1	Visual crypsis as a possible function of polymorphic shell coloration in the infaunal
2	clam Ruditapes philippinarum
3	
4	Seiji Takeuchi ^{a,*} , Kota Suzuki ^b , Taishi Nakagawa ^b , Akio Tamaki ^a
5	^a Graduate School of Fisheries and Environmental Sciences, Nagasaki University,
6	Nagasaki 852-8521, Japan
7	^b Faculty of Fisheries, Nagasaki University, Nagasaki 852-8521, Japan
8	
9	* Correspondence author at: Faculty of Fisheries, Nagasaki University, Bunkyo-machi 1-14,
10	Nagasaki 852-8521, Japan. Tel.: +81 95 819 2818; fax: +81 95 819 2799.
11	E-mail address: stakeuchi@nagasaki-u.ac.jp (S. Takeuchi).
12	

13 ABSTRACT

14The infaunal clam Ruditapes philippinarum exhibits highly polymorphic shell coloration, but the 15function of the coloration remains uncertain. Here, a hypothesis that such shell coloration functions 16 to enhance visual crypsis (i.e., background color matching) in juveniles (<15 mm in shell length) 17was tested with a combination of a field survey and laboratory experiments. Shell and background 18 colorations were expressed as mean brightness values. Firstly, the association between shell and 19background brightness was investigated. For this, a field survey for two sympatric subpopulations 20with distinct substrates was conducted on an intertidal sandflat in western Kyushu, Japan. Secondly, 21the visual-crypsis hypothesis was tested experimentally using half-valve clam shells filled with paste 22of raw clam meat as prey and the pufferfish Takifugu niphobles as a visually hunting predator, in a 23tank with one to two dark-colored substrates and one light-colored substrate. Our field survey 24showed that shell brightness significantly differed between the two sympatric subpopulations of 25juvenile clams and was positively associated with background brightness. Our laboratory 26experiments indicated that prey items with comparatively light (dark) coloration on dark- (light-) 27colored substrate were consumed by predators more immediately and at a higher rate than in the 28color-matched combinations. Consequently, shell-background color matching could help juvenile 29clams avoid attack from visually hunting predators. The results provide a new insight into effective 30 management planning for this clam species, creating sand habitats with a more matched coloration. 3132Keywords: Color-polymorphic prey, Manila clam, Visual predator, Grass pufferfish, Cryptic

34

33

coloration, Background color matching

 $\mathbf{2}$

1. Introduction

36	Visual crypsis (i.e., background color matching) is an effective antipredator defense which is
37	prevalent among various prey animals (Ruxton et al., 2004; Quicke, 2017). Such a function enables
38	prey animals to conceal themselves and to avoid attacks from visually hunting predators (for
39	examples of aquatic prey animals, see Hughes and Mather, 1986; Donnelly and Whoriskey, 1993;
40	Palma and Steneck, 2001; Manríquez et al., 2008; Ryer et al., 2008). Therefore, if their survival is
41	strongly affected by visually hunting predators, prey animals with cryptic coloration will have
42	advantage in establishing a population through background color matching. Despite its importance,
43	the concept of background color matching has been largely overlooked in both species conservation
44	and resource management practices (Donnelly and Whoriskey, 1993; Baling et al., 2016).
45	The globally-distributed infaunal clam Ruditapes philippinarum (Adams & Reeve) (Toba et al.,
46	1992; Vincenzi et al., 2011; Humphreys et al., 2015; Talley et al., 2015; Cordero et al., 2017)
47	exhibits a highly polymorphic shell coloration which is largely determined genetically (Peignon et
48	al., 1995; Huo et al., 2017), but the function of the coloration remains uncertain. Their habitats
49	extend from intertidal to shallow-subtidal zones often covering a wide range of sediment types (i.e.,
50	from muddy sand, through sand, to gravel sand; and also patches of shell fragments) (Kondo, 1987;
51	Takeuchi et al., 2013; Takeuchi et al., 2015; Talley et al., 2015). Ruditapes philippinarum clams with
52	shell lengths < 15 mm were defined as juveniles, since their smallest mature shell length is
53	approximately 15 mm (Toba et al., 1992). In Japan, R. philippinarum clams are a commercially
54	important species. To support the establishment of clam populations, adding allochthonous substrates,
55	such as bivalve-shell fragments (Sakurai et al., 2012), offshore dredged sand (Nakahara and Nasu,
56	2002), and artificial gravel (Ikushima et al., 2012), to sandflats has been conducted.
57	Visual predation by birds and fish is an important source of mortality of <i>R. philippinarum</i> clams,
58	especially in their juvenile stage (Toba et al., 1992; Nakahara and Nasu, 2002; Kimura, 2005;

59	Shigeta and Usuki, 2012; Takahashi et al., 2016). Ruditapes philippinarum clams are sometimes
60	dislodged from the sediments by abrupt sediment erosion induced by hydrodynamic disturbance
61	(Kakino, 2000; Takeuchi et al., 2015), and clams exposed onto the sediment surface will undergo an
62	elevated predation risk. In this context, juveniles may be more at risk than adults due to the former's
63	more limited burrowing depths (Stanley, 1970; Kondo, 1987). Takeuchi et al. (2015) found that
64	juvenile R. philippinarum clams burrow into the sediments more rapidly under a light condition than
65	under a dark one. The authors concluded that this result can be explained by an adaptive behavioral
66	trait against visually hunting predators.
67	Furthermore, polymorphic shell coloration of R. philippinarum clams may function to enhance
68	visual crypsis, as shown by some studies with other shelled mollusks [for chitons, see Rodrigues and
69	Absalão (2005) and Mendonça et al. (2015); for gastropods, see Reimchen (1979), Byers (1989), and
70	Byers (1990); for bivalves, see Smith (1975) and Whiteley et al. (1997)]. For example, Whiteley et
71	al. (1997) showed a positive correlation between shell and background colorations in the
72	shallow-burrowing bivalve Donacilla cornea (their size: up to 20 mm in shell length) from an
73	intertidal sandy beach of Korinos, northern Greece.
74	The objective of the present study was to test the visual-crypsis hypothesis, using a combination
75	of a field survey and laboratory experiments. Juvenile clams were used for this study, and shell
76	coloration was quantified in terms of brightness (for the definition, see Section 2.1.2). Firstly, to
77	study the association between shell and background brightness, a field survey for two sympatric
78	subpopulations with distinct substrates was conducted on an intertidal sandflat. Secondly, to test the
79	visual-crypsis hypothesis, laboratory experiments were performed using the pufferfish Takifugu
80	niphobles (Jordan & Snyder), which is known as one of the most important predators for juvenile R.
81	philippinarum clams (Shigeta and Usuki, 2012). The results revealed that shell-background color
82	matching can help juvenile R. philippinarum clams avoid attack from visually hunting predators,

which provides a new insight into effective management planning for this clam species based on the
concept of color matching.

85

86 2. Materials and methods

- 87 2.1. Field survey
- 88 2.1.1. Study area

The study area is located on an intertidal sandflat in western Kyushu, Japan (32° 47.2' N, 130° 89 90 35.5' E; see fig. 1 in Takeuchi et al., 2015). Tidal level fluctuates in a semidiurnal cycle. The annual 91means of predicted tidal ranges at spring and neap tides are 3.97 and 1.70 m, respectively, at the 92Japan Meteorological Agency's tidal gauge station (32° 45' N, 130° 34' E) located ca. 5 km south of 93the sandflat. The whole area of the sandflat is ca. 4.15 km^2 , with the maximum distance from the 94uppermost shore to low water spring tide level being 2.7 km. On the sandflat, the spatial distribution 95range of comparatively large-sized *Ruditapes philippinarum* clams with shell lengths > 20 mm is 96 limited to the low-tide zone (1409-2129 m seaward from the uppermost shoreline), although that of 97 small-sized clams with shell length ≤ 10 mm extends over the whole intertidal zone (Takeuchi et al., 982013; Takeuchi et al., 2015). Most of the sandflat is covered with blackish sand from Mount Aso, an 99 active volcano. The field survey was conducted at two sites with distinct substrates. One site 100 [hereafter, Site A (32° 47' 12.6" N, 130° 35' 25.9" E)] was covered with the autochthonous, blackish sand. The other site [hereafter, Site B (32° 47' 16.8" N, 130° 35' 30.1" E)] was covered with whitish 101 102sand which had been dredged from an offshore seabed and dumped over a part ($80 \text{ m} \times 100 \text{ m}$) of 103the sandflat, for enhancing the recruitment of R. philippinarum clams (Oshima Fisheries Cooperative 104Association, personal communication). The two sites were ca. 1200 m seaward from the uppermost 105shoreline and were 169 m apart from each other.

107 2.1.2. Sampling and subsequent sample processing

108 A field survey for clam-shell and sediment colorations and grain-size composition was conducted 109at a spring low tide on 23 August 2017. At each sampling site, 25 samples for clam-shell coloration, 110 one sample for sediment coloration, and one sample for grain-size composition were collected. 111 Coloration of shell and background was expressed as brightness values of gray-scale color. This 112value ranges from 0 (= black) to 255 (= white) and increases with brightening. Shell-color 113configurations (e.g., plain, mottled, or banded coloration) were not discriminated, and the shell 114 coloration of each specimen was determined by the mean brightness value over its shell surface. 115To take a sample for clam-shell coloration, sediments of the top 8-cm layer were scooped up 116 using a 23-cm \times 15-cm rectangle shovel, and after sieving with a 2-mm mesh, retained materials 117were fixed with 10% neutralized seawater formalin. In the laboratory, R. philippinarum clams were 118 sorted from each sample. Of them, juvenile clams with shell lengths < 15 mm were used in the 119 subsequent analysis. The shell brightness of each specimen was quantified as follows: (1) each 120specimen was placed on a stage (5-cm length, 3-cm width, and 1-cm height) which was centered in a 12111-cm \times 11-cm square tray (3-cm height) containing freshwater (1.5-cm depth above the stage), with 122its right valve directed upward; (2) a digital image of each specimen, with a color chart (i.e., a 12310-mm \times 10-mm standard color chart composed of 3×3 cells of red, green, blue, black, gray, white, 124yellow, purple, and cyan colors; CasMatch, Bear Medic), was taken under two light sources, using a 125digital camera (PENTAX K-70, RICOH) mounted on a copy stand (distance from the camera lens to 126the stage = 22 cm; (3) color correction based on the black, gray, and white colors of the chart and 127trimming were made for each image by using Adobe Photoshop Elements 15; and (4) RGB (red, 128green, and blue) pixel values were obtained from each image using imageJ 1.48v 129(https://imagej.nih.gov/ij/) and were converted into a brightness value (Br) using the following 130equation: Br = (R + G + B)/3, where R, G, and B are means of red, green, and blue pixel values (=

discrete values ranging from 0 to 255), respectively. Clams with shell brightness < 127.5 were
defined as dark-colored prey; the other side group as light-colored prey. Shell length of each
specimen was measured from the image to the nearest 0.1 mm, using imageJ 1.48v. Whether mean
shell brightness and number of individual clams differed significantly between the two sampling
sites was tested by a generalized linear model analysis with a null model likelihood ratio test
(assuming a gamma and Poisson error distributions, respectively, and a log-link function). These
analyses were performed on "R" (R Core Team, 2015).

138 To take a sample for sediment coloration, surface sediments to a depth of 1.5 cm were collected 1393 times using a 10-cm \times 10-cm quadrat frame and were combined into one sample. The sediment 140sample was fixed with 10% neutralized seawater formalin in order to prevent their color from being 141 degraded by growth of algae and/or microorganisms. The coloration of each sediment sample was 142quantified as follows: (1) each sample was well mixed and put into a 11-cm × 11-cm square tray 143(3-cm height); (2) freshwater was filled to 1.5-cm depth above the sediment surface, using a siphon 144without sediment disturbance; (3) taking an image and the subsequent color correction were 145conducted using the same method as mentioned above; and (4) to calculate the mean brightness 146value of each sediment sample, brightness values in 99 frames ($1-cm \times 1-cm$) randomly selected 147from the image were averaged. 148To take a sample for grain-size composition, sediments of the top 3-cm layer were collected 149using a 10-cm \times 10-cm quadrat frame. Grain-size composition was determined using a vibratory 150sieve shaker (AS200, Retsch) with a sieve mesh-size series of 4.0, 2.8, 2.0, 1.0, 0.5, 0.25, 0.125, and 1510.063 mm. Following the same procedures used in Takeuchi et al. (2016), median grain size (mm), 152mud content [the proportion of particles with diameters < 0.063 mm to total weight (%)], and sorting

153 coefficient (σ_l) for each sediment sample were obtained. The value of σ_l indicates the uniformity of

154 grain-size distribution, where $\sigma_l > 1.0$ and $\sigma_l < 0.5$ mean that sediments are poorly and well sorted,

155 respectively.

156

157 2.2. Laboratory experiment

158 2.2.1. Experimental design

159Three laboratory experiments (hereafter, abbreviated as Exps I, II, III) using half-valve clam 160 shells filled with paste of raw clam meat as prey and the pufferfish Takifugu niphobles as a visually 161hunting predator were performed during the period from early August to late October 2017 (for 162details of the experimental setup, see Appendix A). The experiments were conducted to examine 163whether matching/mismatching between shell and substrate brightness affects their survival rate (or 164 time). Therefore, dead clam shells, instead of live clams, were used to exclude their reburrowing 165activity. The shell lengths and brightness of prey items (half-valve shells) are summarized in Table 1. 166Across the experiments, the proportions of the light- and dark-colored prey items were set varied 167(Fig. 1). Mean standard length (\pm SD, N: number of specimens) of specimens of the pufferfish was 168109.1 (± 8.2 , N = 7) mm for Exp I, 111.8 (± 9.7 , N = 21) mm for Exp II, and 102.2 (± 10.6 , N = 18) 169 mm for Exp III. In each experiment, two to three distinct substrates were used [i.e., (1) sand plot, 170hereafter SA; (2) shell hash (fragments) plot, the imitation of a shelly patch (i.e., shell fragments 171accumulated in a depression), hereafter SH (i.e., oyster shell fragments covering a 10-cm × 20-cm 172area of SA); and (3) gravel sand plot, hereafter GS]. Mean brightness, median grain size, mud 173content, and sorting coefficient (σ_l) of each substrate were 54.2, 0.58 mm, 0.01%, and 0.75 for SA, 174186.5, 4.51 mm, 0.06%, and 0.62 for SH (only for shell fragments), and 36.9, 2.90 mm, 0.07%, and 1750.97 for GS, respectively. The laboratory experiments were designed as follows: (1) Exp I (15 trials in total) with two 176177substrate types (SA, SH), in which the light- and dark-colored prey items were used unequally (light

178 > dark); (2) Exp II (32 trials) with two substrate types (SA, SH), in which the two-colored prey items

179	were used nearly equally; and (3) Exp III (23 trials) with three substrate types (SA, SH, GS), in
180	which the two-colored prey items were used nearly equally. Experimental setup is shown in Fig. 2.
181	The experiments were performed using a large rectangular tank (length \times width \times height: $1.7 \times 0.8 \times 0.8 \times 0.10 \times 0.$
182	0.4 m) with seawater of 20-cm depth. On the tank bottom, 12 trays (length \times width \times height: 34 \times 24
183	\times 6 cm) were placed in a 2 \times 6 arrangement. Each tray had one of the three distinct substrates (SA,
184	SH, GS), and four prey items (half-valve shells) were set haphazardly within a centered 10-cm \times
185	20-cm area on the substrate. For each experimental trial, two specimens of the pufferfish were
186	introduced into the tank and allowed to swim freely throughout the tank for 1.5 h. Up to four trials
187	were performed during each daytime period (07:00-19:00) because of the diurnal activity of the
188	pufferfish T. niphobles (Watanabe and Ota, 2009). Before starting each trial, T. niphobles specimens
189	were unfed for more than one night. Seawater was renewed completely after the last trial of each day
190	and was aerated by using an air pump for a night until the start of the first trial the next day. During
191	the experiment, water temperature was maintained using the room air conditioner. Mean water
192	temperature and salinity were 23.0°C and 33.3 practical salinity unit (hereafter, psu omitted) for Exp
193	I, 24.4°C and 32.5 for Exp II, and 23.7°C and 31.0 for Exp III, respectively [these were measured
194	using a handheld conductivity meter (Pro 30, YSI)]. During the experiment, the experimental tank
195	was under the light of four LED (light-emitting-diode) lamps (LEN-F10D-BK, NICHIDO). The
196	intensity of illumination at the center of each tray ranged from 420 to 660 lux (mean \pm SD = 545.8 \pm
197	92.6 lux; number of trays = 12). The behavior of <i>T. niphobles</i> specimens was recorded from above
198	using three fixed digital camcorders (HDR-XR500V and HDR-CX500V, Sony) to cover the entire
199	area of the experimental tank bottom. Each recording was started before the introduction of T.
200	niphobles specimens into the tank. From the video images, "survival" time (i.e., period from the start
201	of each trial to predation) of each prey item was measured to the nearest 1 sec. Data from trials with
202	consumption rates of less than 25% (= more than 36/48 prey items "survived") were not used for the

subsequent analysis. Data from prey items that were flipped over by pufferfish-generated water flows were regarded as invalid.

205

204

206 2.2.2. Data analysis

207To test whether the pufferfish disproportionately consumed a common morph (known as 208frequency-dependent selection), the index of preference for dark-colored prey [PD = proportion of 209consumed dark-colored prey items to the total of consumed prey items ($P_{Dconsumed}$)/proportion of 210provided dark-colored prey items to the total of provided prey items (P_{Dprovided})] was evaluated. In this analysis, data from trials in which no dark-colored prey items (i.e., <127.5 in shell brightness) 211212were used or in which all prey items were consumed were not used. PDs at the times of 0.5, 1.0, and 2131.5 h were calculated. Whether each PD differed significantly from 1 (= no frequency-dependent 214selection) was tested using a one-sample *t*-test. 215Two statistical modellings using (1) binary values indicating whether each prey item was 216consumed by predators within 1.5 h (= 1) or not (= 0) and using (2) continuous values for "survival" 217time of each prey were performed. For each case, the following five generalized linear mixed models (GLMMs) with the random effect of experimental trials were considered: GLMM 1, with the fixed 218219effects of shell brightness and substrate type and their interaction; GLMM 2, with the fixed effects of 220shell brightness and substrate type; GLMM 3, with the fixed effect of shell brightness; GLMM 4, 221with the fixed effect of substrate type; and Null model, with no fixed effects. The former case 222assumed a binomial error distribution and a logit-link function, and the latter case assumed a gamma 223error distribution and a log-link function. From each set of five GLMMs, the best-fit model was selected based on Akaike's information criterion (AIC) (Akaike, 1973). If there are no effects of 224225shell brightness and substrate type on a response variable, a null model will be selected as the best-fit model. Model construction was performed using "glmer" function in "lme4" package (Bates et al.,
2015) of "R" (R Core Team, 2015).

228

```
229 3. Results
```

230 3.1. Association between shell and background brightness

Both the grain-size composition and brightness of surficial sediments differed between the two

232 sampling sites. Surficial sediments of Site A were mainly composed of dark-colored muddy sand

- 233 [i.e., median grain size, mud content, and sorting coefficient (σ_l) were 0.16 mm, 14.9%, and 1.36,
- respectively, and mean brightness was 35.2]. On the other hand, surficial sediments of Site B were
- mainly composed of light-colored sand [i.e., median grain size, mud content, and σ_l were 0.48 mm,

236 0.2%, and 1.15, respectively, and mean brightness was 138.7].

- 237 Shell brightness also differed between the two sympatric subpopulations of juvenile *Ruditapes*
- 238 philippinarum clams from the two sampling sites (Fig. 3). Mean shell brightness (±SD, N: number of
- 239 specimens) of clams from Site A and Site B were 112.9 (± 33.1 , N = 565) and 123.6 (± 35.3 , N = 158),

respectively, and this difference was significant (a likelihood ratio test, P < 0.001). Proportional

- abundance of light-colored clams at Site A and Site B were 35.9 and 46.8%, respectively.
- The number of individual clams per sample (inds per 0.0345 m^2) was higher at Site A than Site B.
- 243 The number of individuals (mean \pm SD, N: number of samples) ranged from 2 to 93 (22.6 \pm 21.6, N
- = 25) at Site A, and from 1 to 19 (6.3 ± 4.8 , N = 25) at Site B. A significant difference was detected
- by a generalized linear model analysis with a null model likelihood ratio test (P < 0.001).

246

247 *3.2. Visual crypsis*

248 The results from 11, 20, and 19 trials of Exps I (15 trials in total), II (32 trials), and III (23 trials),

249 respectively, were used in the subsequent data analysis. Data from trials with low consumption rates

250	(for the definition of those rates, see Section 2.2.1) were not explored. The raw data on experimental
251	results are given in Appendix B. Proportional frequency of prey items consumed by predators (two
252	specimens of the pufferfish Takifugu niphobles in each experimental trial) within 1.5 h was the
253	highest on SA (sand), followed by GS (gravel sand) and SH (shell hash) (Fig. 4a). Mean
254	consumption rates (\pm SE, <i>N</i> : number of experimental trials) were 88.6 (\pm 5.4, <i>N</i> = 11) and 34.8 (\pm 9.1,
255	N = 11) % on SA and SH in Exp I, 96.2 (±1.9, $N = 20$) and 76.8 (±4.9, $N = 20$) % on SA and SH in
256	Exp II, and 89.3 (±5.3, <i>N</i> = 19), 70.5 (±5.9, <i>N</i> = 19), and 76.4 (±6.9, <i>N</i> = 19) % on SA, SH, and GS
257	in Exp III, respectively. "Survival" time of prey items consumed within 1.5 h was the shortest on SA,
258	followed by SH and GS (Fig. 4b). Mean "survival" times (±SE, N: number of prey items) were
259	1890.1 (±95.9, $N = 234$) and 2378.3 (±149.2, $N = 92$) sec on SA and SH in Exp I, 1246.7 (±61.0, $N =$
260	458) and 1892.7 (\pm 81.1, N = 365) sec on SA and SH in Exp II, and 1240.7 (\pm 78.6, N = 270), 1713.4
261	(\pm 98.8, $N = 211$), and 1715.6 (\pm 91.3, $N = 230$) sec on SA, SH, and GS in Exp III, respectively.
262	No frequency-dependent selection was confirmed in the experiments (Fig. 5). The mean value
263	(\pm SD, <i>N</i> : number of experimental trials) of the index of preference for dark-colored prey (<i>PD</i>) was
264	1.07 (±0.48, $N = 39$) for the time of 0.5 h, 1.01 (±0.33, $N = 43$) for the time of 1.0 h, and 1.02 (±0.22,
265	N = 42) for the time of 1.5 h. These values did not differ from 1 significantly (one-sample <i>t</i> -test, $P >$
266	0.3).
267	Prey items with a coloration conspicuous on the background were consumed by predators at a
268	higher rate than prey items with cryptic coloration in general (Fig. 6a,b,c). For example, in Exp III,
269	mean consumption rates for the dark-colored prey on SA, SH, and GS were 82.8, 86.2, and 65.0%,
270	respectively, whereas those for the light-colored prey on SA, SH, and GS were 94.5, 58.6, and 86.9%,
271	respectively. In the GLMM analysis for the probability of predation, GLMM 1 was selected as the
272	best-fit model through the three experiments (Table 2). This model indicates that with the exception

273 of SA in Exp I, the probability of predation decreases with increasing shell brightness on SH,

whereas the probability decreases with decreasing shell brightness on SA and GS. The models forGS and SH had steeper slopes than that for SA.

276Consumed prey items with a coloration conspicuous on the background were detected by 277predators more easily than those items with cryptic coloration in general (Fig. 6d,e,f). In the GLMM 278analysis for "survival" time, GLMM 4 was selected as the best-fit model for Exp I where the 279light-colored prey items were used more frequently than the dark-colored prey items (Table 3). On 280the other hand, GLMM 1 was selected as the best-fit model for Exps II and III where the light- and 281dark-colored prey items were used nearly equally. The former model indicates that prey items on SA 282are detected by predators more easily than prey items on SH regardless of the shell brightness of the 283prey. The latter model indicates that "survival" time increases with increasing shell brightness on SH, 284whereas the time increases with decreasing shell brightness on GS. The time was generally short (= 285ca. 1000 sec) on SA regardless of the shell brightness of the prey.

286

287 4. Discussion

288Our field survey shows association between shell and background brightness. Shell brightness 289significantly differed between the two sympatric subpopulations of juvenile Ruditapes philippinarum 290clams from Site A and Site B (Fig. 3) and was positively associated with background brightness. Site 291A had a comparatively dark-colored (volcanic) muddy sand substrate which is autochthonous to the 292sandflat. On the other hand, Site B had a light-colored sand substrate which had been introduced 293from offshore sediments to support the establishment of a clam population there. The mean shell 294brightness of juvenile clams from Site B was significantly higher than that of Site A (a likelihood 295ratio test, P < 0.001). It would be implausible that clams could have chosen the most suitable 296substrate in terms of color matching degree by their active migration, due to their simple vision 297using photoreceptor cells (Morton, 2008). Therefore, the difference in mean shell brightness between

298	the two sympatric subpopulations was probably due to short-term (≤ 1 year) selective predation
299	within a range of morphs which were largely determined by a population genetic trait. In addition,
300	the individual density of juvenile clams at Site B (= 183.2 inds m^{-2}) was about one-fourth of that at
301	Site A (= 655.1 inds m ⁻²), even though the former site appears to have more suitable substrate (i.e.,
302	higher sand content) for <i>R. philippinarum</i> clams than the latter site (Toba et al., 1992; Saito et al.,
303	2007; Vincenzi et al., 2011; Boscolo Brusà et al., 2013; Bidegain et al., 2015). This result is possibly
304	due to an intense predation induced by shell-background color mismatching (cf., Donnelly and
305	Whoriskey, 1993). This speculation remains to be substantiated. The results from the present field
306	survey point to possible importance of the background color matching concept that have been
307	overlooked in a conventional method of adding allochthonous substrates to sandflats to support the
308	establishment of a clam population (Nakahara and Nasu, 2002; Ikushima et al., 2012; Sakurai et al.,
309	2012).
310	The importance of the background color matching concept is supported by our laboratory
311	experiment. The inconsistency in the results of model selection between Exp I and Exps II and III
312	was probably due to small sample size for the dark-colored prey in Exp I. Shell-color configurations
313	(e.g., plain, mottled, or banded coloration) were not discriminated, and the shell coloration of each
314	specimen was expressed as the mean brightness value over its shell surface. Despite that limitation,
315	the results indicated that prey items in color-mismatched combinations [i.e., comparatively light-
316	(dark-) colored prey items on dark- (light-) colored substrate] were consumed by visually hunting
317	predators, the pufferfish Takifugu niphobles, more immediately and at a higher rate than prey items
318	in color-matched combinations (Fig. 6). A similar tendency is known for some predatory fishes
319	(Okamoto et al., 2001; Arakawa et al., 2007; Ryer et al., 2008). For example, Japanese sea bass
320	(Lateolabrax japonicus) preferentially bites lures with a conspicuous body color against a
321	background color provided in a laboratory experiment (Okamoto et al., 2001). Cryptic color morphs

could be more adaptive than conspicuous color morphs, and hence, the former morphs would
become dominant in a population through crypsis-mediated predation. Such an inference is
consistent with the interpretation for the results of the present field survey. These results showed that
shell–background color matching can help juvenile *R. philippinarum* clams avoid attack from
visually hunting predators.

Even the lowest level of mean "survival" time, however, might be enough for juvenile *R*.

328 *philippinarum* clams to start reburrowing. Indeed, mean "survival" time predicted from our

329 statistical models was ca. 1000 sec (Fig. 6d,e,f), whereas live juvenile clams can usually start

330 reburrowing within ca. 100 sec under a light condition (Takeuchi et al., 2015). On the other hand, the

time of the first attack in each experimental trial was largely determined by the "motivation" of

332 specimens of the pufferfish. That time varied from 14 to 4213 sec. Therefore, it should be noted that

333 "survival" time addressed in the present study cannot be applied directly to live clams' burrowing

behavior.

335The shell-background color matching effect seems to be reinforced by coarse-grained 336 background. Our statistical models for probability of predation suggested that the shell-background 337color matching effect was more evident on a coarse-grained background, i.e., SH (shell hash) and 338 GS (gravel sand), than on a fine-grained background, i.e., SA (sand) (Table 2, Fig. 6a,b,c). This 339result might be due to visual confusion in the predator through prey' masquerading as inedible 340 objects (i.e., gravel, shell fragments) or disruptive coloration of prey items, as with other marine 341invertebrate prey animals (Whiteley et al., 1997; Merilaita, 1998; Palma and Steneck, 2001; Todd et 342al., 2006; Manríquez et al., 2008). Consequently, our result suggests that to support the establishment 343of a clam population, adding coarse-grained shell fragments or gravel to a sandflat is potentially more effective than fine-grained offshore dredged sand, in a case with well shell-background color 344 345matching.

346 There is no frequency-dependent selection in the focal prey-predator system.

347 Frequency-dependent selection is often recognized as an important aspect in considering prey 348polymorphism (Ruxton et al., 2004; Quicke, 2017). In such selection, prey items with a common 349 morph is consumed disproportionately more frequently than prey items with a rare morph regardless 350of degree of prey' visual crypsis. For example, Smith (1975) suggested that for the wedge clam 351(Donax faba), clams with the commonest color morph are consumed by predators at a higher rate than clams with other rare morphs when the population density is comparatively low. By contrast, 352353 the author also suggested that when the population density is comparatively high, clams are selected by crypsis-mediated predation. In addition, Shigemiya (2004) experimentally demonstrated that the 354355pufferfish T. niphobles can exhibit frequency-dependent selection on artificial prey items (composed 356mainly of fish paste) with two color morphs (i.e., dark brown and pale brown) when prey items are 357uniformly arranged in space. The present study, however, confirmed that there was no preference for 358the dark-colored prey in predation behavior of T. niphobles specimens regardless of 359shell-color-morph frequencies (i.e., Exp I vs. Exps II and III: the light- and dark-colored prey items 360 were used unequally or nearly equally; see Fig. 1) (Fig. 5). 361 In conclusion, visual crypsis (i.e., shell-background color matching) is a possible function of 362 polymorphic shell coloration in juvenile R. philippinarum clams. Our findings provide a new insight 363 into effective management planning for this clam species, creating sand habitats with a more 364matched coloration. To understand the ecological significance of the findings, further studies on (1) 365 the contribution of shell-background color matching toward the *in situ* survival rate of a juvenile 366 clam population and (2) spatio-temporal variability of the contribution depending on the relative 367importance of visually hunting predators compared with predation by non-visually hunting predators 368 are required.

370 Acknowledgements

371We thank the staffs of Oshima and Nishi-Arie-cho Fisheries Cooperative Associations for 372allowing our field sampling and providing helpful comments, H. Ohashi and Y. Sato for assistance in 373 the field works, and K. Kuwano for providing helpful comments on photographing techniques. We 374also appreciate numerous constructive comments from two anonymous reviewers. This study was 375 supported by the Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists (B) 376 17K15303 to ST and by the Sasakawa Scientific Research Grant from the Japan Science Society 29-717 to ST. 377 378379References 380 Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: 381Petrov, B.N., Csáki, F. (Eds.), Proceedings of the Second International Symposium on 382Information Theory. Akadémiai Kiadó, Budapest, pp. 267–281. 383 Arakawa, H., Watanabe, T., Morikawa, Y., 2007. Visual contrast threshold of striped beak-perch 384 Oplegnathus fasciatus. Fish. Sci. 73, 469-471. 385Baling, M., Stuart-Fox, D., Brunton, D.H., Dale, J., 2016. Habitat suitability for conservation 386 translocation: the importance of considering camouflage in cryptic species. Biol. Conserv. 387 203, 298-305. 388 Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting linear mixed-effects models using 389 lme4. J. Stat. Softw. 67, 1-48. 390 Bidegain, G., Bárcena, J.F., García, A., Juanes, J.A., 2015. Predicting coexistence and predominance 391patterns between the introduced Manila clam (Ruditapes philippinarum) and the European 392 native clam (Ruditapes decussatus). Estuar. Coast. Shelf Sci. 152, 162-172. 393 Boscolo Brusà, R., Cacciatore, F., Ponis, E., Molin, E., Delaney, E., 2013. Clam culture in the Venice

lagoon: stock assessment of Manila clam (*Venerupis philippinarum*) populations at a
 nursery site and management proposals to increase clam farming sustainability. Aquat.

396 Living Resour. 26, 1–10.

- Byers, B.A., 1989. Habitat-choice polymorphism associated with cryptic shell-color polymorphism
 in the limpet *Lottia digitalis*. Veliger 32, 394–402.
- Byers, B.A., 1990. Shell colour polymorphism associated with substrate colour in the intertidal snail
 Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biol. J. Linn. Soc. Lond. 40, 3–10.
- 401 Cordero, D., Delgado, M., Liu, B., Ruesink, J., Saavedra, C., 2017. Population genetics of the
- 402 Manila clam (*Ruditapes philippinarum*) introduced in North America and Europe. Sci. Rep.
 403 7, 39745.
- Donnelly, W.A., Whoriskey Jr., F.G., 1993. Transplantation of Atlantic salmon (*Salmo salar*) and
 crypsis breakdown. In: Gibson, R.J., Cutting, R.E. (Eds.), Production of Juvenile Atlantic
 Salmon, *Salmo salar*, in Natural Waters, Book 118. National Research Council of Canada,
- 407 Ottawa, Ontario, pp. 25–34.
- 408 Hughes, J.M., Mather, P.B., 1986. Evidence for predation as a factor in determing shell color
- 409 frequencies in a mangrove snail *Littorina* sp. (Prosobranchia: Littorinidae). Evolution 40,
 410 68–77.
- 411 Humphreys, J., Harris, M.R.C., Herbert, R.J.H., Farrell, P., Jensen, A., Cragg, S.M., 2015.
- Introduction, dispersal and naturalization of the Manila clam *Ruditapes philippinarum* in
 British estuaries, 1980–2010. J. Mar. Biol. Assoc. U.K. 95, 1163–1172.
- Huo, Z., Li, Y., Zhang, X., Yan, X., Yang, F., 2017. Growth improvement of shell length in the
- 415 orange strain of manila clam, *Ruditapes philippinarum*. J. World Aquac. Soc. 48, 860–866.
- 416 Ikushima, N., Saito, H., Nasu, H., 2012. A field experiment in a tidal flat on hydrodynamic effects of
- 417 scattering artificial gravels and setting up fences that enhance settlement and survival of

418	juvenile short-neck clam Ruditapes philippinarum. J. Fish. Technol. 5, 75-86 (in Japanese,
419	with English abstract).
420	Kakino, J., 2000. Dispersal of Japanese littleneck clam Ruditapes philippinarum (Adams and Reeve)
421	in relation to changes of bottom level due to wave action on Banzu tidal flats, Tokyo Bay.
422	Fish. Eng. 37, 115–128.
423	Kimura, H., 2005. Predator-prey relationship between crabs and short necked clam, Ruditapes
424	philippinarum. Bull. Yamaguchi Pref. Fish. Res. Ctr. 3, 97–103 (in Japanese, with English
425	abstract).
426	Kondo, Y., 1987. Burrowing depth of infaunal bivalves - observation of living species and its
427	relation to shell morphology. Trans. Proc. Palaeontol. Soc. Jpn. 148, 306-323.
428	Manríquez, K.C., Pardo, L.M., Wells, R.J.D., Palma, A.T., 2008. Crypsis in Paraxanthus barbiger
429	(Decapoda: Brachyura): mechanisms against visual predators. J. Crustacean Biol. 28,
430	473–479.
431	Mendonça, V., Vinagre, C., Boaventura, D., Cabral, H., Silva, A.C.F., 2015. Chitons' apparent
432	camouflage does not reduce predation by green crabs Carcinus maenas. Mar. Biol. Res. 12,
433	125–132.
434	Merilaita, S., 1998. Crypsis through disruptive coloration in an isopod. Proc. R. Soc. Lond. B Biol.
435	Sci. 265, 1059–1064.
436	Morton, B., 2008. The evolution of eyes in the Bivalvia: new insights. Am. Malacol. Bull. 26,
437	35–45.
438	Nakahara, Y., Nasu, H., 2002. Report from the coastal areas of Ariake Sound, Kumamoto prefecture;
439	the main fisheries ground for the clam Ruditapes philippinarum populations in Japan. Jpn. J.
440	Benthol. 57, 139–144 (in Japanese, with English abstract).
441	Okamoto, M., Kawamura, G., Tanaka, Y., 2001. Selectivity of color of lure by Japanese sea bass

- 442 *Lateolabrax japonicus* under different background colors. Nippon Suisan Gakkaishi 67,
- 443 449–454 (in Japanese, with English abstract).
- Palma, A.T., Steneck, R.S., 2001. Does variable coloration in juvenile marine crabs reduce risk of
 visual predation? Ecology 82, 2961–2967.
- 446 Peignon, J.-M., Gérard, A., Naciri, Y., Ledu, C., Phélipot, P., 1995. Analyse du déterminisme de la
- 447 coloration et de l'ornementation chez la palourde japonaise *Ruditapes philippinarum*. Aquat.
- 448 Living Resour. 8, 181–189 (in French, with English abstract).
- 449 Quicke, D.L.J., 2017. Mimicry, Crypsis, Masquerade and other Adaptive Resemblances. John Wiley
 450 & Sons, Hoboken.
- R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria.
- Reimchen, T.E., 1979. Substratum heterogeneity, crypsis, and colour polymorphism in an intertidal
 snail (*Littorina mariae*). Can. J. Zool. 57, 1070–1085.
- 455 Rodrigues, L.R.G., Absalão, R.S., 2005. Shell colour polymorphism in the chiton Ischnochiton
- 456 *striolatus* (Gray, 1828) (Mollusca: Polyplacophora) and habitat heterogeneity. Biol. J. Linn.
 457 Soc. Lond. 85, 543–548.
- 458 Ruxton, G.D., Sherratt, T.N., Speed, M.P., 2004. Avoiding Attack: the Evolutionary Ecology of

459 Crypsis, Warning Signals & Mimicry. Oxford University Press, Oxford.

- 460 Ryer, C.H., Lemke, J.L., Boersma, K., Levas, S., 2008. Adaptive coloration, behavior and predation
 461 vulnerability in three juvenile north Pacific flatfishes. J. Exp. Mar. Biol. Ecol. 359, 62–66.
- Tor valierability in alloc favoline noral radius nationes. 5. Exp. that. Blot. Edit. 559, 62 00.
- 462 Saito, H., Tomarino, Y., Yamaji, M., Kawai, K., Imabayashi, H., 2007. Resource characteristics and
- 463 environmental conditions of short necked clam, *Ruditapes philippinarum* in the seacoast of
 464 Hiroshima prefecture. Aquac. Sci. 55, 331–345 (in Japanese, with English abstract).
- 465 Sakurai, I., Fukuda, H., Maekawa, K., Yamada, T., Saito, H., 2012. Field experiment for nursery

466	ground creation of short-neck clam Ruditapes philippinarum utilizing scallop shells as
467	substratum. J. Fish. Technol. 5, 87–95 (in Japanese, with English abstract).
468	Shigemiya, Y., 2004. Reversible frequency-dependent predation of a puffer, Takifugu niphobles
469	(Pisces: Tetraodontidae), related to spatial distribution of colour-polymorphic prey. Biol. J.
470	Linn. Soc. Lond. 81, 197–202.
471	Shigeta, T., Usuki, H., 2012. Predation on the short-neck clam Ruditapes philippinarum by intertidal
472	fishes: a list of fish predators. J. Fish. Technol. 5, 1–19 (in Japanese, with English abstract).
473	Smith, D.A.S., 1975. Polymorphism and selective predation in <i>Donax faba</i> Gmelin (Bivalvia:
474	Tellinacea). J. Exp. Mar. Biol. Ecol. 17, 205–219.
475	Stanley, S.M., 1970. Relation of Shell Form to Life Habits of the Bivalvia (Mollusca), Vol 125. The
476	Geological Society of America, Boulder.
477	Takahashi, K., Sawada, H., Masuda, R., 2016. Reproduction and depletion of the Manila clam in
478	Maizuru Bay, Sea of Japan. Nippon Suisan Gakkaishi 82, 699–705 (in Japanese, with
479	English abstract).
480	Takeuchi, S., Suzuki, Y., Takamasu, T., Isomoto, H., Tamaki, A., 2016. Ecology of the razor clam
481	Solen gordonis and fishery impact on the population in Sasebo Bay, Kyushu, Japan. J.
482	Shellfish Res. 35, 785–799.
483	Takeuchi, S., Takahara, Y., Agata, Y., Nasuda, J., Yamada, F., Tamaki, A., 2013. Response of
484	suspension-feeding clams to natural removal of bioturbating shrimp on a large estuarine
485	intertidal sandflat in western Kyushu, Japan. J. Exp. Mar. Biol. Ecol. 448, 308–320.
486	Takeuchi, S., Yamada, F., Shirozu, H., Ohashi, S., Tamaki, A., 2015. Burrowing ability as a key trait
487	in the establishment of infaunal bivalve populations following competitive release on an
488	extensive intertidal sandflat. J. Exp. Mar. Biol. Ecol. 466, 9–23.
489	Talley, D.M., Talley, T.S., Blanco, A., 2015. Insights into the establishment of the Manila clam on a

- 490 tidal flat at the southern end of an introduced range in Southern California, USA. PLoS One491 10, e0118891.
- Toba, D.R., Thompson, D.S., Chew, K.K., Anderson, G.J., Miller, M.B., 1992. Guide to Manila
 Clam Culture in Washington. Washington Sea Grant Program, University of Washington,
- 494 Seattle.
- Todd, P.A., Briers, R.A., Ladle, R.J., Middleton, F., 2006. Phenotype-environment matching in the
 shore crab (*Carcinus maenas*). Mar. Biol. 148, 1357–1367.
- 497 Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G.A., Torricelli, P., 2011.
- 498 Application of a Random Forest algorithm to predict spatial distribution of the potential
- 499 yield of *Ruditapes philippinarum* in the Venice lagoon, Italy. Ecol. Modell. 222, 1471–1478.
- 500 Watanabe, S., Ota, H., 2009. Development of an underwater observation technique to monitor
- 501 biodiversity in a seagrass bed in the Seto Inland Sea. Annu. Rep. Fac. Life Sci. Appl. Biol.
- 502 Sci. Fukuyama Univ. 8, 35–47 (in Japanese).
- 503 Whiteley, D.A.A., Owen, D.F., Smith, D.A.S., 1997. Massive polymorphism and natural selection in
- 504 Donacilla cornea (Poli, 1791) (Bivalvia: Mesodesmatidae). Biol. J. Linn. Soc. Lond. 62,
- 505 475–494.
- 506

507 Figure captions

Fig. 1. Shell-brightness-frequency distribution of prey items (half-valve shells) used in each of the three laboratory experiments (a, Exp I; b, Exp II; c, Exp III). Dark- and light-gray bars stand for valid and invalid prey items for data analysis, respectively. The boundary shell brightness between the light- and dark-colored prey items is indicated by a vertical dashed line in each panel. N_D and N_L

512 indicate the numbers of the dark- and light-colored prey items valid for data analysis, respectively. N

513 = number of specimens; number of the valid specimens for data analysis is indicated in brackets.

514

515 Fig. 2. Schematic diagram of the experimental setup (a, side view; b, top view for Exps I and II; c,

516 top view for Exp III; d, side view). A rectangular tank (length \times width \times height: $1.7 \times 0.8 \times 0.4$ m)

517 with seawater of 20-cm depth was used for the experiment. Four LED (light-emitting-diode) lamps

and three digital camcorders were fixed around the tank. On the tank bottom, 12 trays (length \times

519 width \times height: $34 \times 24 \times 6$ cm) were placed in a 2 \times 6 arrangement. (e) Each tray had one of the

520 three distinct substrates [i.e., SA (sand), SH (shell hash), GS (gravel sand)].

521

522 Fig. 3. Comparison of shell brightness of juvenile clams between Site A and Site B in the study area.

523 Shell-brightness-frequency distributions of juvenile clams from Site A (a) and Site B (b). N =

524 number of specimens. (c) Probability-density plots of shell brightness of juvenile clams from Site A

525 (dark-gray-filled area) and Site B (white-filled area). The overlapped part between both plots is

526 indicated as semi-transparent.

527

Fig. 4. Consumption rate (a) and "survival" time (b) of prey items on SA (sand), SH (shell hash), and
GS (gravel sand) in each of the three laboratory experiments (Exps I, II, III). Each bar and error bar

represent mean and SE (standard error), respectively. *Ns* in panels (a) and (b) = numbers of experimental trials and specimens, respectively.

532

531

533	Fig. 5. Plots of the	proportion of consumed	dark-colored pre	ey items to the total	of consumed pre	ey
	7			-		

- 534 items (*P*_{Dconsumed}) versus the proportion of provided dark-colored prey items to the total of provided
- 535 prey items ($P_{Dprovided}$), at the times of 0.5 h (a), 1.0 h (b), and 1.5 h (c) for each of the three

536 experiments. In the comparison, prey items with shell brightness < 127.5 were defined as

- 537 dark-colored prey, and data from the trials in which no dark-colored prey items were used or in
- 538 which all prey items were consumed were not used. In the case of no frequency-dependent selection,
- 539 the index of preference for dark-colored prey ($PD = P_{Dconsumed}/P_{Dprovided}$) is 1 (oblique line). N =

540 number of experimental trials.

541

```
542 Fig. 6. Effects of shell brightness (range: 0–255) and substrate type [SA (sand), SH (shell hash), GS
```

543 (gravel sand)] on the probability of predation (range: 0–1; a,b,c) and "survival" time (d,e,f) of prey

items in each of the three laboratory experiments (a and d, Exp I; b and e, Exp II; c and f, Exp III).

545 The dashed, gray solid, and black solid curves in each panel represent the best-fit models for SA, SH,

and GS, respectively.

Table 1. Summary of shell length, brightness (range: 0–255), and number of specimens used in the experiments. Those values for the specimens used in the

Experiment name	Number of	Substrate type	Number of specimens	Shell length (mm)		Brightness	
	experimental trials			Minimum-Maximum	Mean ± SD	Minimum–Maximum	Mean \pm SD
Exp I	15 (11)	Sand	360 (264)	5.8-10.1	7.8 ± 1.0	35.9-235.6	175.6 ± 42.0
				(5.8–10.1)	(7.7 ± 0.9)	(35.9–235.6)	(169.6 ± 45.0)
		Shell hash	360 (264)	5.8-11.1	7.8 ± 0.9	36.6-235.9	177.4 ± 42.0
				(5.8–11.1)	(7.7 ± 0.9)	(36.6–235.9)	(172.4 ± 44.1)
		Whole samples	720 (528)	5.8-11.1	7.8 ± 0.9	35.9-235.9	176.5 ± 42.0
				(5.8–11.1)	(7.7 ± 0.9)	(35.9–235.9)	(171.0 ± 44.6)
Exp II	32 (20)	Sand	768 (476)	5.9-12.8	9.0 ± 1.3	21.8-236.4	146.2 ± 63.3
				(6.1–12.8)	(9.0 ± 1.3)	(30.2–236.4)	(146.1 ± 61.4)
		Shell hash	768 (473)	5.9-12.5	8.9 ± 1.3	25.2-240.8	144.3 ± 63.1
				(5.9–12.5)	(9.1 ± 1.4)	(25.2–240.8)	(145.2 ± 61.2)
		Whole samples	1536 (949)	5.9-12.8	9.0 ± 1.3	21.8-240.8	145.3 ± 63.2
				(5.9–12.8)	(9.0 ± 1.3)	(25.2–240.8)	(145.7 ± 61.3)
Exp III	23 (19)	Sand	368 (302)	6.4–12.9	9.7 ± 1.4	46.5-241.5	155.5 ± 54.7
				(6.4–12.9)	(9.7 ± 1.4)	(46.5–241.5)	(155.7±55.4)
		Shell hash	368 (299)	6.5-13.3	9.3 ± 1.4	42.0-239.7	155.2 ± 52.0
				(6.5–13.3)	(9.4 ± 1.4)	(42.0–239.7)	(154.6 ± 53.3)
		Gravel sand	368 (300)	6.5-12.8	9.4 ± 1.1	47.4–239.8	152.4 ± 58.2
				(6.5–12.8)	(9.4 ± 1.1)	(47.4–239.8)	(152.8 ± 58.3)
		Whole samples	1104 (901)	6.4–13.3	9.5 ± 1.3	42.0-241.5	154.4 ± 55.0
				(6.4–13.3)	(9.5 ± 1.3)	(42.0-241.5)	(154.4 ± 55.7)

549 statistical analyses are noted in brackets.

551 **Table 2.** Five generalized linear mixed models (GLMMs) including a null model used to detect effects of shell brightness (SB; range: 0–255) and substrate

552 type (sand; shell hash; gravel sand) on probability of predation (range: 0–1). The case with no fixed effect is listed as "null". Akaike's information criterion

553 (AIC) for each model is indicated; Δ AIC means residual from AIC of the best-fit model.

Experiment name	Model name	Response variable	Fixed effects	Random effect	Linear predictor (y)	AIC	ΔΑΙC	Best-fit model
Exp I	GLMM 1	Probability of predation	SB; Substrate; Interaction	Trials	If Substrate = "sand", $y = 3.9702 - 0.0065$ SB If Substrate = "shell hash", $y = 2.5127 - 0.0200$ SB	420.9676	0	Accepted
	GLMM 2	Probability of predation	SB; Substrate	Trials	If Substrate = "sand", $y = 5.7506 - 0.0167$ SB If Substrate = "shell hash", $y = 1.9964 - 0.0167$ SB	422.4544	1.4868	
	GLMM 3	Probability of predation	SB	Trials	y = 2.6154 - 0.0117SB	638.1052	217.1376	
	GLMM 4	Probability of predation	Substrate	Trials	If Substrate = "sand", $y = 2.7769$ If Substrate = "shell hash", $y = -0.8589$	436.6191	15.6515	
	Null model	Probability of predation		Trials	y = 0.5943	650.5344	229.5668	
Exp II	GLMM 1	Probability of predation	SB; Substrate; Interaction	Trials	If Substrate = "sand", $y = 1.2698 + 0.0227$ SB If Substrate = "shell hash", $y = 4.9069 - 0.0211$ SB	515.3808	0	Accepted
	GLMM 2	Probability of predation	SB; Substrate	Trials	If Substrate = "sand", $y = 5.5395 - 0.0109$ SB If Substrate = "shell hash", $y = 3.1226 - 0.0109$ SB	582.4506	67.0698	
	GLMM 3	Probability of predation	SB	Trials	y = 3.5787 - 0.0093SB	677.5618	162.1810	
	GLMM 4	Probability of predation	Substrate	Trials	If Substrate = "sand", $y = 3.7041$ If Substrate = "shell hash", $y = 1.4208$	614.5092	99.1284	
	Null model	Probability of predation		Trials	y = 2.1127	704.2193	188.8385	
Exp III	GLMM 1	Probability of predation	SB; Substrate; Interaction	Trials	If Substrate = "sand", $y = 1.5731 + 0.0117$ SB If Substrate = "shell hash", $y = 5.0001 - 0.0229$ SB If Substrate = "gravel sand", $y = -0.6837 + 0.0175$ SB	621.7116	0	Accepted
	GLMM 2	Probability of predation	SB; Substrate	Trials	If Substrate = "sand", $y = 2.9298 + 0.0004$ SB If Substrate = "shell hash", $y = 1.1360 + 0.0004$ SB If Substrate = "gravel sand", $y = 1.6199 + 0.0004$ SB	704.7826	83.0710	
	GLMM 3	Probability of predation	SB	Trials	y = 1.7436 + 0.0004SB	751.6426	129.9310	
	GLMM 4	Probability of predation	Substrate	Trials	If Substrate = "sand", $y = 2.9935$ If Substrate = "shell hash", $y = 1.2002$ If Substrate = "gravel sand", $y = 1.6826$	702.8362	81.1246	
	Null model	Probability of predation		Trials	y = 1.8018	749.6912	127.9796	

555 **Table 3.** Five generalized linear mixed models (GLMMs) including a null model used to detect effects of shell brightness (SB; range: 0–255) and substrate

556 type (sand; shell hash; gravel sand) on "survival" time (sec). The case with no fixed effect is listed as "null". Akaike's information criterion (AIC) for each

557 model is indicated; Δ AIC means residual from AIC of the best-fit model.

Experiment name	Model name	Response variable	Fixed effects	Random effect	Linear predictor (y)	AIC	ΔΑΙΟ	Best-fit model
Exp I	GLMM 1	"Survival" time	SB; Substrate; Interaction	Trials	If Substrate = "sand", <i>y</i> = 7.3240 – 0.0002SB If Substrate = "shell hash", <i>y</i> = 7.8876 – 0.0001SB	5347.026	3.978	
	GLMM 2	"Survival" time	SB; Substrate	Trials	If Substrate = "sand", <i>y</i> = 7.3194 – 0.0001SB If Substrate = "shell hash", <i>y</i> = 7.8987 – 0.0001SB	5345.030	1.982	
	GLMM 3	"Survival" time	SB	Trials	y = 7.6149 - 0.0010SB	5395.531	52.483	
	GLMM 4	"Survival" time	Substrate	Trials	If Substrate = "sand", $y = 7.2955$ If Substrate = "shell hash", $y = 7.8760$	5343.048	0	Accepted
	Null model	"Survival" time		Trials	<i>y</i> = 7.4546	5394.234	51.186	
Exp II	GLMM 1	"Survival" time	SB; Substrate; Interaction	Trials	If Substrate = "sand", $y = 6.9727 - 0.0008SB$ If Substrate = "shell hash", $y = 6.6189 + 0.0058SB$	13235.600	0	Accepted
	GLMM 2	"Survival" time	SB; Substrate	Trials	If Substrate = "sand", <i>y</i> = 6.5545 + 0.0022SB If Substrate = "shell hash", <i>y</i> = 7.1179 + 0.0022SB	13282.880	47.280	
	GLMM 3	"Survival" time	SB	Trials	y = 6.7931 + 0.0024SB	13366.000	130.400	
	GLMM 4	"Survival" time	Substrate	Trials	If Substrate = "sand", $y = 6.8614$ If Substrate = "shell hash", $y = 7.4433$	13301.620	66.020	
	Null model	"Survival" time		Trials	<i>y</i> = 7.1465	13387.780	152.180	
Exp III	GLMM 1	"Survival" time	SB; Substrate; Interaction	Trials	If Substrate = "sand", $y = 6.6907 + 0.0007$ SB If Substrate = "shell hash", $y = 6.4736 + 0.0059$ SB If Substrate = "gravel sand", $y = 8.0544 - 0.0036$ SB	11285.290	0	Accepted
	GLMM 2	"Survival" time	SB; Substrate	Trials	If Substrate = "sand", $y = 6.6860 + 0.0007$ SB If Substrate = "shell hash", $y = 7.2526 + 0.0007$ SB If Substrate = "gravel sand", $y = 7.3811 + 0.0007$ SB	11347.860	62.570	
	GLMM 3	"Survival" time	SB	Trials	y = 7.1532 + 0.0004SB	11469.790	184.500	
	GLMM 4	"Survival" time	Substrate	Trials	If Substrate = "sand", $y = 6.7989$ If Substrate = "shell hash", $y = 7.3644$ If Substrate = "gravel sand", $y = 7.4873$	11348.080	62.790	
	Null model	"Survival" time		Trials	y = 7.2163	11468.420	183.130	

558 Appendix A. Details of the experimental setup

- 559 Half-valve shells used in the laboratory experiment as prey were prepared as follows: (1)
- 560 collecting juvenile *Ruditapes philippinarum* clams from two intertidal sites (32° 49.6' N, 129° 46.9'
- E; and 32° 39.2' N, 130° 16.2' E); (2) boiling them to open shells; (3) removing their soft tissue; and
- 562 (4) dividing each bi-valve shell into right- and left-valve shells. Shell brightness and length of each
- half-valve shell were measured using the same way mentioned in the text (see Section 2.1.2). In the
- 564 experiment, each half-valve shell was filled with raw-clam-meat paste that was made from edible,
- 565 live *R. philippinarum* clams.
- 566 Specimens of the pufferfish *Takifugu niphobles* used in the laboratory experiment as predator
- 567 were collected by angling at the two site $(32^{\circ} 39.2' \text{ N}, 130^{\circ} 16.2' \text{ E}; \text{ and } 32^{\circ} 36.7' \text{ N}, 130^{\circ} 11.2' \text{ E})$
- 568 of the southern coast of Shimabara Peninsula in Ariake Sound. They were transported to the
- be laboratory within ca. 2.5 h. While transporting, the specimens were kept in containers (length \times
- 570 width \times height: 49 \times 34 \times 30 cm and 71 \times 33 \times 27 cm) with field-collected sand and seawater,
- aerated by an air pump. In the laboratory, the specimens were kept in the same containers. About half
- 572 the seawater was exchanged once daily. Water temperature at mean of 24°C was maintained using
- the room air conditioner.
- 574 Three distinct substrates [i.e., SA (sand), SH (shell hash), GS (gravel sand)] used in the
- 575 laboratory experiment were prepared as follows: (1) for SA, sediments were collected at the site (32°
- 576 39.2' N, 130° 16.2' E), and after washing off silt and clay particles and sieving with a 1-mm mesh,

577	passed materials were used; (2) for SH, oyster shells (Crassostrea gigas) were collected at the site
578	(32° 49.6' N, 129° 46.9' E) and crushed to pieces, and after sieving with a 1-mm mesh, retained
579	materials were used; and (3) for GS, sediments were collected at the site (32° 49.6' N, 129° 46.9' E),
580	and after sieving with a 1-mm mesh, retained materials were used. Brightness and grain-size
581	composition of each substrate were measured using the same way mentioned in the text (see Section
582	2.1.2).
583	
584	Appendix B
585	Supplementary data to this article can be found online at URL.

Fig. 4 (Takeuchi et al., revised)

Fig. 5 (Takeuchi et al., revised)

Fig. 6 (Takeuchi et al., revised)