
1 
 

Antifungal susceptibilities of Aspergillus fumigatus clinical isolates  

in Nagasaki, Japan  

Masato Tashiro1, Koichi Izumikawa1*, Asuka Minematsu1, Katsuji Hirano1, Naoki Iwanaga1, 

Shotaro Ide1, Tomo Mihara1, Naoki Hosogaya1, 2, Takahiro Takazono1, Yoshitomo Morinaga3, 

Shigeki Nakamura1, Shintaro Kurihara4, Yoshifumi Imamura1, Taiga Miyazaki1, Tomoya 

Nishino1, Misuzu Tsukamoto4, Hiroshi Kakeya1, Yoshihiro Yamamoto1, Katsunori Yanagihara3, 

Akira Yasuoka4, Takayoshi Tashiro5 and Shigeru Kohno1 

 

1Department of Molecular Microbiology and Immunology and 5Departments of Health Sciences, 

Nagasaki University Graduate School of Biomedical Sciences, 3Department of Laboratory 

Medicine, and 4Nagasaki University Infection Control and Education Center, Nagasaki 

University Hospital, Nagasaki, Japan.  2Department of Internal Medicine II, University of 

Yamanashi, Chuo, Japan. 

 

Running Title: Drug susceptibility of Aspergillus fumigatus in Japan 

Word count for the body text: 1344 words 

 

* Correspondence to: 

Koichi Izumikawa, M.D., Ph.D. 

Department of Molecular Microbiology and Immunology, Nagasaki University 

Graduate School of Biomedical Sciences 

1-7-1 Sakamoto, Nagasaki 852-8501, JAPAN 

Phone: +81-95-819-7276 

Fax: +81-95-849-7285 

E-mail: koizumik@nagasaki-u.ac.jp 

 

Keywords. Aspergillus fumigatus, susceptibility, Japan 



2 
 

ABSTRACT (75 words) 

 

We investigated triazole, amphotericin B, and micafungin susceptibilities of 196 

A. fumigatus clinical isolates in Nagasaki, Japan. The percentages of non-wild-type 

(non-WT) isolates for itraconazole, posaconazole, and voriconazole were 7.1%, 2.6%, 

and 4.1% respectively. G54 mutation in cyp51A was detected in 64.2% (9/14 isolates) 

and 100% (5/5 isolates) of itraconazole and posaconazole non-WT isolates, 

respectively.  Amphotericin B MICs of ≥2 μg/ml and micafungin MECs of ≥16 μg/ml 

were recorded for 2 and 1 isolates, respectively. 
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The clinical importance of Aspergillus infection has increased as the number of 

immunocompromised patients has risen (16).  Recommended antifungals to treat 

patients with invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis 

(CPA) are triazoles, amphotericin B, and echinocandins (13, 15, 37).  Patients with 

CPA often need years of treatment (13, 37).  Although oral therapy is important for 

carrying out long courses of treatment, azoles (with the exception of fluconazole) are 

the only class of oral drugs licensed for the treatment of aspergillosis (14, 37). 

Aspergillus fumigatus is the most common and pathogenic species of Aspergillus 

(34, 37).  Antifungal resistance of A. fumigatus especially to azoles is one of the 

concerns in treatment of aspergillosis.  During the last decade, many cases of treatment 

failure due to azole-resistance Aspergillus infection have been reported, and in the past 

few years a growing body of papers has been accumulating about antifungal 

susceptibilities of A. fumigatus (1, 3-6, 9, 10, 12, 18, 23-27, 31-33, 35, 36).  Even 

though an increased rate of azole-resistance has been reported recently in the 

Netherlands and the United Kingdom, prevalence rate of azole resistance reportedly 

remains low in other countries (1, 3, 6, 9, 12, 23, 25, 33). 

The azole target protein, lanosterol 14α-demethylase of Aspergillus is encoded 

by the cyp51A gene, and mutations of cyp51A are a major mechanism of azole 
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resistance (8, 17, 19, 20, 22, 32).  Some mutational hotspots, such as G54, M220, and 

TR/L98H, have been identified as cause of azole resistance (2, 21, 22).  Of these 

mutations, TR/L98H was especially prevalent in the Netherlands.  An environmental 

origin (resulting from agricultural antifungal drug usage) is suspected, in spite of the 

fact that the mechanism(s) of mutation induction have not been shown definitively (24, 

31, 32).   

We studied the antifungal susceptibility of 196 A. fumigatus clinical isolates 

obtained in the Pneumology Department of Nagasaki University Hospital, Nagasaki, 

Japan.  The isolates were collected between February 1994 and April 2010.  All of the 

isolates were subjected to susceptibility testing and cyp51A sequence analysis.  All 

isolates were identified as A. fumigatus by macroscopic colony morphology, 

micromorphological characteristics, and the ability to grow at 48C.  Non-wild-type 

(non-WT) isolates were subjected to additional molecular identification by 

amplification of ribosomal internal transcribed spacers (ITSs) and ribosomal 

large-subunit D1-D2 sequencing as described previously (11).  MICs of itraconazole, 

posaconazole, voriconazole, and amphotericin B and minimum effective concentrations 

(MECs) of micafungin were determined using the Clinical and Laboratory Standards 

Institute (CLSI) M38-A2 broth microdilution method.  Assays were performed using 
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RPMI 1640 broth (0.2% dextrose), final inoculum concentrations ranging from 0.4 × 

104 to 5 × 104 CFU/ml, and 48h of incubation at 35C (7).  MIC was defined as the 

lowest drug concentration that produced complete growth inhibition; MEC was read as 

the lowest concentration of drug that led to the growth of small, rounded, compact 

hyphal forms as compared to the hyphal growth seen in the growth control well.  

Susceptibility tests of non-WT isolates were performed at least three times for each 

isolate; each test was performed on different days.  Because clinical breakpoints have 

not been established yet, we adopted the use of epidemiological cutoff values (ECVs) to 

evaluate azole susceptibility (9, 25, 29).  Wild-type (WT) isolates of A. fumigatus 

(MIC ≤ ECV) were distinguished from non-WT isolates (MIC > ECV) which may 

exhibit acquired low susceptible mechanisms.  ECVs used in this study were as 

follows: itraconazole, 1 μg/ml; posaconazole, 0.5 μg/ml; voriconazole, 1 μg/ml as 

previously suggested (9, 25). 

For sequence analyses, genomic DNA was extracted from non-WT isolates using 

the MasterPure yeast DNA purification kit (Epicentre Biotechnologies, Madison, WI).  

The full coding region of the cyp51A gene was amplified as previously described (32).  

DNA sequences were determined using a BigDye Terminator version 1.1 cycle 

sequencing kit (ABI) and an ABI 3100xl DNA analyzer.  Sequence alignments were 
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performed against the sequence from an azole-susceptible strain (GenBank accession no. 

AF338659) using MacVector10.0 software (MacVector, Inc., Cary, NC) (20).  

Mutations were confirmed three times by repeating the PCR and sequencing the 

relevant region using the closest primer. 

In this study, using the ECVs, the percentages of non-WT isolates for itraconazole, 

posaconazole, and voriconazole were 7.1%, 2.6%, and 4.1% respectively (Table 1).  To 

exclude the possibility of increased proportions of non-WT isolates due to clonal spread 

(notably, the potential repeated isolation of a drug-resistant strain originating from one 

patient), we confirmed those proportions on a per-case basis, which (for non-WT 

isolates) were 7.5%, 4.3%, and 6.5% for itraconazole, posaconazole, and voriconazole, 

respectively.  These proportions of non-WT isolates were not that much different from 

other previous data from any regions, with the exception of data for the Netherlands and 

the United Kingdom (3, 9, 12, 23, 25, 33).  All the itraconazole-resistant isolates (MIC 

≥ 4μg/ml) were obtained from 1998 to 2001.  No consistent trend of increased 

proportion of non-WT isolates was observed.  Amphotericin B MICs of ≥2 μg/ml were 

recorded for 1.0% of the isolates (2/196); micafungin MECs of ≥16 μg/ml were 

recorded for 1.0% of the isolates (2/196) (Table 1).  For these antifungals, the 

proportions of resistant isolates were low and similar to those of previous reports (3, 10, 
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23, 26).   

In Japan, posaconazole has not been approved for clinical use; nonetheless, 

non-WT isolates to posaconazole already existed (Table 1).  Resistance in these 

isolates might reflect native biological variability.  Alternatively, this phenomenon 

could be associated with cross-resistance between itraconazole and posaconazole, 

because 80% (4/5) of posaconazole non-WT isolates were also itraconazole non-WT 

isolates (Table 2).  In addition, non-WT isolates of itraconazole tended to be more 

resistant to posaconazole, though not to voriconazole (Table 1).  Cross-resistance 

between itraconazole and posaconazole, but not with voriconazole, may result from the 

G54 mutation of cyp51A, which was present in 64.2% (9/14) of the itraconazole 

non-WT isolates and also present in 100% (5/5) of the posaconazole non-WT isolates 

(Table 2).  There is a known structural basis for the association of the G54 mutation 

with this pattern of cross-resistance among the azoles: unlike voriconazole, itraconazole 

and posaconazole have long side chains that clash with the amino acid side chain of the 

residue replacing G54 in the mutated CYP51A protein (8, 27, 32, 38).   

Among mutations of the cyp51A gene, TR/L98H has received the most attention, 

notably because this mutation was seen in a specific country and found in A. fumigatus 

isolated from environment (17, 22, 24, 31-33).   Recently, likewise in China, 
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TR/L98H was detected in a multi-azole resistant isolate (17), suggesting that the 

TR/L98H mutation could be selected in Asia as well as in Europe.  Of all 22 non-WT 

isolates in our study of Japanese isolates, CYP51A mutations were detected as follows: 

G54W, two isolates; G54R, one isolate; I266N, two isolates; G54E + I266N, seven 

isolates (Table 2).  No TR/L98H-bearing isolates were detected.  The I266N mutation, 

which has (to our knowledge) not been reported previously, also was seen in other 

azole-susceptible isolates; therefore, it might not be directly related to azole resistance. 

Of 21 non-WT-isolates, 9 isolates had no CYP51A substitution (Table 2).  Interestingly, 

most voriconazole non-WT isolates did not possess cyp51A mutation.  Although Bueid 

et al. reported an increase of frequency of azole-resistant isolates without cyp51A 

mutations, other possible resistant mechanisms (e.g. up-regulation of efflux pump) are 

not fully revealed yet (6, 28, 30).  Further analysis is warranted. 

Only a few previous analyses have examined changes in susceptibility over 

time; therefore, it is not clear that the frequency of azole-resistant A. fumigatus is 

increasing world-wide (12, 25, 33).  Nevertheless, mechanisms of resistance induction 

in clinical settings or the environment (e.g., selection following agricultural antifungal 

exposure) remain poorly understood.  Given that azole usage varies from one country 

to another, the mechanism of azole resistance may differ between regions. 
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In this study, we found low prevalence of resistance to triazoles in Japanese 

isolates of A. fumigatus, a clinically important fungus of increasing concern in 

respiratory medicine.  The proportions of non-WT isolates were similar to those 

previously reported for other countries.  In the future, Japanese A. fumigatus isolates 

may develop azole resistance by different mechanisms (such as TR/L98H); therefore, 

we urge the continued monitoring of azole susceptibility in this species. 
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TABLE 1. MIC and MEC distributions of five antifungals

Antifungal agent

No. of isolatesa

% of MICs
>ECV

Total
With MIC or MECb (μg/ml):

ota
≤0.03 0.06 0.125 0.25 0.5 1.0 2.0 4.0 8.0 ≥16

Triazoles

Itracona ole 182 (14) 1 28 107 46 (8) (4) (1) (1) 7 1Itraconazole 182 (14) 1 28 107 46 (8) (4) (1) (1) 7.1

Posaconazole 182 (14) 14 108 35 24 (2) (8) (1) 1 (2) (1) 2.6

Voriconazole 182 (14) 1 (3) 20 (7) 101 (2) 53 (1) 7 (1) 4.1

Polyene

Amphotericin B 182 (14) 6 8 (1) 19 (1) 90 (7) 57 (5) 2 –

Echinocandin

Micafungin 182 (14) 177 (14) 2 1 2 –

MIC di ib i f h b i d b b i f h l i l d h 14 WT i l f i la MIC distributions for each agent were obtained by subtracting from the total isolates tested the 14 non-WT isolates of itraconazole. 
The MIC distribution of each agent for those 14 isolates is also provided within parentheses.

b MICs are shown for amphotericin B, itraconazole, posaconazole, and voriconazole.  Minimum effective concentrations (MECs) are
shown for micafungin.

Table 1.  Tashiro et al.



TABLE 2 MIC d C 51A b tit ti f 22 WT A ill f i t i l t

Isolate no.
MIC (μg/ml) Cyp51A

substitutionitraconazole posaconazole voriconazole

MF 452 >8 0 5 0 5 I266N

TABLE 2. MICs and Cyp51A substitution of 22 non-WT Aspergillus fumigatus isolates 

MF-452 >8 0.5 0.5 I266N
MF-469 8 1 0.25 G54E, I266N
MF-460 4 2 0.25 G54E, I266N
MF-357 4 0.5 0.5 I266N
MF-468 4 0.5 0.25 G54E, I266N
MF-329 4 0.5 0.25 no substitution
MF-331 2 >16 0.25 G54W
MF-327 2 2 0.12 G54R
MF-439 2 0.5 0.25 G54E, I266N
MF 473 2 0 5 0 25 G54E I266NMF-473 2 0.5 0.25 G54E, I266N
MF-454 2 0.5 0.12 G54E, I266N
MF-472 2 0.5 0.12 G54E, I266N
MF-843 2 0.25 2 no substitution
MF-748 2 0.25 1 NDa

MF-1011 1 2 0.12 G54W
MF-855 1 0.25 2 no substitution
MF-336 1 0.25 2 no substitution
MF-486 1 0.25 2 no substitution
MF 520 1 0 25 2 no substitutionMF-520 1 0.25 2 no substitution
MF-1091 0.5 0.25 2 no substitution
MF-474 0.5 0.25 2 no substitution
MF-303 0.5 0.12 2 no substitution

a ND, not determined.ND, not determined.

Table 2.  Tashiro et al.


