1	Title	page
---	-------	------

2	Ketone bodies as a predictor of prognosis of hepatocellular carcinoma
3	after transcatheter arterial chemoembolization
4	
5	Running title: Ketone bodies and muscle status with HCC
6	
7	Ryu Sasaki ^{1,2} , Naota Taura ² , Yuri Miyazoe ² , Shinobu Yamamichi ² , Suguru Nakashiki ² ,
8	Mio Yamashima ² , Tomoyuki Suehiro ² , Takuya Honda ^{1,2} , Hidetaka Shibata ² , Eisuke
9	Ozawa ² , Satoshi Miuma ² , Yuko Akazawa ² , Hisamitsu Miyaaki ² , Takehiro Matsumoto ² ,
10	Kazuhiko Nakao ² , Kazuto Ashizawa ¹
11	
12	1. Department of Clinical Oncology, Unit of Translational Medicine, Nagasaki
13	University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City,
14	852-8501, Japan
15	2. Department of Gastroenterology and Hepatology, Nagasaki University Graduate
16	School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501,
17	Japan
18	
19	Authors' e-mail addresses:
20	1. Ryu Sasaki: ryu03202501@yahoo.co.jp

21	2. Naota Taura:ntaura-g@nagasaki-u.ac.jp	
22	3. Yuri Miyazoe: yurieast10@hotmail.com	
23	4. Shinobu Yamamichi: bwspn147@yahoo.co.jp	
24	5. Suguru Nakashiki: reoreo627@yahoo.co.jp	
25	6. Mio Yamashima: mamio5612@gmail.com	
26	7. Tomoyuki Suehiro:chuntomo0902@gmail.com	
27	8. Takuya Honda:mr.takuya@gmail.com	
28	9. Hidetaka Shibata:shibatahidetaka@gmail.com	
29	10. Eisuke Ozawa: eisukeozawa@nifty.com	
30	11. Satoshi Miuma: miuma1002@gmail.com	
31	12. Yuko Akazawa:akazaway@nagasaki-u.ac.jp	
32	13. Hisamitsu Miyaaki: miyaaki-hi@umin.ac.jp	
33	14. Takehiro Matsumoto: tmatsumo@nagasaki-u.ac.jp	
34	15. Kazuhiko Nakao: kazuhiko@nagasaki-u.ac.jp	
35	16. Kazuto Ashizawa: ashi@nagasaki-u.ac.jp	
36		
37	Correspondence to:	
38	Ryu Sasaki	
39	Department of Gastroenterology and Hepatology, Nagasaki University	Graduate School

40 of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan

41	Telephone:	+81-958-1	19-7481

42	Fax:	+81-958-19-74	182

- 43 E-mail: ryu03202501@yahoo.co.jp
- 44

45 **Author contributions**:

46	Conception	and design of	the study: Ry	ru Sasaki, Naota	Taura, and H	Kazuhiko Nakao
----	------------	---------------	---------------	------------------	--------------	----------------

- 47 Generation, collection, assembly, analysis and/or interpretation of data: Ryu Sasaki,
- 48 Naota Taura, Yuri Miyazoe, Shinobu Yamamichi, Suguru Nakashiki, Mio Yamashima,
- 49 Tomoyuki Suehiro, Takuya Honda, Hidetaka Shibata, Eisuke Ozawa, Satoshi Miuma,
- 50 Yuko Akazawa, Hisamitsu Miyaaki, Takehiro Matsumoto, and Kazuhiko Nakao
- 51 Drafting or revision of the manuscript: Ryu Sasaki, Naota Taura, Yuko Akazawa,
- 52 Kazuhiko Nakao, and Kazuto Ashizawa
- 53 Approval of the final version of the manuscript: Ryu Sasaki, Naota Taura, Kazuhiko
- 54 Nakao, and Kazuto Ashizawa
- 55
- 56 Total word count: 4747 words
- 57 Total number of tables: 4
- 58 Total number of figures: 4
- 59

60	Funding: This research did not receive any specific grant from funding agencies in the
61	public, commercial, or not-for-profit sectors.
62	
63	Conflicts of interest: None.
64	
65	Abbreviations: HCC, hepatocellular carcinoma; 3-OHB, 3-hydroxybutyrate; AcAc,
66	acetoacetate; TACE, transcatheter arterial chemoembolization; CT, computed
67	tomography; MRI, magnetic resonance imaging; TKBR, total ketone body ratio; PMI,
68	psoas muscle mass index; IMAC, intramuscular adipose tissue content; c-TACE,
69	conventional TACE; DEB-TACE, drug-eluting bead TACE; BCLC stage, Barcelona
70	Clinic liver cancer stage
71	

74	OBJECTIVE : Arterial ketone bodies, which reflect liver function, have been
75	investigated. However, the relationship between venous ketone bodies and
76	hepatocellular carcinoma (HCC) is unclear. We investigated whether prognosis of
77	patients with HCC after transcatheter arterial chemoembolization (TACE) was
78	associated with venous blood ketone bodies.
79	RESEARCH METHODS & PROCEDURES : Sixty-eight patients with HCC who
80	underwent TACE were recruited for this study. The venous blood ketone body levels
81	were measured 1 day before (pre-treatment) and 7 days after TACE (post-treatment).
82	Skeletal muscle quality was evaluated using the intramuscular adipose tissue content
83	(IMAC).
84	RESULTS : Of the 68 patients, 43 (63.2%) were male with median age of 73.0 years,
85	and the IMAC was -0.274 (range -0.82 to 0.24). The median ketone body levels pre-
86	and post-treatment were 63.0 $\mu mol/L$ (13-310) and 48.0 $\mu mol/L$ (8-896), respectively.
87	The cumulative survival rate of patients with total ketone body ratio ([TKBR]:
88	post-treatment/pre-treatment total ketone bodies)<1 was 86.6%. The rate with TKBR≥1
89	was 59.0% at 300 days (P <0.05). Cox regression analysis identified the TKBR (1≥,
90	hazard ratio: 2.954, 95% confidence interval [CI]: 1.040-8.390, P=0.030) that
91	independently and significantly predicted the patients' prognoses. Logistic regression
92	analysis revealed the IMAC (>-0.2745, odds ratio: 3.958, 95%CI: 1.137-13.779,

93	P=0.031) that predicted TKBR. TKBR and IMAC were positively correlated (rS=0.358,
94	<i>P</i> =0.003).
95	CONCLUSIONS : The changes in the venous ketone body were associated with the
96	muscle status and predicted the prognosis of patients with HCC who underwent TACE.
97	The venous ketone bodies could be a new predictor of the prognosis of HCC patients
98	after TACE.
99	
100	Key words: intramuscular adipose tissue content, skeletal muscle quality, liver disease,
101	cirrhosis, cancer
102	
103	Highlights:
104	• Venous ketone bodies in HCC patients are useful to predict skeletal muscle
105	quality.
106	• Increase of venous ketone bodies is negatively correlated with survival.
107	• Venous ketone bodies could be a predictor of HCC patients' prognosis after
108	TACE.
109	

III0 INTRODUCTION

111 Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related 112 deaths globally [1, 2]. Patients with HCC are at an increased risk of being malnourished, 113 and most HCCs develop due to chronic liver diseases and cirrhosis. Malnutrition is a 114 common finding in patients with cancer and cirrhosis [3, 4]. Moreover, sarcopenia is the 115 major component of malnutrition, and it is a frequent complication in patients with 116 chronic liver disease or cirrhosis [4-6]. Nutritional assessment of patients with chronic 117 liver disease or cirrhosis is essential, because malnutrition is an independent predictor of 118 mortality and complications [7-11]. However, there is no simple marker to assess 119 nutrition or sarcopenia in HCC patients with chronic liver disease or cirrhosis. 120 121 Ketone bodies are composed of three molecules: 3-hydroxybutyrate (3-OHB), 122 acetoacetate (AcAc), and acetone, which are produced from fatty acids in the liver. 123 Ketone bodies play an important role in survival during starvation and provide a source 124 of energy to the tissues in the brain, heart, muscle, and kidney in patients with glucose 125 insufficiency [12]. 126 127 Previous studies have shown the relationship between hepatic reserve function and

128 arterial ketone bodies during liver surgery or transcatheter arterial chemoembolization

129 (TACE) [13-17]. However, no studies have focused on venous ketone bodies, nutrition

130	status, and skeletal muscle status in patients with chronic liver disease, cirrhosis, or
131	HCC. In this report, we utilized venous ketone bodies to assess the nutrition and skeletal
132	muscle status, as well as predict the prognosis of patients with HCC who underwent
133	TACE.
134	
135	METHODS
136	Patients
137	Between June 2014 and May 2015, 133 consecutive HCC patients who underwent
138	TACE at our institution were enrolled in this retrospective study. HCC was diagnosed
139	based on the positive results of typical vascular patterns, revealed by either
140	contrast-enhanced computed tomography (CT), contrast-enhanced magnetic resonance
141	imaging (MRI), or angiography. Otherwise, the pathological diagnosis was made via a
142	fine-needle biopsy of space-occupying lesions that were detected in the liver.
143	
144	The exclusion criteria for this study were (1) a shorter follow-up period (<2 months)
145	after TACE treatment, (2) absence of properly examined samples or insufficient archival
146	material, and (3) no HCC definite diagnosis. After the exclusion criteria were applied,
147	data on 68 patients who underwent TACE were analysed retrospectively.

150	For all patients in our cohort, a blood sample was collected 1 day before (pre-treatment)
151	and 7 days after (post-treatment) TACE treatment. Medical histories, along with the
152	results of routine tests for blood cell counts, liver biochemistry, and tumour markers at
153	the time of TACE and thereafter were retrieved from the patients' medical records.
154	Complete blood cell counts were obtained and biochemical tests were performed using
155	automated procedures in the clinical pathology laboratories of our hospital. All blood
156	samples were collected with the patients in a fasting state. The total ketone body level,
157	3-OHB, and AcAc were measured via an enzyme cycling method using a commercial
158	kit (TKB-L Shiyaku Kainos, 3HB-L Shiyaku Kainos; Kainos, Tokyo, Japan). We also
159	calculated the total ketone body ratio (TKBR) by dividing the total ketone bodies at
160	post-treatment (day 7) by the number of total ketone bodies at pre-treatment (day 0).
161	
162	Image analysis
163	The quality of the skeletal muscle was evaluated using the psoas muscle mass index
164	(PMI) and intramuscular adipose tissue content (IMAC) using CT imaging. The
165	cross-sectional areas of the right and left psoas muscles were measured with manual
166	tracing on CT imaging at the L3 level to determine the PMI. The PMI was calculated by

- 167 normalizing the cross-sectional areas for height (cm^2/m^2) [18]. The IMAC was
- 168 determined by measuring the CT value of the multifidus muscles (Hounsfield units) and

the CT value of subcutaneous fat (Hounsfield units) at the umbilical level. The IMAC
was calculated by dividing the region of interest of the multifidus muscle (Hounsfield
units) with the region of interest of the subcutaneous fat (Hounsfield units) [19, 20].

173 **TACE treatment**

174 Among the 68 patients, 52 underwent conventional TACE (c-TACE) and 16 underwent 175 drug-eluting bead (DEB)-TACE. The standard TACE procedure was performed via a 176 right femoral artery puncture. Selective arteriography of the celiac and superior 177 mesenteric arteries was performed to investigate the arterial anatomy of the liver, 178 vascular supply of the tumour nodes, and patency of the portal vein. TACE was 179 performed as selectively as possible. A mixture of metal matrix composite 180 (Mitomycin-C; Kyowa, Tokyo, Japan) or epirubicin (Nippon Kayaku, Tokyo, Japan) 181 that was manually emulsified with iodized oil (Lipiodol; Fuji Pharma Co., Tokyo, 182 Japan) was used for the c-TACE procedures. The dosages of the chemotherapeutic drug 183 used were determined according to the patient's body surface area and tumour size. 184 Subsequently, embolization was performed with absorbable gelatin sponge particles 185 (Gelpart; Nippon Kayaku, Tokyo, Japan) to reduce residual blood flow. DEB (DC Bead; 186 Eisai Co, Tokyo, Japan) with a diameter of 100-300, 300-500, and 500-700 µm was 187 used for the DEB-TACE procedures. The dosage of epirubicin was 50 mg, which was

188 equivalent to one vial of drug-eluting beads. Interventional radiologists clinically

189 decided whether c-TACE or DEB-TACE should be performed.

190

191 Follow-up and diagnosis of HCC

- 192 All patients were followed up at an interval of 1-3 months, the blood count and liver
- 193 biochemistry were measured, and the alpha-fetoprotein and des-gamma-carboxy
- 194 prothrombin levels were quantitatively detected. Diagnostic imaging either by
- 195 ultrasound, CT, or MRI was performed at least once every3 months.

196

197 Ethical considerations

198 Informed consent to use medical records and specimens was obtained from each patient.

- 199 These processes and the study protocol were approved by the Ethical Committee of our
- 200 institution (confirmation number: 16031421), and conformed to the 1975 Declaration of
- 201 Helsinki and the Japanese Ethical Guidelines for Clinical Research (Ministry of Health,
- 202 Labour, and Welfare of Japan, Ethical Guidelines for Clinical Research, 2008).

203

204 Statistical analysis

205 Continuous variables (albumin, prothrombin time, total bilirubin, alpha-fetoprotein,

- 206 Fib-4, PMI, IMAC, and tumour size) were dichotomized with respect to the median
- 207 value or clinically meaningful values in a multivariate analysis. A statistical analysis

208	was performed using Wilcoxon's signed rank test and Mann-Whitney's U-test. To
209	estimate the survival rate after TACE, we used the Kaplan-Meier method and the
210	log-rank test. To select the optimal cutoff values of TKBR that indicate a poor prognosis
211	after TACE, the area under the time-dependent receiver operating characteristic curves
212	[21] was assessed. A Cox proportional hazards regression analysis was performed to
213	evaluate the risk factors for survival after TACE. A multiple regression analysis was
214	performed to determine the factors that were associated with TKBR. Age, sex, and
215	variables with <i>P</i> -values of <0.20 were selected and entered into the multiple regression
216	model. A <i>P</i> -value of 0.05 was considered statistically significant. The data analysis was
217	performed with SPSS ver. 22.0 (SPSS, Chicago, IL, USA).

219 **RESULTS**

220 Patient characteristics

221 The baseline characteristics of the 68 patients who were included in this study are

- summarized in Table 1. The median age was 73.0 years; 43 patients (63.2%) were male;
- 223 branched chain amino acids were administered to 30 (44.1%); and 3 (4.4%), 24 (35.3%),
- 224 26 (38.2%), 14 (20.6%), and 1 (1.5%) patients were diagnosed with Barcelona Clinic
- 225 liver cancer (BCLC) stage 0, A, B, C, and D cancers, respectively. The median PMI was
- 226 5.70 (range: 2.39-8.72 cm²/m²), the IMAC was -0.274 (range: -0.82 to 0.24); the tumour
- size was 2.2 (range: 1.0-15.0 cm), 15 (22.1%) patients were affected in a single nodule,

and 21 (30.9%) patients were diagnosed with diabetes mellitus. The median follow-up
period was 272.5 (range: 67-595 days).

230

231 Total ketone bodies at pre-treatment

- The median total ketone body level, 3-OHB, and AcAc at pre-treatment were 63.0
- 233 (range: 13-310 µmol/L), 47.5 (range: 7-222 µmol/L), and 18.0 (range: 3-100 µmol/L),
- respectively (Figure 1). We divided the 68 patients into two groups stratified by the
- 235 median value of the total ketone body level at pre-treatment. In the group of patients
- 236 whose total ketone body level was \geq 63.0 µmol/L, the following two factors were
- 237 identified as significant in the univariate analysis: IMAC ratio and a history of diabetes
- 238 mellitus (Table 2).
- 239

240 Chronological changes in the total ketone body levels

Figure 2 shows the changes in the total ketone body levels. The median value of the
total ketone body level at pre-treatment was 63.0 (range: 13-310 µmol/L) and that of the
total ketone body level at post-treatment was 48.0 (range 8-896 µmol/L). There was no
significant change in the total ketone body level between pre- and post-treatment
(Figure 2A). However, in 40 patients (58.8%), the total ketone body level after TACE
decreased, and there was an increase in these levels in the other 28 patients (Figure 2B).

247 The median value of the pre-treatment ketone body ratio (AcAc/3-OHB) was 0.41

(range: 0.1-1.3) and that of post-treatment was 0.45 (range: 0.2-2.3). There was no
significant change between the pre- and post-treatment ketone body ratios (data not
shown).

251

252 Cumulative survival rate after TACE

253 During the follow-up period, 16 of the 68 patients (23.5%) died. The cumulative 254 survival rate was 97.1% at 100 days, 86.2% at 200 days, and 76.6% at 300 days. To 255 evaluate the relationship between the total ketone body level and survival after TACE, 256 we characterized these 68 patients according to their total ketone body level at 257 pre-treatment and TKBR (post-treatment/pre-treatment total ketone bodies). Figure 3A 258 shows the survival rate after TACE, stratified by the median value of the total ketone 259 bodies at pre-treatment. There were no significant differences in the survival rate 260 between total ketone bodies \geq 63.0 µmol/L group and <63.0 µmol/L group at 261 pre-treatment (P=0.61 in the log-rank test). Figure 3B shows the survival rate after 262 TACE, stratified by the TKBR. The 200, 300, and 400-day survival rates were 86.6%, 263 86.6%, and 81.5%, respectively, in the 40 patients with TKBR<1 (reduced group); and 264 86.0%, 59.0%, and 50.6%, respectively, in the 28 patients with TKBR≥1 (raised group). 265 The survival rates were significantly higher in the reduced group than in the raised 266 group ($P \le 0.05$ in the log-rank test).

Risk factors for survival after TACE 268 269 The univariate analysis demonstrated the factors that influence the risk for survival after 270 TACE. A Cox regression analysis was performed for 18 variables: age, sex, branched 271 chain amino acid levels, BCLC stage, albumin, prothrombin time, total bilirubin, 272 Child-Pugh grade, alpha fetoprotein, Fib-4 index, PMI, IMAC, tumour size, tumour 273 number, diagnosis of diabetes mellitus, type of TACE, total ketone body level, and TKBR. The following three factors were identified as risk factors for survival after 274 275 TACE using the univariate analysis (P<0.20): Fib-4 index, tumour size, and TKBR 276 (Table 3). 277 278 A multivariate analysis was performed on the three factors (Fib-4 index, tumour size, 279 and TKBR) identified via univariate analysis (P < 0.20). TKBR (≥ 1 , hazard ratio: 2.954, 280 95% confidence interval: 1.040-8.390, P=0.030) was identified as an independent and 281 significant risk factor of patient prognosis after TACE (Table 3). 282 **Predictors for TKBR** 283 284 We divided the patients into two groups, stratified by TKBR. The following nine

- 285 significant (P < 0.20) factors were identified in the TKBR raised group in the univariate
- analysis: age, sex, BCLC stage, prothrombin time, total bilirubin, PMI, IMAC, tumour

293	Correlation between the TKBR and IMAC
292	
291	interval: 1.072-15.796, P=0.039) were predictors for the TKBR (Table 4).
290	1.137-13.779, <i>P</i> =0.031) and tumour size (>2.2 cm, odds ratio: 4.115, 95% confidence
289	analysis revealed that the IMAC (>-0.2745, odds ratio: 3.958, 95% confidence interval:
288	prepared to estimate the predictors for the TKBR. A multivariate logistic regression
287	size, and diagnosis of diabetes mellitus. Multivariable logistic-regression models were

- Figure 4 shows a scatter plot of the TKBR and the IMAC. The values that were obtained 294 295 for the TKBR and IMAC groups in the Spearman's rank order correlation test 296 (rS=0.358) showed that there was a positive correlation between the groups (P=0.003).
- 297

DISCUSSION 298

299 Ketone bodies are small lipid-derived molecules that are a source of energy for the 300 peripheral tissues during fasting or prolonged exercise [22]. During fasting, the muscle 301 and liver stores of glycogen are depleted first. Then, fatty acids are transported to the 302 liver for conversion to ketone bodies. Patients with advanced liver disease particularly 303 have increased fat oxidation [11]. The production of ketone bodies plays an important 304 role in metabolites. Serum ketone bodies are defined by a variety of factors, such as 305 energy metabolism, circumstances (starving, prolonged exercise, low-carbohydrate diets, 306 and diabetes mellitus), liver conditions, and the extra-hepatic tissues (heart, kidney,

307	brain, and skeletal muscle). Previous studies have focused on arterial ketone bodies and
308	liver function [14, 16]. Conversely, the extra-hepatic tissues are assumed to influence
309	venous ketone bodies.
310	
311	The first main finding of our study was that venous ketone bodies had different
312	dynamics from those of arterial ketone bodies. Previous studies showed a relationship
313	between the arterial ketone body ratio (AcAc/3-OHB) and hepatic reserve function [15,
314	16]. However, there was no relationship between venous ketone bodies and hepatic
315	reserve function in our study (Tables 2 and 4). Furthermore, there was no significant
316	change in the venous ketone body ratio (AcAc/3-OHB) after TACE. Recent studies
317	reported that ketone bodies regulate metabolism and 3-OHB signals via extracellular
318	receptors, and endogenously inhibit histone deacetylases [23]. Suppression of oxidative
319	stress due to 3-OHB may benefit organs after a patient undergoes TACE. In our study, in
320	more than half of the patients, the total ketone body level decreased after TACE. Thus,
321	the elevation of ketone bodies 7 days after TACE does not solely reflect ischemic
322	changes.
323	
324	The second main finding of our study was that the TKBR can predict the patient's
325	prognosis after undergoing TACE. We were able to stratify the patients into different

326 risk groups using the TKBR (Figure 3). The multivariate analysis revealed that the

327	TKBR was the most significant factor for survival after TACE (Table 3). There was no
328	correlation between the TKBR and hepatic functional reserve. The reason why TKBR
329	predicts prognosis was unclear. However, our study revealed that elevation of the total
330	ketone body level was related to an extra-hepatic factor (skeletal muscle).
331	
332	The third main finding of our study was that the quality of the skeletal muscle (IMAC)
333	affected the ketone body level after TACE. The multivariate analysis revealed that the
334	quality of the skeletal muscle (IMAC) was the significant factor that predicted the
335	TKBR (Table 4). We observed that the TKBR significantly correlated with the IMAC
336	(Figure 4). A high TKBR allowed us to identify patients with low muscle quality.
337	Skeletal muscle depletion, which indicates a low quantity and quality of skeletal muscle,
338	is referred to as sarcopenia and predicts mortality in patients with advanced liver disease
339	[24-26]. Based on these considerations, we suggest that the TKBR does not reflect the
340	hepatic reserve function, but rather the nutritional status of patients with HCC who
341	underwent TACE. Venous ketone bodies may be associated with nutritional status and
342	sarcopenia in HCC patients.
343	
344	The present study was limited by its retrospective nature. A future prospective analysis
345	is needed to validate the efficacy of the total ketone body ratio to predict patients'

346 prognoses after undergoing TACE. Another limitation is that there were no definite

347	criteria to estimate the quantity and quality of the skeletal muscle. In addition, the
348	ketone bodies were influenced by several factors (food intake, administration of drugs,
349	and exercise). Other elements, which we did not evaluate, might have affected the
350	ketone body level. Impaired performance status, advanced stages of disease, and poor
351	hepatic reserve function were associated with shorter survival of patients with HCC [27].
352	In our study, the Child-Pugh grade or BCLC stage was not a significant factor for
353	survival in patients who underwent TACE. One plausible explanation is that our study
354	consisted of patients with similar backgrounds regarding liver function and disease
355	progression. Furthermore, the small number of participants in this study is also a
356	limitation.
357	

358	Regardless of these limitations, this is the first report to confirm the relationship
359	between venous ketone bodies and treatment of HCC. In addition, the TKBR may
360	predict the patient's prognosis and be related to the quality of skeletal muscle. Several
361	studies reported that the quantity and quality of the skeletal muscle are important for
362	achieving good clinical outcomes in patients with advanced liver diseases [5, 24-26, 28].
363	Increasing the skeletal muscle mass and function may be a possible therapeutic target to
364	improve the prognosis of patients with advanced HCC. Therefore, the prediction of
365	patients with poor prognosis after treatment is of increasing clinical relevance.

367 **CONCLUSION**

- 368 In conclusion, this study revealed that there was an association between venous ketone
- 369 bodies and survival of HCC patients who underwent TACE. Furthermore, the venous
- 370 ketone bodies in HCC patients who underwent TACE were useful to predict skeletal
- 371 muscle quality. The results suggest that venous ketone bodies could be a new predictor
- 372 of prognosis of HCC patients after TACE.

374 **References**

375	[1]	Bruix J, Llovet JM. Major achievements in hepatocellular carcinoma. Lancet.
376		2009;373:614–16.
377	[2]	El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin
378		Gastroenterol. 2002;35:S72–78.
379	[3]	Jensen GL, Bistrian B, Roubenoff R, Heimburger DC. Malnutrition syndromes:
380		a conundrum vs continuum. JPEN J Parenter Entesral Nutr. 2009;33:710–16.
381	[4]	Alberino F, Gatta A, Amodio P, Merkel C, Di Pascoli L, Boffo G, et al. Nutrition
382		and survival in patients with liver cirrhosis. Nutrition. 2001;17:445–50.
383	[5]	Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment
384		in liver disease. J Hepatol. 2016;65:1232–44.
385	[6]	Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis?
386		PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology. 1996;23:1041-46.
387	[7]	Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip
388		strength, subjective global assessment, and prognostic nutritional index in
389		assessing malnutrition and predicting clinical outcome in cirrhotic outpatients.
390		Nutrition. 2005;21:113–17.
391	[8]	Cabre E, Gassull MA. Nutrition in liver disease. Curr Opin Clin Nutr Metab
392		Care. 2005;8:545–51.

393	[9] Norman K, Kirchner H, Lochs H, Pirlich M. Malnutrition affects quality of life
394	in gastroenterology patients. World J Gastroenterol. 2006;12:3380-85.
395	[10] Cheung K, Lee SS, Raman M. Prevalence and mechanisms of malnutrition in
396	patients with advanced liver disease, and nutrition management strategies. Clin
397	Gastroenterol Hepatol. 2012;10:117–25.
398	[11] Tajika M, Kato M, Mohri H, Miwa Y, Kato T, Ohnishi H, et al. Prognostic
399	value of energy metabolism in patients with viral liver cirrhosis. Nutrition.
400	2002;18:229–34.
401	[12] Hegardt FG. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a
402	control enzyme in ketogenesis. Biochem J. 1999;338 (Pt 3):569-82.
403	[13] Hanazaki K, Wakabayashi M, Sodeyama H, Makiuchi A, Igarashi J, Yokoyama
404	S, et al. Arterial ketone body ratio does not correlate with ischemic changes
405	during major hepatectomy. Hepatogastroenterology. 1998;45:145-49.
406	[14] Matsushita K, Kawasaki S, Makuuchi M. Arterial ketone body ratio in liver
407	surgery. Hepatology. 1994;20:331–35.
408	[15] Tani T, Taki Y, Jikko A, Minematsu S, Yamamoto M, Kamiyama T. Short-term
409	changes in blood ketone body ratios in the phase immediately after hepatic
410	artery embolization: their clinical significance. Am J Med Sci.
411	1986;291:93–100.

412	[16] Yamamoto R. Changes in arterial ketone body ratio after transcatheter arterial
413	embolization for hepatocellular carcinoma-clinical and experimental studies.
414	Nihon Shokakibyo Gakkai Zasshi. 1990;87:1401–09.
415	[17] Yamaoka K, Kanayama M, Tajiri K, Yamane M, Marumo F, Sato C. Clinical
416	significance of arterial ketone body ratio in chronic liver disease. Digestion.
417	1998;59:360–63.
418	[18] Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, et al.
419	Proposal for new diagnostic criteria for low skeletal muscle mass based on
420	computed tomography imaging in Asian adults. Nutrition. 2016;32:1200-05.
421	[19] Kitajima Y, Eguchi Y, Ishibashi E, Nakashita S, Aoki S, Toda S, et al.
422	Age-related fat deposition in multifidus muscle could be a marker for
423	nonalcoholic fatty liver disease. J Gastroenterol. 2010;45:218-24.
424	[20] Kitajima Y, Hyogo H, Sumida Y, Eguchi Y, Ono N, Kuwashiro T, et al. Severity
425	of non-alcoholic steatohepatitis is associated with substitution of adipose tissue
426	in skeletal muscle. J Gastroenterol Hepatol. 2013;28:1507-14.
427	[21] Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored
428	survival data and a diagnostic marker. Biometrics. 2000;56:337-44.
429	[22] Cahill GF. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.

430	[23] Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al.
431	Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone
432	deacetylase inhibitor. Science. 2013;339:211-14.
433	[24] Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, et al.
434	Impact of quality as well as quantity of skeletal muscle on outcomes after liver
435	transplantation. Liver Transpl. 2014;20:1413–19.
436	[25] Harimoto N, Yoshizumi T, Shimokawa M, Sakata K, Kimura K, Itoh S, et al.
437	Sarcopenia is a poor prognostic factor following hepatic resection in patients
438	aged 70 years and older with hepatocellular carcinoma. Hepatol Res.
439	2016;46:1247–55.
440	[26] Levolger S, van Vledder MG, Muslem R, Koek M, Niessen WJ, de Man RA, et
441	al. Sarcopenia impairs survival in patients with potentially curable
442	hepatocellular carcinoma. J Surg Oncol. 2015;112:208–13.
443	[27] Cabibbo G, Enea M, Attanasio M, Bruix J, Craxi A, Camma C. A meta-analysis
444	of survival rates of untreated patients in randomized clinical trials of
445	hepatocellular carcinoma. Hepatology. 2010;51:1274-83.
446	[28] Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al.
447	Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on
448	computed tomography. J Hepatol. 2014;60:1151–7.
449	

Factor	N (range, %)
Age, y	73.0 (53-86)
Sex, male	43 (63.2%)
Period, days	272.5 (67-595)
BCAA, +	30 (44.1%)
BCLC stage 0/A/B/C/D	3/24/26/14/1
Albumin, g/dL	3.30 (2.0-4.3)
PT-INR	1.110 (0.95-2.06)
Total bilirubin, mg/dL	0.80 (0.3-2.2)
Child-Pugh grade A/B/C	44/23/1
AFP, ng/mL	23.45 (1.6-20182.0)
Fib-4 index	5.98 (1.2-14.0)
PMI, cm^2/m^2	5.7005 (2.392-8.729)
IMAC ratio	-0.2745 (-0.827-0.239)
Tumour size, cm	2.20 (1.0-15.0)
Tumour number, single	15 (22.1%)
Aetiology	10/24/12/11
B/C/NBNC/alcohol	10/34/13/11
DM	21 (30.9%)
TACE (conventional/DEB)	52/16

450 Table 1. Characteristics of the patients enrolled in the present study

451 Data are given as the medians with ranges. Data were collected at pre-treatment. 452 Abbreviations: BCAA, branched chain amino acids; BCLC stage, Barcelona Clinic liver 453 cancer stage; PT, prothrombin time; AFP, α -fetoprotein; PMI, psoas muscle mass index; 454 IMAC, intramuscular adipose tissue content; HBV, hepatitis B virus; HCV, hepatitis C 455 virus; DM, diabetes mellitus; TACE, transcatheter arterial chemoembolization; DEB, 456 drug eluting beads. 457

Easter	Total ketone bodies	Total ketone bodies	D
	<63 µmol/L (n=32)	≥63 µmol/L (n=36)	Γ
Age, years	73.5 (60-86)	73.0 (53-85)	0.60
Sex, male/female	19/13	24/12	0.53
BCAA, -/+	18/14	20/16	0.95
BCLC stage 0/A/B/C/D	2/12/12/5/1	1/12/14/9/0	0.45
Albumin, g/dL	3.30 (2.0-4.2)	3.30 (2.6-4.3)	0.63
PT-INR	1.105 (0.95-2.06)	1.110 (0.97-1.71)	0.94
Total bilirubin, mg/dL	0.80 (0.4-2.0)	0.90 (0.3-2.2)	0.27
Child-Pugh grade A/B/C	17/14/1	27/9/0	0.12
AFP, ng/mL	13.00 (1.9-16326.0)	26.75 (1.6-20182.0)	0.27
Fib-4 index	6.69 (1.4-14.0)	5.80 (1.2-13.9)	0.34
PMI, cm^2/m^2	5.2110 (2.392-7.546)	5.8340 (3.285-8.729)	0.07
IMAC ratio	-0.2335 (-0.53-0.239)	-0.3425 (-0.827-0.056)	< 0.01
Tumour size, cm	2.10 (1.0-5.0)	2.20 (1.0-15.0)	0.27
Tumour number, single/multiple	9/23	6/30	0.25
Aetiology HBV/HCV/non B non	2/20/6/4	0/1/7	0.94
C/alcohol	2/20/0/4	8/14////	0.84
DM, -/+	26/6	18/18	< 0.01
TACE conventional/DEB	24/8	28/8	0.78

1 Table 2. Characteristics of the two groups, stratified by the median value of total ketone body level at pre-treatment

2 Data are given as the medians with ranges. Data were collected at pre-treatment. Abbreviations: BCAA, branched chain amino acids; BCLC stage,

3 Barcelona Clinic liver cancer stage; PT, prothrombin time; AFP, α-fetoprotein; PMI, psoas muscle mass index; IMAC, intramuscular adipose tissue

content; DM, diabetes mellitus; TACE, transcatheter arterial chemoembolization; DEB, drug eluting beads. A chi-squared and Mann-Whitney's U tests
 were performed for comparisons.

	Univariat	e analysis		Multivariate a	analysis
Risk factor		Р	Hazard ratio	(95% confidence interval)	Р
Age, years	>73	0.21			
Sex	Male	0.74			
BCAA	+	0.22			
BCLC stage	B/C/D	0.35			
Albumin, g/dL	>3.3	0.81			
PT-INR	<1.110	0.38			
Total bilirubin, mg/dL	>0.8	0.65			
Child-Pugh grade	B/C	0.92			
AFP, ng/mL	>23.45	0.87			
Fib-4 index	>6.0	0.19	0.522	(0.183-1.485)	0.223
PMI, cm^2/m^2	< 5.70	0.38			
IMAC ratio	>-0.2745	0.48			
Tumour size. Cm	>2.20	0.11	1.272	(0.459-3.520)	0.642
Tumour number	Multiple	0.63			
DM	+	0.77			
TACE	DEB	0.33			
Total ketone bodies, µmol/L	≥63.0	0.61			
TKBR	≥1	< 0.01	2.954	(1.040-8.390)	0.03

1 Table 3. Risk factors associated with survival after TACE

Table 3. Risk factors associated with survival after TACE Hazard ratios for the development of hepatocellular carcinoma were calculated using Cox
 proportional hazards analysis. Abbreviations: BCAA, branched chain amino acids; BCLC stage, Barcelona Clinic liver cancer stage; PT, prothrombin
 time; AFP, α-fetoprotein; PMI, psoas muscle mass index; IMAC, intramuscular adipose tissue content; DM, diabetes mellitus; TACE, transcatheter
 arterial chemoembolization; DEB, drug eluting beads; TKBR, total ketone body ratio.

Independent variables		Odds ratio	(95% confidence interval)	Р
Age, years	≤73	1	(reference)	
	>73	1.319	(0.416-4.182)	0.638
Gender	Male	1	(reference)	
	Female	1.551	(0.376-6.398)	0.544
BCLC stage	0/A	1	(reference)	
	B/C/D	0.641	(0.162-2.543)	0.527
PT-INR	≤1.110	1	(reference)	
	>1.110	0.682	(0.210-2.221)	0.526
Total bilirubin, mg/dL	≤0.8	1	(reference)	
	>0.8	0.325	(0.096-1.101)	0.071
PMI, cm^2/m^2	≥5.70	1	(reference)	
	<5.70	2.426	(0.651-9.035)	0.187
IMAC	≤-0.2745	1	(reference)	
	>-0.2745	3.958	(1.137-13.779)	0.031
Tumour size, cm	≤2.2	1	(reference)	
	>2.2	4.115	(1.072-15.796)	0.039
DM	-	1	(reference)	
	+	0.823	(0.226-3.001)	0.768

1 Table 4. Predictors of the total ketone body ratio (total ketone bodies on day 7/total ketone bodies on day 0) Multivariate model

Multivariable logistic-regression models were used to estimate the predictors for the total ketone body ratio. Variables were included in the model based on the univariate analysis (P<0.20). Abbreviations: PMI, psoas muscle mass index; IMAC, intramuscular adipose content; DM, diabetes mellitus.

1 Figure legends

2	Figure 1: Scatter plots of venous total ketone bodies, 3-hydroxybutyrate, and
3	acetoacetate
4	The median values are indicated by the horizontal bars in the scatter plot. In the box
5	plot, the bottom and top of the box are the 25th and 75th percentiles (the lower and
6	upper quartiles), respectively.
7	
8	Figure 2: Chronological changes in the total ketone body levels
9	Chronological changes in the total ketone body level at pre-treatment (day 0) and
10	post-treatment (day 7) of the 68 HCC patients who underwent TACE. (a): The total
11	ketone bodies were not significantly changed after treatment. The dots represent the
12	median serum total ketone body values at each time point, and the error bar represents
13	the interquartile range. (b): The changes in the total ketone body level in individual
14	patients. The solid line indicates the group of patients in whom the level increased
15	(n=28). The dashed line indicates those in whom the level decreased (n=40).
16	Wilcoxon's signed-rank test was performed for comparisons.
17	HCC, hepatocellular carcinoma; TACE: transcatheter arterial chemoembolization
18	
19	Figure 3: Overall survival of HCC patients after undergoing TACE

20 Overall survival according to (a) the total ketone body values at pre-treatment and (b)

1	the TKBR. The survival rates were analysed using the Kaplan-Meier method. The
2	black solid lines indicate the stratified (a) total ketone body values at pre-treatment that
3	were \geq 63 µmol/L and <63 µmol/L, and (b) the TKBR \geq 1 and <1, respectively. (b) The
4	incidence rate differed significantly between the two groups (P <0.05, in the log-rank
5	test).
6	HCC, hepatocellular carcinoma; TACE, transcatheter arterial chemoembolization;
7	TKBR, total ketone body ratio
8	
8 9	Figure 4: Correlation between the TKBR and IMAC
8 9 10	Figure 4: Correlation between the TKBR and IMAC Scatter plot of the TKBR and IMAC. The values that were obtained for the TKBR and
8 9 10 11	Figure 4: Correlation between the TKBR and IMAC Scatter plot of the TKBR and IMAC. The values that were obtained for the TKBR and IMAC groups using Spearman's rank order correlation test (rS=0.358) showed the
8 9 10 11 12	Figure 4: Correlation between the TKBR and IMAC Scatter plot of the TKBR and IMAC. The values that were obtained for the TKBR and IMAC groups using Spearman's rank order correlation test (rS=0.358) showed the presence of positive correlations between the groups (P=0.003).
8 9 10 11 12 13	Figure 4: Correlation between the TKBR and IMAC Scatter plot of the TKBR and IMAC. The values that were obtained for the TKBR and IMAC groups using Spearman's rank order correlation test (rS=0.358) showed the presence of positive correlations between the groups (P=0.003). TKBR, total ketone body ratio; IMAC; intramuscular adipose content

Figure 1. Scatter plot of venous total ketone bodies, 3-hydroxybutyrate and acetoacetate

Figure 2. Chronological changes in the total ketone bodies and ketone body levels

Figure 3. Overall survival of HCC patients after TACE

Figure 4. Correlation between the total ketone bodies ratio and intramuscular adipose content