, they are not used in the experiment.

Both for maximal substrings and the words extracted by the supervised
method, we reduce the varieties based on their frequencies as Table 2 presents.
Both in SEOUL1 and SEOUL2, we only removed low frequency maximal sub-
strings by setting ny to 50 or 100. For example, when ny = 50, we remove
all maximal substrings whose frequencies are less than 50. We did not remove
any high frequency maximal substrings, because this gave no remarkable im-
provement. With respect to both SEOUL1 and SEOUL2, we applied the same
reduction procedure to the words extracted by the morphological analyzer.

In CNEWS and XINHUA, we removed low frequency maximal substrings by
setting ny, to 50 or 100. Further, we removed high frequency ones by setting rg
to 100, which means that we removed the top 100 highest frequency maximal
substrings. The same reduction is also employed for reducing the variety of the
words extracted by our CRF-based word segmenter. However, only for maximal
substrings, we additionally reduced their variety by setting r; to 1,000. That is,
we removed the maximal substrings of length one from the top 1,000 highest
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Table 2. Specifications of the four data sets used in our experiment.

data set name| J |K||extraction method|ny |rg| rn w M

SEOUL1 |35,783|6 MaxSubstr 50 | - - 72,544 (36,462,658
MaxSubstr 100| - - 44,048 34,813,328

Morph 50| - - 16,908 | 6,548,876

Morph 100| - - 10,165 | 6,196,036

SEOUL2 |52,730| 4 MaxSubstr 50| - - 72,104 (34,562,947
MaxSubstr 100| - - 45,360 33,037,750

Morph 50 | - - 20,068 | 7,312,519

Morph 100| - - 12,411 | 6,913,269

CNEWS [47,171]6 MaxSubstr | 50 [100[1,000([220,107[42,187,771
MaxSubstr  |100[100|1,000|/103,815|35,406,367
WordSeg 50 [100| - |/ 19,998 | 7,155,607
WordSeg 100[100| - | 12,990 | 6,796,572

XINHUA [20,127]3 MaxSubstr | 50 [100]1,000]] 52,530 | 8,324,321
MaxSubstr  |100[100|1,000| 24,635 | 6,775,577
WordSeg 50 [100| - || 8,518 | 2,018,329
WordSeg 100(100| - | 5,444 | 1,862,819

frequency maximal substrings. We did not use this reduction in [11] and could
not obtain any good results for maximal substrings. Figure 1 presents a part of
the maximal substrings of length one removed from CNEWS data set by this
new reduction method. As Figure 1 shows, many of the maximal substrings of
length one have no power to discriminate topics. They may relate to a specific
topic as a part of the words of length two or more. While this reduction using ry,
led to a drastic improvement for maximal substrings, we could not obtain any
remarkable improvements for the words extracted by our segmenter. This may
be because the supervised segmenter did not give so many words of length one.
Therefore, we employed the reduction using r;, only for maximal substrings.

Table 2 provides the number of different words (or different maximal sub-
strings) W and the number of unique document word pairs (or unique document
maximal substring pairs) M for all document sets. The number M is important,
because the running time of our clustering algorithm is proportional to this num-
ber. Table 2 shows that M is increased roughly by factor of five when we use
maximal substrings in place of the words extracted by the supervised method,
i.e., KLT morphological analyzer or our CRF-based segmenter. Consequently,
the running time of the document clustering is also increased roughly by factor
of five. This is the price we should pay when we adopt bag of maximal substrings
representation in place of bag of words representation.

4.3 Evaluation Measure

We evaluated the quality of document clustering as follows:

1. We calculate precision and recall for each cluster. Precision is defined as
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#(true positive)
#(true positive) + #(false positive) ’

and recall is defined as

#(true positive)

#(true positive) 4+ #(false negative) ;

2. We calculate F-score as the harmonic mean of precision and recall; and
3. The F-score is micro-averaged over all clusters.

The above micro-averaged F-score is our evaluation measure. From here, we
denote this micro-averaged F-score simply as F-score.

We ran document clustering 50 times and obtained 50 F-scores for each
setting. Table 2 gives four rows for each document set. That is, we tried four
settings for each set. Further, we conducted two types of inference, i.e., the EM
algorithm and the MCMC sampling. Consequently, we tried eight settings for
each data set and had a set of 50 F-scores for each of these eight settings. The
evaluation result was represented by the mean and standard deviation of 50
F-scores for each of the eight settings with respect to each data set.

4.4 Analysis

Figure 2 presents all results with four charts corresponding to four data sets.
The top left chart gives the results for SEOUL1 data set. Each bar accom-
panied with an error bar shows the mean and standard deviation of 50 F-scores
obtained by running the clustering algorithm 50 times for each setting. The four
bars in the upper half gives the results obtained when we use maximal substrings
as elementary building block of documents, and the four bars in the lower half
gives the results obtained when we use the words extracted by the morphological
analyzer. For both cases, we tested the two settings, n; = 50 and ny = 100,
for n;, and ran the two types of inference, the EM algorithm and the MCMC
sampling. Therefore, we have eight settings in total. Also for the other data sets,
we have eight settings. With respect to SEOULI1, we achieved the best mean F-
score 0.754 when we used maximal substrings, reduced their variety by setting
ny, = 100, and ran the EM algorithm. The difference from the mean F-scores
obtained with the words extracted by the morphological analyzer is statistically
significant based on a two-tailed Student’s ¢t-test with p value less than 0.01.
The top right chart presents the results for SEOUL2. For this data set, the
EM algorithm led to a better result than the MCMC sampling for every setting.
We could obtain the best mean F-score 0.887 when we used the words extracted
by the morphological analyzer, reduced their variety by setting ny, = 50, and ran
the EM algorithm for clustering. The difference from the best result obtained
with maximal substrings is statistically significant based on a two-tailed Stu-
dent’s t-test with p value less than 0.01. However, the difference is at most 0.020
(= 0.887 — 0.867). On the other hand, for SEOULI, the difference of the best
mean F-score obtained with maximal substrings from that obtained with the
words given by the morphological analyzer amounts to 0.037 (= 0.754 — 0.717).
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Fig. 2. Comparing between the F-scores achieved with bag of maximal substrings
representation and those achieved with bag of words representation.

The bottom left chart shows the results for CNEWS. Recall that we employed
an additional reduction of the variety of maximal substrings for CNEWS and
XINHUA. To be specific, we remove the maximal substrings of length one from
the 1,000 highest frequency maximal substrings. For CNEWS, the chart shows
that all mean F-scores are almost the same. In fact, the best mean F-score
obtained with maximal substrings and that obtained with the words extracted
by our CRF-based word segmenter gave no significant difference based on a
one-tailed Student’s t-test with p value less than 0.05.

The bottom right chart provides the results for XINHUA. For this data set,
the MCMC sampling is likely to give better results than the EM. The best mean
F-score obtained with maximal substrings and that obtained with the words
extracted by our CRF-based word segmenter gave no significant difference based
on a one-tailed Student’s t-test with p value less than 0.05. With respect to bag
of maximal substrings representation, the mean F-score dropped when we set np,
to 100, though, for CNEWS data set, the two settings of ny gave no significant
differences. Therefore, we need a little care in reducing the variety of maximal
substrings for Chinese documents lest we remove too many low frequency ones.

Based on Figure 2, we can draw the following considerations. First, we should
try both the EM algorithm and the MCMC sampling in document clustering,
because which one performs better depends on the data. For example, we can
conduct a rough comparison on a hold out document set. This argument applies
both to maximal substrings and the words extracted by a supervised method.
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Second, with respect to the comparison between the clustering quality given
by bag of maximal substrings representation and that given by bag of words
representation, which one performs better again depends on the data. However,
the difference is not so large. Therefore, we can use one among the two represen-
tations consistently. When we have a hand-maintained dictionary or a human
annotated training data set of large enough size for the tasks we envision, we
can consistently use a supervised word extraction, because M in Table 2 is far
smaller for bag of words representation than for bag of maximal substrings rep-
resentation and thus can conduct text mining tasks efficiently.

However, out of vocabulary words, i.e., the words not contained in training
data sets, may have a serious effect on text mining sitting on a supervised word
extraction. This is the very reason why an elaborated word n-gram model was
proposed in [13]. Further, text data available from SNS environments are a typ-
ical example where we can observe a wide variety of out of vocabulary words,
because SNS users are likely to coin new terms, e.g. hard-to-understand abbre-
viations and homophones derived from widely used words, without hesitation.
In such a case, unsupervised word extraction will show an advantage.

5 Conclusions

As text data originating from SNS environments come to show a wider diversity
in writing style or vocabularies, unsupervised extraction of elementary building
blocks from documents becomes more important as a preprocessing for various
text mining techniques than before. This paper provided the results where we
compare bag of maximal substrings representation with bag of words representa-
tion in a typical text mining task, i.e., in document clustering, because maximal
substrings can be efficiently extracted in an unsupervised manner.

Our results showed that bag of maximal substrings representation was as
effective as bag of words representation. While the two representations may show
a statistically significant difference in their effectiveness, the winner changes from
data to data. Further, the difference is not so large to prevent us from adopting
one representation consistently. With respect to the running time and memory
space of document clustering, bag of maximal substrings representation showed
no advantage, because the number of maximal substrings is far larger than that
of the words extracted by a supervised method from the same document set.
However, when we use a supervised word extraction, we should update a training
data set constantly, because it is a fact that many new words are coined day by
day especially in SNS environments.

Therefore, it must be an important future work to acquire a more realistic
insight with respect to the trade-off between the following two types of cost:

— the execution time and memory space required for a text mining task con-
ducted on a set of documents represented as bags of maximal substrings; and

— the hours and money required for preparing and constantly updating training
data sets used in a supervised word extraction.
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In addition, a method for further reducing the variety of maximal substrings is
required to reduce the running time of mining tasks using maximal substrings.
We also have a plan to conduct experiments where we use maximal substrings
as elementary building blocks of DNA /RNA sequences. We would like to propose
a multi-topic analysis, e.g. by using latent Dirichlet allocation [2], with maximal
substrings and to revise the results reported in [3], where the authors simply use
k-mers of fixed length as elementary building blocks of DNA/RNA sequences.
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