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SUMMARY 

Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulfated 

polysaccharide with a wide variety of biological activities including anti-tumor, 

antioxidant, and immuno-modulating activities. In this study, we examined the effect of 

porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 

cells. Although no significant activity of porphyran to induce NO or tumor necrosis 

factor- (TNF-) production in RAW264.7 cells was observed at the concentration range 

tested (10-500 g/ml), it was found for the first time that porphyran inhibited NO 

production and expression of inducible NO synthase (iNOS) in RAW264.7 cells 

stimulated with lipopolysaccharide (LPS). In the presence of 500 g/ml porphyran, NO 

production and expression of iNOS in LPS-treated RAW264.7 cells were completely 

suppressed. On other hand, porphyran showed only a marginal effect on the secretion of 

TNF-from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay 

(EMSA) using infrared dye labeled oligonucleotide with nuclear factor-kappa B (NF-B) 

consensus sequence suggested that porphyran inhibited the LPS-induced NF-B 

activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and 

degradation of IB- were also inhibited by the pretreatment with porphyran. Our results 

obtained in in vitro analysis suggest that porphyran suppresses NO production in 

LPS-stimulated macrophages by the blocking of NF-B activation.  
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Abbreviations: LPS, lipopolysaccharide; MAP kinase, mitogen-activated protein kinase; 

DMEM, Dulbecco’s modified Eagle’s minimal essential medium; FBS, fetal bovine 

serum; PBS, phosphate-buffered saline; iNOS, inducible nitric oxide synthase; NO, nitric 

oxide; TNF-, tumor necrosis factor-; NF-B, nuclear factor-kappa B; RT-PCR, reserve 

transcription-polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; 

EMSA,  electrophoretic mobility shift assay. 
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INTRODUCTION 

 

          Many marine resources, especially marine algal polysaccharides such as alginate, 

fucoidan, carrageenan, and agarose have recently drawn a great attention from diverse 

research fields to develop new drugs and health foods or supplements. A number of 

studies have demonstrated that various polysaccharides from marine algae have various 

bioactivities including antitumor and immuno-modulatory activities. Among these 

polysaccharides, there have been extensive studies on the biological activities of fucoidan, 

a fucose-containing sulfated polysaccharide with particular focus on its 

immuno-modulatory actions.  For instance, it has been reported that fucoidan induces NO 

production in RAW264.7 cells through p38 mitogen-activated protein kinase (MAP 

kinase) and NF-B-dependent signal transduction via macrophage scavenger receptors 

(1). However, another study found that blocking of macrophage scavenger receptors did 

not result in the inhibition of the fucoidan activity, suggesting that such receptor is not 

involved in fucoidan action (2). Recent studies have reported that fucoidan inhibits the 

release of NO from LPS-stimulated RAW264.7 cells (3, 4). Thus, the precise action 

mechanism of fucoidan in terms of NO production in stimulated macrophages remains a 

matter of debate.  

Porphyra species are the important edible red algae abundantly cultivated in 

East and South-east Asia including Japan, and are commonly known as “nori” and 

traditionally used to prepare sushi. Porphyran, one of the main constituents of Porphyra 

yezoensis, related to agarose, is a linear sulfated polysaccharide comprising the hot-water 
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soluble portion of the cell wall and intracellular matrix (5-7). It is constituted of 

D-galactose, 3, 6-anhydro-L-galactose, 6-O-methyl-D-galactose, and 

L-galactose-6-sulfate. In addition to the health benefit as a major dietary fiber in “nori”, 

previous studies have reported that porphyran also has diverse physiological activities 

including antitumor, immuno-modulating, antioxidant, antihyperlipidemic, and 

hypercholesterolemic activities (8-12). 

Although several studies on the bioctivities of porphyran have been conducted, 

it has not been studied yet whether porphyran affects the formation of NO in 

LPS-stimulated macrophages. Thus, in this study, we examined the effect of porphyran 

on NO production in LPS-stimulated RAW264.7 cells.  Unexpectedly, we found that 

porphyran inhibited NO production and the expression of inducible nitric oxide synthase 

(iNOS) by blocking NF-B activation in LPS-stimulated RAW264.7 cells. 

 

MATERIALS AND METHODS 

 

Materials — LPS from Escherichia coil 0111: B4 (purified by phenol extraction), 

fucoidan (from Fucus vesiculosus), and custom oligonucleotides (iNOS and -actin 

primers)  were purchased from Sigma-Aldrich, Co. (St. Louis, MO, USA). Alamar blue 

cell counting reagent was purchased from Invitrogen, Ltd. (Paisley PA4 9RF, UK). 

Sulfanilic acid, N-1-naphthyl-ethylenediamine dihydrochloride, glacial acetic acid and 

5-methylphenazium-methyl sulfate (PMS) were obtained from Wako Pure Chemical 

industries, Ltd. (Osaka, Japan). NF-B SN50 (cell-permeable inhibitor peptide) and 
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NF-B SN50M (cell-permeable inactive control peptide) were purchased from 

Calbiochem (La Jolla, CA, USA). PrimeScript® 1st strand cDNA synthesis kit for reserve 

transcription-polymerase chain reaction (RT-PCR) was purchased from TaKaRa Bio Inc. 

(Otsu, Shiga, Japan). GoTag Green Master Mix was purchased from Promega KK. 

(Tokyo, Japan). Rabbit anti-mouse iNOS antibody and goat anti-rabbit IgG-horseradish 

peroxidase conjugated secondary antibody were purchased from Upstate Biotechnology 

(Lake Placid, NY, USA). Rabbit anti-mouse -actin antibody was obtained from Abcam 

Inc. (Cambridge, USA). Horseradish peroxidase-conjugated donkey anti-rabbit IgG and 

enhanced chemiluminescence western blotting detection reagents were obtained from 

Amersham Biosciences UK Ltd. (Buckinghamshire HP7 9NA, UK). BCA protein assay 

kit was purchased from Bio-Rad Lab. (Hercules, CA, USA). Anti-IB-, anti-c-Rel (p65), 

and anti-phospho-IB- antibodies were obtained from Cell Signaling Thechnology, Inc. 

(Beverly, MA, USA). Sepasol-RNA I Super, protease inhibitor cocktail, nitro blue 

tetrazolium (NBT), and nicotinamide adenine dinucleotide (NADH) were obtained from 

Nacalai tesque Co. (Kyoto, Japan). TNF- capture antibody and anti-mouse TNF- 

monoclonal antibody were purchased from Endogen, Inc. (Boston, MA, USA). NF-B 

consensus IRDye® 700 infrared dye labeled oligonucleotides probe was purchased from 

LI-COR Bioscience (Lincoln, NE USA). Other chemicals were of the highest grade 

commercially available.  

 

Preparation of porphyran — Porphyran was prepared from nori (Porphyra yezoensis) as 

reported previously (13). In brief, dry sheets (3 g) of nori were homogenized with 500 ml 
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of 85% ethanol and heated at 75 °C with constant stirring for 1 h, and then filtered to 

remove 85% ethanol-soluble substances. This extraction was repeated again.  The residue 

was washed with methanol and dried to obtain 2 g of partially decolorized powder. The 

decolorized powder was extracted with 1,000 ml of distilled water at 95 °C with constant 

stirring for 1.5 h and centrifuged at 8000 x g for 20 min, and then the supernatant was 

concentrated to 600 ml by using a rotary evaporator, and then digested with 50 units of 

nuclease P1 at 37°C for 24 h.  After that, the mixture was heated for 5 min in the boiling 

water bath, and centrifuged to remove the precipitates. To the supernatant, sodium acetate 

and acetic acid were added to make a 0.5 M sodium acetate solution, pH 5.0, and then 

ethanol was added to the concentration of 42% (v/v). After 1 h, the precipitates in the 

solution were removed by centrifugation, and ethanol was added to the supernatant to the 

concentration of 60%. The precipitate was dissolved in distilled water, dialyzed against 

distilled water, and lyophilized to obtain 0.4 g of porphyran. Before use, porphyran 

solution was filtered through an endotoxin-removing filter (Zetapor Dispo filter) 

purchased from Wako Pure Chemicals Industries, Ltd. (Osaka, Japan).  

 

Cell culture  – RAW264.7 (mouse macrophage) cells were obtained from the American 

Type Culture Collection (Rockville, MD, USA), and cultured in CO2 (5%)-incubator at 

37°C in Dulbecco’s modified Eagle’s minimum essential medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), penicillin (100 IU/ml), and 

streptomycin (100 g/ml), which was used as the growth medium throughout the 

experiments otherwise specified.  
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Cytotoxicity assay – Cytotoxicities of polysaccharide samples were measured by the 

Alamar blue assay as described previously (14). In brief, adherent RAW264.7 cells in 

96-well plates (3 x 104 cells/well) were treated with varying concentrations of porphyran 

or fucoidan for 24 h in the growth medium, and then Alamar blue reagent was added to 

the cells at a final concentration of 10%. After 2 h incubation at 37°C, the absorbance of 

each well was measured at 570 nm and 600 nm using a multiwell scanning 

spectrophotometer (Thermo Electron Co., Yokohama, Japan). 

 

Measurement of DNA fragmentation – Adherent RAW264.7 cells in 35 mm-diameter 

culture dishes (2 x 106 cells/dish) were treated with 500 g/ml of porphyran or fucoidan 

in the growth medium at 37˚C for 24 h. After removal of the medium, the cells were lysed 

in 300 l of ice-cold lysis buffer containing 0.5% Triton X-100, 10 mM Tris-HCl, pH 8.0, 

and 20 mM EDTA. The cell lysates were centrifuged for 20 min at 15,000 x g to separate 

DNA fragments (supernatant) from intact DNA (pellet). The DNA contents in supernatant 

and pellet fractions were measured using the diphenylamine reagent, and the extent of 

DNA fragmentation was estimated as described previously (15). 

 

Nitrite assay for the estimation of nitric oxide (NO) – Nitrite, a stable reaction product of 

NO with O2, in the supernatants from each treated RAW264.7 cells, was determined by 

the method based on Griess assay as described previously (16). In brief, adherent 

RAW264.7 cells in 96-well plates (3 x 104 cells/well) were treated with varying 
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concentrations of porphyran (0 to 500 g/ml) for 1 h in the growth medium, and then LPS 

was added at the final concentration of 2 ng/ml. After 18 h incubation at 37℃, Griess 

reagent (100 l: 3 mM sulfanilic acid and 30 M N-1-naphthyl-ethylenediamine 

dihydrochloride, and 25% glacial acetic acid) was added to 50 l of cultured supernatant. 

After 20 min incubation at room temperature, the optical density was measured at 540 nm 

using a multiwell scanning spectrophotometer (Thermo electron Co., Yokohama, Japan). 

Calibration curve was made with known concentration of NaNO2 standard solution.  

 

Isolation of RNA and reverse transcription-polymerase chain reaction (RT-PCR) for the 

detection of iNOS mRNA – Adherent RAW264.7 cells in 24-well plates (5 x 105 cells/well) 

were pre-treated with porphyran at the concentrations of 0, 250, and 500 g/ml for 1 h in 

the growth medium, and then incubated with or without LPS at the final concentration of 

2 ng/ml. After 4 h incubation, total RNA of each treated cells was isolated using 

Sepasol-RNA I Super. Total RNA (2.5 g) was reverse transcribed with an oligo dT 

primer in a 10 l using PrimeScript® 1st strand cDNA synthesis kit according to the 

manufacturer’s instruction. PCR was performed with 1 cycle of 70 s at 95℃, 25 cycles of 

55 s at 93℃, 45 s at 61℃, 40 s at 72℃ and 1 cycle of 100 s at 72℃, in a 25 l reaction 

mixture containing 12.5 l of GoTag Green Master Mix, 0.5 l of forward and reverse 

iNOS primers (1M each) or -actin primers (10 pM each), 0.5 l of 1st strand cDNA and 

11 l nuclease-free water. The primer sequences were 5' 

-CAACCAGTATTATGGCTCCT-3' (forward) and 5' 

-GTGACAGCCCGGTCTTTCCA-3' (reverse) for mouse iNOS (17) and, 5' 



 10

-GGAGAAGATCTGGCACCACACC-3' (forward) and 5' 

-CCTGCTTGCTGATCCACATCTGCTGG-3' (reverse) for mouse -actin (18). The 

-actin primer was used as an internal control. Each PCR reaction (10 l) product was run 

on 2% agarose gels containing 0.1 g/ml ethidium bromide, and the amplified products 

(835 bp for iNOS and 840 bp for -actin) were detected by a Light capture (ATTO Co., 

Tokyo, Japan). 

 

Western blot analysis – Analysis of iNOS was performed on whole-cell extracts. 

Adherent RAW264.7 cells in 35 mm-diameter culture dishes (2 x 106 cells/dish) were 

pre-treated with 0, 250, or 500 g/ml porphyran for 1 h in the growth medium. After 5 h 

incubation with LPS (final 2 ng/ml), the cells were washed three times with ice-cold PBS 

and lysed with 100 l extraction buffer (10 mM HEPES, 150 mM NaCl, 1 mM EGTA, 

1% CHAPS, and 1% Triton X-100) containing 1% (v/v) protease inhibitor cocktail. After 

shaking for 30 min at 4℃ , the extracts were obtained from the supernatant after 

centrifugation at 15,000 x g for 10 min, and the protein concentrations were measured 

with the BCA protein assay (Sigma) using bovine serum albumin as a standard. The 

extract was mixed with equal volume of 2 x SDS-sample buffer and incubated at 100℃ 

for 5 min. Samples containing 20 g of protein were applied on 8% SDS-PAGE, and then 

electrically transferred to a polyvinylidene difluoride (PVDF) membrane. The membrane 

was blocked with 1% skim milk in TBS-0.1% Tween 20 (TBST). Immunostaining of the 

blot was performed with the specific antibody against mouse iNOS and -actin. 

Horseradish peroxidase conjugated-goat anti-rabbit IgG was used as a secondary 



 11

antibody. The blots were detected using an enhanced chemiluminescence kit (Amersham, 

Arlington Heights, IL). The analysis of IB- and phospho-IB- in cytosolic extracts 

and NF-B p65 in nuclear extracts were performed, respectively. Adherent RAW264.7 

cells (2 x 106 cells/dish) were incubated in serum-free DMEM for 2 h at 37℃, and then 

porphyran (0, 250, or 500 g/ml) was added to the cells and incubated for 1 h. After 30 

min incubation with LPS (final 2 ng/ml), the cells were washed three times with ice-cold 

PBS and incubated with 100 l ice-cold cytosol extraction buffer (10 mM HEPES, pH 7.9, 

1.5 mM MgCl2, 10 mM KCl, 0.2% Igepal CA-630, 1 mM dithiothreitol, 20 mM 

-glycerophosphate, 1mM sodium orthoranadate, 0.5 mM phenylmethysulfonyl fluoride, 

1g/ml leupeptin, and 1 g/ml aprotinin) for 25 min on ice. The cytosolic extracs were 

collected after centrifugation at 7000 x g for 5 min at 4℃. The nuclear pellets were 

re-suspended in 30 l ice-cold nuclear extraction buffer (20 mM HEPES, pH 7.9, 1.5 mM 

MgCl2, 0.45 M NaCl, 25% glycerol, 0.2 mM EDTA, 1 mM dithiothreitol, 0.5 mM 

phenylmethysulfonyl fluoride, 1g/ml leupeptin and 1 g/ml aprotinin) and incubated on 

ice for 25 min, and the nuclear extracts were obtained after centrifugation at 15000 x g for 

10 min at 4℃. After measuring the protein concentrations, the extract was mixed with 

equal volume of 2 x SDS-sample buffer and incubated at 100℃ for 5 min. Samples 

containing 20 g of protein were applied on 12.5% SDS-PAGE, and then electrically 

transferred to a polyvinylidene difluoride (PVDF) membrane. The western blot analyses 

of the cytosolic and nuclear extracts were conducted by the similar way as described 

above except using specific anti-NF-B p65, anti-IB-, and anti-phospho-IB- 

antibody. 
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Enzyme-linked immunosorbent assay (ELISA) – Adherent RAW264.7 cells in 24-well 

plates (5 x 105 cells/well) were treated with porphyran at the concentrations of 0, 250, and 

500 g/ml for 1 h at 37℃ in the growth medium. After further 4 h incubation with LPS 

(final 2 ng/ml), the levels of TNF- in culture supernatants of treated cells were measured 

by sandwich ELISA with two antibodies to two different epitopes on TNF- molecule by 

similar method as described previously (19). The TNF- concentrations were estimated 

from a reference to a standard curve for serial twofold dilution of murine recombinant 

TNF-. 

 

Electrophoretic mobility shift assay (EMSA) – Adherent RAW264.7 cells in 35 

mm-diameter culture dishes (2 x 106 cells/dish) were incubated in serum-free DMEM for 

2 h at 37℃, and then porphyran (0, 250, or 500 g/ml) was added to the cells and 

incubated  for 1 h. After further 30 min incubation with LPS (final 2 ng/ml), the nuclear 

proteins were extracted from the cells as described (20). EMSA were carried out with 

Odyssey® IRDye® 700 infrared dye labeled double-stranded oligonucleotides coupled 

with the EMSA buffer kit (LI-COR Bioscience, Lincoln, NE USA) according to 

manufacturer’s instructions. Briefly, 5 g of nuclear extract was incubated with 1 l of 

IRDye® 700 Infrared dye labeled double-stranded oligonucleotides, 2l of 10 x binding 

buffer, 2.5 mM DTT, 0.25% Tween-20, and 1 g of poly (dI-dC) in a total volume of 20 l 

for 20 min at room temperature in the dark. Sample proteins were separated on a 4% 

polyacrylamide gel in 0.25 x Tris-borate-EDTA running buffer for 60 min at 100 V. The 

gel was scanned by direct infrared fluorescence detection on the Odyssey® imaging 
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system (LI-COR Bioscience, Lincoln, NE USA). NF-B IRDye® 700 infrared dye 

labeled oligonucleotide’s sequences of the double-stranded DNA probes used were as 

follows: 5 ′ -AGTTGAGGGGACTTTCCCAGGC-3 ′  and 3 ′

-TCAACTCCCCTGAAAGGGTCCG-5′(21, 22). The underlined nucleotides indicate 

the binding sites for NF-B. The specificity of the binding was examined using 

competition experiments, where 100-fold excess of the unlabeled oligonucleotides were 

added to the reaction mixture before adding the infrared dye labeled oligonucleotide. 

 

Superoxide radical scavenging activity – The superoxide radical scavenging activity of 

porphyran was assessed by the method described previously (23).  For the assay, 0.5 l of 

30 mM nitro blue tetrazolium (NBT), and 0.5 l of 46.8 mM NADH in 16 mM Tris-HCl 

buffer (pH 8.0) were added to 100 l of sample solution in 16 mM Tris-HCl buffer (pH 

8.0) (final 10-1000 g/ml). The reaction was initiated by adding 0.5 l of 6 mM 

5-methylphenazium-methyl sulfate (PMS) to the mixture.  The reaction mixture was 

incubated at room temperature for 5 min and the absorbance was measured at 560 nm by 

a spectrophotometer. Decrease in absorbance of the reaction mixture reflected increased 

superoxide radical-scavenging activity. The superoxide radical-scavenging activity was 

calculated using following equation. 

O2
- scavenging activity (%) = (1-Asample/Acontrol) x 100 

Where Asample is the absorbance in the presence of sample, and Acontrol is the absorbance of 

Tris-HCl buffer alone without sample. 
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Statistical analysis – All the experiments were repeated at least three times. Data were 

expressed as means ± SD and analyzed using one-way analysis of variance (ANOVA) 

followed by a Dunnett’s test to determine any significant differences. A value of p < 0.05 

was considered statistically significant. 

 

RESULTS 

 

Cytotoxicities of porphyran and fucoidan on RAW264.7 cells – Since it has been reported 

that porphyran inhibits cell proliferation and induces apoptosis in AGS human gastric 

cancer cells (9), we first examined the cytotoxicity of porphyran on RAW264.7 cells. 

After 24 h incubation with varying concentrations of porphyran, the viabilities of the cells 

were determined by the Alamar blue assay. As shown in Fig.1A, porphyran showed no 

cytotoxic effect on RAW264.7 cells up to 500 g/ml. In contrast to the lack of significant 

cytotoxic effect of porphyran to RAW264.7 cells, fucoidan, a sulfated polysaccharide, 

showed cytotoxicity to RAW264.7 cells in a concentration dependent manner at the same 

concentration range tested. DNA fragmentation (Fig. 1B) and morphological changes 

(Fig. 1C) were also induced in the cells treated with 500 g/ml fucoidan, suggesting that 

the cytotoxicity of fucoidan was accompanied by induction of apoptosis, while no such 

significant apoptosis-related changes were observed in porphyran-treated RAW264.7 

cells (Fig. 1). Therefore, it seems likely that porphyran and fucoidan are quite different in 

terms of cytotoxicity to RAW264.7 cells. Hence, it is considered that cellular toxicity of 

porphyran on RAW264.7 may not be a main reason for any observed changes in NO 
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production or related events in the following studies. 

 

Effect of porphyran on NO production in LPS-treated RAW264.7 cells – Because of the 

extremely short half-life of NO, we measured nitrite as a stable biomarker of NO 

production in LPS stimulated RAW264.7 cells by Griess assay. Our preliminary study 

demonstrated that LPS potently induced NO production in RAW264.7 cells, even at a 

very low concentration (1 ng/ml). Time course analysis showed that NO production was 

initiated at 6 h and reached a stable and maximum level at 18 h, and the level continued to 

24 h after stimulation with LPS (data not shown). Thus, in subsequent experiments, we 

evaluated nitrite concentration at 18 h. As shown in Fig. 2, nitrite level was almost 

undetectable in RAW264.7 cells treated with 500 g/ml porphyran alone, and porphyran 

did not induce significant levels of NO at any other concentrations (1-1000 g/ml) tested 

in RAW264.7 cells (data not shown).  

To examine whether porphyran affects LPS-induced NO production in 

RAW264.7 cells, cells were pre-incubated with porphyran (0-500 g/ml) for 1 h in the 

growth medium, followed by stimulation with LPS (2 ng/ml). After 18 h incubation, the 

nitrite levels of the supernatants of the treated cells were measured by Griess assay. As 

shown in Fig. 2, porphyran inhibited NO production in LPS-stimulated RAW264.7 cells 

in a concentration-dependent manner, with 500 g/ml porphyran completely blocking the 

LPS-inducible NO production. Considering that 500 g/ml porphyran alone did not affect 

NO production and was not cytotoxic to RAW264.7 cells (Fig. 1), it seems obvious that 

inhibition of LPS-induced NO production in RAW264.7 cells by porphyran is unrelated 
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to its any cytotoxic effects.  

 

Effect of porphyran on expression of iNOS in LPS-treated RAW264.7 cells – To study 

whether the inhibition of NO production by porphyran is due to the inhibition of 

expression of inducible NO synthase (iNOS), which catalyses the generation of NO from 

L-arginine, RT-PCR and immuno blot analysis were performed to detect the levels of 

iNOS mRNA and protein expression, respectively. As shown in Fig. 3, treatment of cells 

with 2 ng/ml LPS resulted in increased expression of both iNOS mRNA and protein, 

while iNOS expression was not detected in RAW264.7 cells treated with control normal 

medium or 500 g/ml porphyran alone. Pretreatment of cells with porphyran, especially 

at 500 g/ml, inhibited iNOS expression by nearly 100% at the transcription and 

translation levels in LPS-stimulated RAW264.7 cells.  

 

Effect of porphyran on TNF- secretion in LPS-treated RAW264.7 cells – LPS activates 

various intracellular signaling cascades leading to the secretion of various cytokines in 

addition to the induction of NO production via iNOS expression. In fact, increased level 

of TNF- was detected in LPS-treated RAW264.7 cells (Fig. 4). We next investigated 

whether porphyran can also affect the secretion of TNF- from LPS-stimulated 

RAW264.7 cells. As shown in Fig. 4, porphyran showed only a marginal inhibitory effect 

on the TNF- production in LPS-treated RAW264.7 cells even at 500 g/ml, at which 

NO production was completely inhibited, though.   
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Effect of porphyran on LPS-induced NF-B activation in RAW264.7 cells – NF-B is an 

essential transcription factor for the induction of several inflammatory mediators 

including iNOS (24, 25). Therefore, an EMSA on the nuclear extracts from 

LPS-stimulated RAW264.7 cells was performed using IRDye® 700 Infrared dye labeled 

oligonucleotide with NF-B consensus sequence to examine whether porphyran-caused 

inhibition of iNOS induction is due to the suppression of NF-B activation. As shown in 

Fig. 5A, increase in band thickness of the slow migrating nucleoprotein complex was 

observed after the LPS treatment for 30 min, suggesting that NF-B was activated by LPS. 

Pretreatment with porphyran (250 or 500 g/ml) resulted in the inhibition of the 

LPS-inducible NF-B DNA binding in a concentration-dependent manner. The addition 

of 100-fold excess of the unlabeled oligonucleotides with same sequences to the nuclear 

extract resulted in almost complete abolishment of the binding activity, which confirms 

that the binding is specific to NF-B (Fig. 5B). To examine whether porphyran directly 

inhibits NF-B binding to DNA, the nuclear extracts prepared from the LPS-treated 

RAW264.7 cells were treated with porphyran and labeled NF-B oligonucleotides. The 

in vitro exposure of the LPS-activated nuclear extracts to porphyran caused no decrease 

in the NF-B DNA binding (Fig. 5C). Hence, it seems likely that porphyran itself does 

not inhibit NF-B DNA binding activity. 

The process of the activation of NF-B proceeds through phosphorylation and 

degradation of the IB- inhibitory subunit and subsequent translocation of p65/p50 

complex into the nucleus (26). Thus, the effect of porphyran on nuclear translocation of 

p65 was also examined by immunblotting. As shown in Fig. 6A, the nuclear levels of the 
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p65 protein increased in LPS-treated RAW264.7 cells, and the LPS-induced nuclear 

translocation of p65 was blocked by porphyran in a concentration-dependent manner. In 

addition, immuno blot analysis using specific antibodies indicated that both the 

phosphorylation and degradation of IB-were also inhibited by a pretreatment with 

porphyran (Fig. 6B). These results suggest that porphyran blocks the nuclear 

translocation of NF-B through the inhibition of the phosphorylation and subsequent 

degradation of IB-. Specific NF-B inhibitor peptide (SN50) blocked LPS-induced 

NO production in a concentration-dependent manner, while inactive control peptide 

SN50M had no effect (Fig. 7). These results indicate that NF-B activation is required for 

LPS-induced NO production, and may support the idea that inhibition of NF-B 

activation by porphyran is its main action mechanism to inhibit NO production in 

LPS-stimulated RAW264.7 cells.  

 

Superoxide radical scavenging activity of porphyran – It has been reported that sulfated 

polysaccharides from marine algae including fucoidan and porphyran have antioxidant 

activities (27-32), and naturally occurring antioxidant compounds such as -carotene 

have suppressive effect on NF-B activation in macrophages stimulated with LPS (33). 

Thus, there is a possibility that antioxidant property of porphyran might be partly 

responsible for the inhibitory effects on the inflammatory response of LPS-stimulated 

RAW264.7 cells. To study this point, the antioxidant activity of porphyran was assessed 

by the surperoxide radical scavenging activity. As shown in Fig. 8, porphyran 

significantly scavenged surperoxide radical in a concentration-dependent manner. 
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Porphyran at final concentration of 500 g/ml scavenged surperoxide anion radical by 

more than 50%.  

 

DISCUSSION 

 

               Porphyran is a linear sulfated polysaccharide composed of galactose and 3, 

6-anhydrogalactose, which are partially substituted with galactose-6-sulfate and 

6-O-methyl-galactose. In the present study, we found that porphyran inhibited the 

production of NO through the inhibition of iNOS expression in LPS-stimulated 

RAW264.7 cells. RT-PCR analysis revealed that iNOS mRNA level was significantly 

reduced by porphyran in LPS-treated RAW264.7 cells. Since -actin mRNA levels 

remained unchanged, the possibility of the nonspecific actions of porphyran on gene 

expression may be excluded. Thus, the inhibition of NO production is due to the 

inhibition of iNOS mRNA transcription. These results differ from those obtained using 

murine peritoneal macrophages, which demonstrated that porphyran fraction prepared 

from P.  yezoensis induced NO and TNF- production (34, 35). Although the exact reason 

for these differences is uncertain now, it may be due to the different cell types used in the 

studies, as well as differences in sources and preparation procedures of porphyrans used. 

In fact, it has been known that porphyran has a quite complicated and heterogeneous 

structure depending on the source of the porphyran, and the even cultivation manner or 

harvest time also influences the structure of porphyran derived from same algal species 

(36, 37). Although further studies are required for the clarification of the mechanism of 
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porphyran to inhibit NO production in LPS-stimulated macrophages as well as for its 

structure-activity relationship, it seems that our results can exclude the possibility that 

porphyran directly interferes with interaction between NF-B protein and DNA, since no 

significant inhibitory effect of porphyran on NF-B DNA binding was observed in in 

vitro EMSA (Fig. 5C).   

 NO is a gaseous free radical involved in various physiological processes such 

as vasodilation, smooth muscle regulation, neurotransmission, and apoptosis (38-41). NO 

also plays a role in anti-infectious immune responses as an important modulator in both 

innate and adaptative immunity (42). On the other hand, the excess amount of NO 

produced by iNOS in activated macrophages contributes to numerous severe 

inflammatory diseases including sepsis and arthritis (43, 44). Since NO particularly 

induces the impaired vascular reactivity and causes pathological changes (45), the 

selective inhibition of iNOS expression in inflammatory cells (e. g., macrophages) may 

provide an important therapeutic strategy for inflammatory diseases.  

 Similar to our present results on porphyran, it has recently been reported that 

fucoidan, a sulfated polysaccharide derived from brown algae, inhibits NO production 

and the expression of iNOS in LPS-activated macrophages (3). The inhibitory effect of 

fucoidan on NO production and iNOS expression in other cell types are also reported (4, 

46). Fucoidan shows various biological activities.  Particularly, its anti-inflammatory and 

anti-complement actions have drawn significant attention (47, 48). The suppressive 

effects on iNOS expression in activated macrophages might partly explain its 

anti-inflammatory actions. In contrast, it was reported that fucoidan induces NO 
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production from macrophages via a p38 MAP kinase and NF-B-dependent mechanism 

(1). Since fucoidan has highly complicated structure similar to porphyran, it can vary 

depending on the algal sources. Comparative study on the anti-inflammatory, 

anti-angiogenic, anticoagulant, and anti-adhesive activities of fucoidans prepared from 

nine species of brown algae showed that the source and composition of fucoidan likely 

affect the biological activity to a certain extent (49). Further studies are necessary to 

clarify the structure-activity relationship of sulfated polysaccharides fucoidan and 

porphyran especially their effects on NO production in activated macrophages.  

 LPS can induce the secretion of inflammatory cytokines such as TNF- and 

IL-6 in addition to iNOS expression in macrophages. In fact, increased level of TNF- 

was detected in the medium of LPS-treated RAW264.7 cells. It is of interest to point out 

that porphyran had only a marginal inhibitory effect on the level of TNF-. This 

observation suggests that porphyran may not interrupt the extracellular interaction 

between LPS and the specific receptors but affect the intracellular signaling pathways 

such as the activation process of transcription factor. The promoter region of iNOS gene 

has several homologous consensus sequences for binding of the transcription factors such 

as NF-B, c-jun/c-Fos heterodimers known as AP-1, and CCAAT box enhancer binding 

protein (C/EBP) (30, 50). In this study, EMSA using oligonucleotides probe 

corresponding to the consensus binding site for NF-B was carried out, and we found that 

LPS-induced NF-B activation was inhibited by porphyran. It is well known that NF-B 

exists in the cytosol as an inactive trimeric complex in which the p50/p65 protein dimer is 

associated with IB known as an inhibitory subunit (51). When the cells are stimulated 
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with extracellular stimulus, phosphorylation and subsequent degradation of IB occurs. 

Such changes lead to dissociation of IB from the complex and to produce activated 

NF-B, which translocates into nucleus and activates the target gene expression. The 

immunoblot analysis using the specific antibodies demonstrated that the LPS-induced 

phosphorylation and degradation of IB-, which is prerequisite for p65 activation, was 

suppressed in the porphyran-pretreated cells. In addition, the translocation of p65 into 

nuclear in response to LPS was also inhibited by porphyran. Thus, these results suggest 

that the inhibition of NF-B activation through the inhibition of the phosphrylation and 

degradation of IB- may be an action mechanism of porphyran to inhibit iNOS 

expression in LPS-stimulated RAW264.7 cells.  

The activation status of various transcription factors are influenced by the 

intracellular redox condition and controlled by the generation of ROS (30). Recently, it 

has been suggested that porphyran and fucoidan acts as a potential antioxidant or 

radical-scavenger (30-32). In fact, our porphyran sample showed superoxide radical 

scavenging activity. Regarding naturally occurring antioxidants, which have inhibitory 

activities on inflammatory responses of macrophages, it has recently been reported that 

lycopene, a major carotenoid in tomatoes, inhibited LPS-induced production of NO 

through the suppression of NF-B activation in RAW264.7 cells, but had no effect on 

TNF- (52). Similarity between porphyran and lycopene in terms of the effect on 

LPS-stimulated RAW264.7 cells suggests that the antioxidant property may be one of the 

important factors responsible for the anti-inflammatory activities towards LPS-stimulated 

macrophages. In addition to lycopene, diosgenin, a steroid saponin found in several plants, 
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which has antioxidant activity, has also been reported to inhibit iNOS expression in 

LPS/interferon -activated murine macrophages without affecting the secretion of TNF- 

(53). Since diosgenin inhibited LPS/interferon -induced NF-B and AP-1 activation, the 

inhibition of iNOS expression by diosgenin was considered at the transcriptional level. 

As another example, prodigiosin isolated from marine bacteria Hahella chejuensis has 

also been reported to suppress LPS-induced NO production by inhibiting p38 MAPK, 

JNK and NF-B activation in mouse peritoneal macrophages, but had no effect on the 

production of cytokines including TNF- (54). Although porphyran, lycopene, diosgenin, 

and prodigiosin are chemically unrelated compounds, they may have a similar action 

mechanism on activated macrophages. Namely, these compounds inhibit NO production 

through the inhibition of NF-B activation without affecting the production of TNF-, 

suggesting that NF-B separately regulates iNOS expression and secretion of TNF-. 

Other several natural compounds with antioxidant or free radical scavenging activities 

have been reported to inhibit NO production by activated macrophages through the 

inhibition of the NF-B activation  (3, 55-57). Thus, it seems likely that the specific 

inhibition of NO production via suppression of NF-B activation may be a common 

action mechanism of anti-inflammatory agents with antioxidant activity. Further studies 

are required to clarify this point as well as exact action mechanism of porphyran on the 

inhibition of NO production in activated macrophages.  

In conclusion, our in vitro studies demonstrated that porphyran inhibited NO 

production in macrophages activated by LPS through the inhibition of NF-B activation. 

This inhibition may explain some of the anti-inflammatory effects of porphyran. 
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FIGURE LEGENDS 

 

Fig. 1. Cytotoxic effects of porphyran and fucoidan on RAW264.7 cells. (A) Adherent 

cells (3 x 104 cells/well in 96-well plates) in the growth medium were treated with 

varying concentrations of porphyran (●) or fucoidan (○) at 37°C. After 24 h, the cell 

viabilities were estimated by Alamar blue assay as described under "MATERIALS AND 

METHODS". Data represent means ± SD of triplicate measurements. Asterisks indicate 

significant differences between with and without fucoidan (p＜0.05). (B) Adherent 

RAW264.7 cells in 35 mm-diameter culture dishes (2 x 106 cells/dish) were treated with 

500 g/ml of fucoidan or porphyran in the growth medium at 37˚C. After 24 h, DNA 

fragmentations of the treated cells were examined by diphenylamine assay as described 

under "MATERIALS AND METHODS". Asterisk indicates significant difference 

between with and without fucoidan (p＜0.05). (C) Adherent RAW264.7 cells in 35 

mm-diameter culture dishes equipped with quartz glass were treated with 500 g/ml of 

fucoidan or porphyran in the growth medium at 37˚C. After 24 h, the cells were observed 

under phase contrast microscope (BIOREVO BZ9000, KEYENCE Co., Osaka, Japan). 

The bar indicates 20 m.  

 

 Fig. 2. Effects of porphyran on NO production in LPS-treated RAW264.7 cells. 

Adherent cells (3 x 104 cells/well in 96-well plates) were pre-incubated with various 

concentrations of porphyran (0-500 g/ml) in DMEM supplemented with 10% FBS at 

37°C for 1 h, followed by the addition of LPS (final 2 ng/ml). After 18 h incubation, the 
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NO levels in the supernatants of the treated cells were estimated as described under 

"MATERIALS AND METHODS". Data represent means ± SD of triplicate 

measurements. Asterisks indicate significant differences between with and without 

porphyran (p＜0.05). 

 

Fig. 3. Effects of porphyran on LPS-induced iNOS mRNA and iNOS protein levels 

in RAW264.7 cells.  (A) Adherent cells (5 x 105 cells/well in 24-well plates) were 

pre-incubated with various concentrations of porphyran (0, 250, or 500 g/ml) in DMEM 

supplemented with 10% FBS at 37°C for 1 h, followed by the addition of LPS (final 2 

ng/ml). After 4 h incubation, the total RNA of each treated cells was subjected to RT-PCR 

analysis as described under "MATERIALS AND METHODS". (B) Adherent cells in 35 

mm-diameter culture dishes (2 x 106 cells/dish) were pre-incubated with various 

concentrations of porphyran (0, 250, or 500 g/ml) in DMEM supplemented with 10% 

FBS at 37°C for 1 h, followed by the addition of LPS (final 2 ng/ml). After 5 h incubation, 

the whole-cell lysates were analyzed by western blot analysis as described under 

"MATERIALS AND METHODS" 

 

Fig. 4. Effect of porphyran on LPS-induced TNF- secretion from RAW264.7 cells. 

Adherent cells (5 x 105 cells/well in 24-well plates) were pre-incubated with various 

concentrations of porphyran (0, 250, or 500 g/ml) in DMEM supplemented with 10% 

FBS at 37°C for 1 h, followed by the addition of LPS (final 2 ng/ml). After 4 h incubation, 

the TNF- levels in the culture medium of the treated cells were measured by ELISA as 
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described under "MATERIALS AND METHODS". Data represent means ± SD of 

triplicate measurements. 

 

Fig. 5. Effects of porphyran on LPS-induced NF-B activation in RAW264.7 cells. 

(A) In vivo effect of porphyran on DNA binding of NF-B. Adherent cells in 35 

mm-diameter culture dish (2 x 106 cells/dish) were incubated in serum-free DMEM at 

37°C for 2 h, and then the cells were incubated with various concentrations of porphyran 

(0, 250, or 500 g/ml) in serum-free DMEM at 37°C for 1 h, followed by the addition of 

LPS (final 2 ng/ml). After 30 min incubation, gel shift assay of NF-B was performed 

with nuclear extracts prepared from the treated cells as described under "MATERIALS 

AND METHODS". (B) EMSA was performed on the nuclear extract prepared from 

LPS-stimulated RAW264.7 cells in the presence of 100-fold excess unlabeled 

oligonucleotides with the same NF-B consensus sequence. (C) In vitro effect of 

porphyran on DNA binding of NF-B. Porphyran (0, 250, or 500 g/ml) was added to the 

assay mixture containing the nuclear extracts prepared from the LPS-stimulated 

RAW264.7 cells and infrared dye labeled oligonucleotides with NF-B consensus 

sequence, and incubated for 20 min, and then subjected to EMSA.  

 

Fig. 6. Effects of porphyran on the nuclear translocation of NF-B p65 and 

phosphorylation and degradation of IB- in LPS-treated RAW264.7 cells.  (A) 

Western blot analysis was conducted on NF-B p65 in the nuclear extracts prepared from 

RAW264.7 cells treated with porphyran and subsequent stimulation with LPS as 
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described under "MATERIALS AND METHODS". (B) Western blot analyzes were 

conducted on the IB- and phosphorylated IB- in the cytosolic extracts prepared 

from RAW264.7 cells treated with porphyran and subsequent stimulation with LPS as 

described under "MATERIALS AND METHODS". 

 

Fig. 7. Effects of specific NF-B inhibitor peptide (SN50) and its inactive control 

peptide (SN50M) on NO production in LPS-treated RAW264.7 cells. Adherent cells 

(3 x 104 cells/well in 96-well plates) were pre-incubated with various concentrations of 

SN50 (●) or SN50M (○) in DMEM supplemented with 10% FBS at 37°C for 2 h, 

followed by the addition of LPS (final 2 ng/ml). After 18 h incubation, the NO level in the 

supernatants of the treated cells were estimated as described under "MATERIALS AND 

METHODS". Data represent means±SD of triplicate measurements. Asterisks indicate 

significant differences between with and without SN50 (p＜0.05). 

 

Fig. 8. Scavenging effects of porphyran on superoxide anion radical. Scavenging 

activity of porphyran toward superoxide anion radical was measured as described under 

"MATERIALS AND METHODS". Experiments were performed in triplicate, and values 

shown are the means ± SD. Asterisks indicate significant differences between with and 

without porphyran (p＜0.05).
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Fig.1 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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