1	Revised manuscript
2	
3	Article Type
4	Short communication (Note)
5	
6	Title
7	Performance evaluation of BD Phoenix TM , an automated microbiology system, for the
8	screening of IMP-producing Enterobacteriaceae
9	
10	Authors
11	Hiromi Yamakawa ^a
12	Kosuke Kosai ^{a,*}
13	Yasuhide Kawamoto ^a
14	Norihiko Akamatsu ^a
15	Junichi Matsuda ^a
16	Norihito Kaku ^b
17	Naoki Uno ^b
18	Yoshitomo Morinaga ^b
19	Hiroo Hasegawa ^a
20	Katsunori Yanagihara ^b
21	

22 Affiliation

- 23 ^aDepartment of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- ²⁴ ^bDepartment of Laboratory Medicine, Nagasaki University Graduate School of

25 Biomedical Sciences, Nagasaki, Japan

26

27 *Correspondence

- 28 Kosuke Kosai, MD, PhD
- 29 Department of Laboratory Medicine, Nagasaki University Hospital
- 30 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan
- 31 Tel: +81-95-819-7574; Fax: +81-95-819-7422
- 32 E-mail: k-kosai@nagasaki-u.ac.jp
- 33
- 34 **Running title**: Accurate detection of IMP producer by BD PhoenixTM

35 Abstract

- BD Phoenix[™] is an automated bacterial identification and susceptibility testing system.
- 37 Here, its performance in screening IMP-producing *Enterobacteriaceae* was evaluated.
- 38 The system identified 97.8% of IMP producers as being nonsusceptible to imipenem or
- 39 meropenem, which was higher than that identified by the broth microdilution method
- 40 (91.3%, imipenem; 41.3%, meropenem).
- 41
- 42 **Keywords**: Carbapenemase; IMP; Resistance; MIC; *Enterobacteriaceae*

Text

44	Carbapenemase-producing Enterobacteriaceae (CPE) has emerged as a significant
45	public health concern. It has been reported that performing appropriate empirical
46	antibiotic therapy is difficult in patients with bacteremia caused by CPE, with very high
47	mortality rates (Daikos et al., 2012; Doi and Paterson, 2015; Girometti et al., 2014).
48	Additionally, plasmid-mediated carbapenemase producers are particularly problematic,
49	because plasmids harboring resistant genes can be transferred among different bacterial
50	genera or species (Lutgring and Limbago, 2016). Therefore, CPE detection is crucial for
51	implementing appropriate therapy as well as for infection control.
52	Although resistance is determined by antimicrobial susceptibility testing (AST),
53	some CPEs have low minimal inhibitory concentration (MIC) values for carbapenems,
54	and are thus overlooked (Daikos and Markogiannakis, 2011; Giske et al., 2013). Several
55	methods for detecting carbapenemase genes or activity, such as the Carba NP test and
56	carbapenem inactivation method (CIM), have been developed and shown to be useful
57	(Osei Sekyere et al., 2015; Tijet et al., 2016). However, because they cannot fully
58	replace AST, they need to be performed in addition to AST, which requires additional
59	time and cost. It is also impractical to perform these tests for all Enterobacteriaceae
60	including those with lower MICs in daily practice; thus, more effective screening

61 methods using AST are desirable.

62	The AST results for identical bacteria sometimes differ among methods such as						
63	the broth microdilution (BMD) method and automated AST systems (Patel et al., 2013).						
64	BD Phoenix TM is an automated identification and susceptibility testing system that						
65	provides rapid and accurate detection of antimicrobial resistance. The AST method in the						
66	BD Phoenix TM system is a broth-based microdilution method that not only measures						
67	turbidity, but also utilizes the redox indicator to enhance the detection of bacterial						
68	growth (Carroll et al., 2006; Snyder et al., 2008), enabling it to detect resistant bacteria						
69	with high sensitivity. In this study, we determined if this system could effectively						
70	identify CPEs as being nonsusceptible to carbapenems compared with the conventional						
71	BMD method.						
72	We evaluated 62 Enterobacteriaceae (33 K. pneumoniae and 29 Enterobacter						
73	cloacae complex) that were clinically isolated at Nagasaki University Hospital. The						
74	MICs were simultaneously measured using the BD Phoenix TM Automated Microbiology						
75	System (BD Diagnostics) according to the manufacturer's instructions, and using MIC						
76	plates customized by Eiken Chemical Co., Ltd. for the BMD method according to the						
77	Clinical and Laboratory Standard Institute (CLSI) protocol. Susceptibility was						
78	determined according to CLSI definitions, namely, MICs ${\leq}1$ and ${\geq}2~\mu g/mL$ for						

79	imipenem and meropenem were considered susceptible and nonsusceptible, respectively
80	(CLSI, 2014). The presence of IMP-type metallo- β -lactamase (MBL) and <i>K</i> .
81	pneumoniae carbapenemase (KPC) genes were evaluated by PCR in all 62 strains.
82	Briefly, DNA was extracted using the boiling method with minor modifications
83	(Motoshima et al., 2010). The PCR primers used to amplify the IMP and KPC genes
84	were as follows: IMP forward, 5'-GGAATAGAGTGGCTTAAYTCTC-3'; IMP reverse,
85	5'-GGTTTAAYAAAACAACCACC-3'; KPC forward,
86	5'-CGTCTAGTTCTGCTGTCTTG-3'; and KPC reverse,
87	5'-CTTGTCATCCTTGTTAGGCG-3' (Poirel et al., 2011). PCR amplification was
88	performed under the following conditions: 10 min at 94°C, 40 cycles of 30 s at 94°C, 40
89	s at 52°C, 1 min at 72°C, and 5 min at 72°C for the final extension. We calculated the
90	sensitivity, specificity, positive predictive value (PPV), and negative predictive value
91	(NPV) of the two methods for identifying CPEs as being nonsusceptible to carbapenems.
92	The 95% confidence intervals for sensitivity, specificity, PPV, and NPV were calculated
93	using R statistical software (https://cran.ism.ac.jp/) (Kosai et al., 2017).
94	Of the 62 strains tested, 46 (25 K. pneumoniae and 21 E. cloacae complex)
95	tested positive in the IMP genetic screen and were deemed IMP producers. Sixteen
96	strains (8 K. pneumoniae and 8 E. cloacae complex) did not possess the IMP gene and

97	were considered non-IMP producers. No KPC gene was detected in the strains tested in
98	this study. The results were consistent with previous reports showing that IMP MBLs
99	are widespread in Japan (Fukigai, et al., 2007; Livermore, et al., 2000; Tojo, et al.,
100	2014). Table 1 shows the susceptibility patterns of the strains examined. Both methods
101	successfully identified 10 IMP-producing K. pneumoniae and 9 IMP-producing E.
102	cloacae as being nonsusceptible to both imipenem and meropenem. The BMD method
103	identified 15 IMP-producing K. pneumoniae as being susceptible to meropenem,
104	whereas the BD Phoenix TM system determined that only 1 was susceptible to imipenem.
105	Similarly, although the BMD method identified 12 and 4 IMP-producing E. cloacae
106	complex as being susceptible to meropenem and imipenem, respectively, the BD
107	Phoenix TM system only identified 1 IMP-producing <i>E. cloacae</i> complex as being
108	susceptible to meropenem. The BD Phoenix TM system appropriately identified all
109	non-IMP producers as being susceptible to both carbapenems, whereas the BMD
110	method identified one non-IMP-producing E. cloacae complex as being nonsusceptible
111	to imipenem.
112	The sensitivity, specificity, PPV, and NPV of the two methods for identifying
113	IMP producers as nonsusceptible are presented in Table 2. Those of the BD Phoenix TM
114	system were 97.8%, 100.0%, 100.0%, and 94.1%, respectively, when using either

115	imipenem or meropenem for screening. When both drugs were used for screening, the
116	results were excellent (100.0%). In addition to IMP producers, it has been reported that
117	the BD Phoenix TM system is able to successfully detect CPEs that produce other types
118	of carbapenemases such as KPC, Verona integron-encoded MBL (VIM), New Delhi
119	MBL (NDM), and OXA-48 as nonsusceptible strains (Doern, et al., 2011; Woodford, et
120	al., 2010).
121	Conversely, the BMD method showed extremely low sensitivity (41.3%) and

122 NPV (37.2%) when using meropenem. The sensitivity, specificity, PPV, and NPV of the

123 BMD method using imipenem were 91.3%, 93.8%, 97.7%, and 78.9%, respectively,

124 which was similar to the results obtained when both drugs were used for screening in

125 the BMD method. Although the BMD method effectively identified IMP producers as

being nonsusceptible to imipenem it overlooked 58.7% of IMP producers when

127 meropenem was used for screening. Therefore, if the BMD method is routinely used in

128 our hospital, imipenem should be adopted above meropenem for screening

129 IMP-producing Enterobacteriaceae. However, because hydrolytic efficiencies and drug

130 susceptibility patterns vary depending upon the combination of drug and carbapenemase

- 131 type (Doern et al., 2011; Tzouvelekis et al., 2012), drugs used for screening should be
- 132 determined based on regional epidemiology. Thus, it is important that surveillance be

133	continued including drug susceptibility patterns and carbapenemase types of CPE in
134	each region. Because this study focused on the detection of IMP-producers, the ability
135	of the BD Phoenix TM system to detect bacteria with other resistant mechanisms, such as
136	decreased outer membrane permeability, was not analyzed.
137	The results of this study demonstrated that the BD Phoenix TM system could
138	detect IMP-producing Enterobacteriaceae with high accuracy, thereby making it
139	suitable for daily screening of IMP producers. To effectively screen CPE, continuous
140	surveillance is needed of regional CPE epidemiology with regard to drug susceptibility
141	patterns, carbapenemase types, and their relationship.
142	Reagents, instrumentation, and funding were provided by Nippon Becton
143	Dickinson Company, Ltd. This study was partially supported by the Health and Labour
144	Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan
145	(H28-Shinkou-Ippan-003), and a grant for research and development of diagnostic
146	methods and therapies for antimicrobial-resistant bacteria from the Japan Agency for
147	Medical Research and Development (AMED).

148 **References**

- 149 Carroll, K.C., Glanz, B.D., Borek, A.P., Burger, C., Bhally, H.S., Henciak, S., Flayhart,
- D., 2006. Evaluation of the BD Phoenix automated microbiology system for
 identification and antimicrobial susceptibility testing of *Enterobacteriaceae*. J Clin
 Microbiol. 44, 3506-3509.
- 153 CLSI, 2014. Performance standards for antimicrobial susceptibility testing;
 154 twenty-fourth informational supplements. CLSI document M100-S24. Clinical and
 155 Laboratory Standards Institute. Wayne, PA.
- 156 Daikos, G.L., Markogiannakis, A., 2011. Carbapenemase-producing Klebsiella
- *pneumoniae*: (when) might we still consider treating with carbapenems? Clin Microbiol
 Infect. 17, 1135-1141.
- 159 Daikos, G.L., Markogiannakis, A., Souli, M., Tzouvelekis, L.S., 2012. Bloodstream
- 160 infections caused by carbapenemase-producing Klebsiella pneumoniae: a clinical
- 161 perspective. Expert Rev Anti Infect Ther. 10, 1393-1404.
- 162 Doern, C.D., Dunne, W.M., Jr., Burnham, C.A., 2011. Detection of Klebsiella
- 163 pneumoniae carbapenemase (KPC) production in non-Klebsiella pneumoniae
- 164 *Enterobacteriaceae* isolates by use of the Phoenix, Vitek 2, and disk diffusion methods.
- 165 J Clin Microbiol. 49, 1143-1147.

- 166 Doi, Y., Paterson, D.L., 2015. Carbapenemase-producing Enterobacteriaceae. Semin
- 167 Respir Crit Care Med. 36, 74-84.
- 168 Fukigai S, Alba J, Kimura S, Iida T, Nishikura N, Ishii Y, Yamaguchi K., 2007.
- 169 Nosocomial outbreak of genetically related IMP-1 beta-lactamase-producing Klebsiella
- 170 *pneumoniae* in a general hospital in Japan. Int J Antimicrob Agents. 29, 306-310.
- 171 Girometti, N., Lewis, R.E., Giannella, M., Ambretti, S., Bartoletti, M., Tedeschi, S.,
- 172 Tumietto, F., Cristini, F., Trapani, F., Gaibani, P., Viale, P., 2014. Klebsiella
- 173 pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical
- therapy. Medicine (Baltimore). 93, 298-309.
- 175 Giske, C.G., Martinez-Martinez, L., Canton, R., Stefani, S., Skov, R., Glupczynski, Y.,
- 176 Nordmann, P.N., Wootton, M., Miriagou, V., Simonsen, G.S., Zemlickova, H.,
- 177 Cohen-Stuart, J., Gniadkowski, M., 2013. EUCAST guideline for the detection of
- 178 resistance mechanisms and specific resistances of clinical and/or epidemiological
- importance.
- 180 Kosai, K., Iwanaga, Y., Akamatsu, N., Okada, Y., Kaku, N., Uno, N., Morinaga, Y.,
- 181 Hasegawa, H., Miyazaki, T., Izumikawa, K., Mukae, H., Yanagihara, K., 2017.
- 182 Performance evaluation of the Verigene® Clostridium difficile nucleic acid test, an
- 183 automated multiplex molecular testing system for detection of C. difficile toxin. J Infect

- 184 Chemother. 23, 674-677.
- 185 Livermore DM, Woodford N., 2000. Carbapenemases: a problem in waiting? Curr Opin
- 186 Microbiol. 3, 489-495.
- 187 Lutgring, J.D., Limbago, B.M., 2016. The problem of
 188 carbapenemase-producing-carbapenem-resistant-*Enterobacteriaceae* detection. J Clin
 189 Microbiol. 54, 529-534.
- 190 Motoshima, M., Yanagihara, K., Morinaga, Y., Matsuda, J., Sugahara, K., Yamada, Y.,
- 191 Kohno, S., Kamihira, S., 2010. Genetic diagnosis of community-acquired MRSA: a
- 192 multiplex real-time PCR method for Staphylococcal cassette chromosome mec typing
- and detecting toxin genes. Tohoku J of Exp Med. 220, 165-170.
- 194 Osei Sekyere, J., Govinden, U., Essack, S.Y., 2015. Review of established and
- 195 innovative detection methods for carbapenemase-producing Gram-negative bacteria. J
- 196 Appl Microbiol. 119, 1219-1233.
- 197 Patel, T.A., Dilley, R., Williams, A., Vanstone, G.L., Balakrishnan, I., 2013.
- 198 Comparison of the Phoenix automated system, the Etest method and broth microdilution
- 199 in determining temocillin susceptibility of Enterobacteriaceae. J Antimicrob Chemother.
- 200 *68*, 1685-1686.
- 201 Poirel, L., Walsh, T.R., Cuvillier, V., Nordmann, P., 2011. Multiplex PCR for detection

- of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 70, 119-123.
- 203 Snyder, J.W., Munier, G.K., Johnson, C.L., 2008. Direct comparison of the BD phoenix
- 204 system with the MicroScan WalkAway system for identification and antimicrobial
- susceptibility testing of *Enterobacteriaceae* and nonfermentative gram-negative
 organisms. J Clin Microbiol. 46, 2327-2333.
- 207 Tijet, N., Patel, S.N., Melano, R.G., 2016. Detection of carbapenemase activity in
- 208 Enterobacteriaceae: comparison of the carbapenem inactivation method versus the
- 209 Carba NP test. J Antimicrob Chemother. 71, 274-276.
- 210 Tojo M, Tada T, Shimojima M, Tanaka M, Narahara K, Miyoshi-Akiyama T, Kirikae T,
- 211 Ohmagari N., 2014. Dissemination in Japan of multidrug-resistant Pseudomonas
- 212 aeruginosa isolates producing IMP-type metallo-beta-lactamases and
- 213 AAC(6')-Iae/AAC(6')-Ib. J Infect Chemother. 20, 586-588.
- 214 Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T., Daikos, G.L.,
- 215 2012. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an
- evolving crisis of global dimensions. Clin Microbiol Rev. 25, 682-707.
- 217 Woodford, N., Eastaway, A.T., Ford, M., Leanord, A., Keane, C., Quayle, R.M., Steer,
- 218 J.A., Zhang, J., Livermore, D.M., 2010. Comparison of BD Phoenix, Vitek 2, and
- 219 MicroScan automated systems for detection and inference of mechanisms responsible

for carbapenem resistance in *Enterobacteriaceae*. J Clin Microbiol. 48, 2999-3002.

Strains	Carbapenemase gene	Susceptibility				Ν
		BD Phoenix TM		BMD method		
		Imipenem	Meropenem	Imipenem	Meropenem	
K. pneumoniae	IMP	NS	NS	NS	NS	10
		NS	NS	NS	S	14
		S	NS	NS	S	1
	ND	S	S	S	S	8
<i>E. cloacae</i> complex	IMP	NS	NS	NS	NS	9
		NS	NS	NS	S	7
		NS	S	NS	S	1
		NS	NS	S	S	4
	ND	S	S	NS	S	1
		S	S	S	S	7
Total						62

Table 1. Comparison of drug susceptibility of IMP-producing *Enterobacteriaceae* and nonproducers between the BD PhoenixTM and BMD methods.

BMD, broth microdilution; ND, not detected; NS, not susceptible; S, susceptible

Method	Drug used for	Sensitivity	Specificity	PPV	NPV
	screening				
BD Phoenix TM	Imipenem	97.8 (45/46), (88.5–99.9)	100.0 (16/16), (79.4–100.0)	100.0 (45/45), (92.1–100.0)	94.1 (16/17), (71.3–99.9)
	Meropenem	97.8 (45/46), (88.5–99.9)	100.0 (16/16), (79.4–100.0)	100.0 (45/45), (92.1–100.0)	94.1 (16/17), (71.3–99.9)
	$Both^a$	100.0 (46/46), (92.3–100.0)	100.0 (16/16), (79.4–100.0)	100.0 (46/46), (92.3–100.0)	100.0 (16/16), (79.4–100.0)
BMD method	Imipenem	91.3 (42/46), (79.2–97.6)	93.8 (15/16), (69.8–99.8)	97.7 (42/43), (87.7–99.9)	78.9 (15/19), (54.4–93.9)
	Meropenem	41.3 (19/46), (27.0–56.8)	100.0 (16/16), (79.4–100.0)	100.0 (19/19), (82.4–100.0)	37.2 (16/43), (23.0–53.3)
	Both ^a	91.3 (42/46), (79.2–97.6)	93.8 (15/16), (69.8–99.8)	97.7 (42/43), (87.7–99.9)	78.9 (15/19), (54.4–93.9)

Table 2. Performance of the BD PhoenixTM and BMD methods for identifying IMP-producing *Enterobacteriaceae* as nonsusceptible strains for carbapenems.

Data expressed as percentages, (95% confidence interval)

BMD, broth microdilution; PPV, positive predictive value; NPV, negative predictive value

^aIf strains were not susceptible to imipenem or meropenem, they were considered nonsusceptible.

Highlights

- -IMP metallo- β -lactamase is a major carbapenemase found in *Enterobacteriaceae*.
- -The broth microdilution method may overlook IMP-producing *Enterobacteriaceae*.
- -The BD PhoenixTM accurately screened IMP-producing *Enterobacteriaceae*.