2	Does respiratory virus co-infection increase the clinical severity of acute respiratory
3	infection among children infected with respiratory syncytial virus?
4	
5	Authors
6	Yoshitaka Harada MD,* Fumiko Kinoshita MD,† Lay Myint Yoshida MB BS, PhD,* Le
7	Nhat Minh MSc,* Motoi Suzuki MD, MSc,* Konosuke Morimoto MD, PhD,*
8	Yuichirou Toku MD,† Kunio Tomimasu MD,† Hiroyuki Moriuchi MD, PhD,‡ Koya
9	Ariyoshi MD, PhD*
10	
11	* Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University,
12	Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
13	† Department of Pediatrics, Nagasaki Municipal Hospital,
14	Shinchi 6-39, Nagasaki, 850-8555, Japan
15	‡ Department of Pediatrics, Nagasaki University School of Medicine,
16	Sakamoto 1-7-1, Nagasaki, 852-8102, Japan
17	
18	Address for correspondence

- 19 Koya Ariyoshi, MD, PhD
- 20 Department of Clinical Medicine
- 21 Institute of Tropical Medicine
- 22 Nagasaki University
- 23 Sakamoto 1-12-4
- 24 Nagasaki, 852-8523, Japan
- 25 kari@nagasaki-u.ac.jp
- 26 Telephone number: +81-(0)95-819-7842
- 27 Fax number: +81-(0)95-819-7843
- 28

29 Conflicts of Interest and Source of Funding

- 30 This study was funded by the Japan Science and Technology Agency and the
- 31 Grants-in-Aid for Scientific Research (Japan Society for the Promotion of Science). The
- 32 funding sources did not have any role in conducting the study. None of the authors has a
- 33 financial or personal conflict of interest related to this study.

34

35 Keywords

36 Acute respiratory infections; viral co-infection; respiratory virus; RSV; RT-PCR

38	Abbr	eviated	title
00	1 XUUI	c v lattu	uuu

39 RSV/non-RSV respiratory virus co-infection and severity

Running head title

42 RSV and other respiratory virus co-infection

44	Word	count
----	------	-------

45 Abstract: 247 words

46 Text: 2,202 words

Abstract

49	Background: Respiratory syncytial virus (RSV) is a leading cause of acute
50	lower respiratory infection in children less than 5 years of age. The impact of non-RSV
51	respiratory virus co-infection on the severity of RSV disease is unknown.
52	Methods: This hospital-based prospective study was conducted in Nagasaki, Japan, on
53	all children less than 5 years of age with acute respiratory infection (ARI) who had
54	undergone a rapid RSV diagnostic test between April 2009 and March 2010. Thirteen
55	respiratory viruses were identified from nasopharyngeal swab samples using a multiplex
56	polymerase chain reaction (PCR); PCR positive samples were considered as confirmed
57	respiratory virus infections. The cases were classified into three categories (pneumonia;
58	moderate-to-severe non-pneumonic ARI; and mild ARI) according to the findings of the
59	chest radiograph and the hospitalization records.
60	Results: Among 385 cases enrolled, 372 were eligible for analysis, of whom 86 (22%)
61	were classified as pneumonia cases; 137 (36%), moderate-to-severe non-pneumonic
62	ARI cases; and 162 (42%), mild ARI cases. RSV was detected in 172 cases (61.6%),
63	and 31 cases (18.0%) had double or triple infections with other respiratory viruses. RSV
64	infection was more frequently observed in pneumonia cases (OR, 2.2; 95% CI,
65	1.27-3.8) and moderate-to-severe non-pneumonic ARI cases (OR, 2.95; 95% CI,

66	1.82-4.78)	than in mild ARI	cases. The	association	with me	oderate-to-s	evere
----	------------	------------------	------------	-------------	---------	--------------	-------

- 67 non-pneumonic ARI cases was stronger with RSV/non-RSV respiratory virus
- 68 co-infection (adjusted OR, 4.91; 95% CI, 1.9–12.7) than with RSV single infection
- 69 (adjusted OR, 2.77; 95% CI, 1.64–4.7).
- 70 Conclusions: Non-RSV respiratory virus co-infection is not uncommon in
- 71 RSV-infected children and may increase the severity of RSV disease.
- 72

 $\mathbf{74}$

Background

75	Acute respiratory infection (ARI) is the leading cause of morbidity and
76	mortality among infants and young children less than 5 years of age.[1] According to
77	estimates from the World Health Organization and UNICEF, 2 million childhood deaths
78	in the world are attributable to ARI annually.[2] Respiratory syncytial virus (RSV) is the
79	most important viral pathogen, causing bronchiolitis, pneumonia, and severe forms of
80	ARI in young children.[3] In addition to RSV, a wide range of respiratory viruses,
81	including influenza virus, human metapneumovirus (HMPV), and human rhinovirus
82	(HRV), are known to cause childhood ARI.[4]
83	
84	Recently, multiplex polymerase chain reaction (PCR) has been used to detect
85	concurrent infection with multiple respiratory viruses and has demonstrated that
86	co-infection with more than one respiratory virus is common in children with and
87	without ARI.[5-13] However, the clinical implications of multiple viral infections
88	remain controversial. Several studies have shown that respiratory virus co-infection may
89	increase the clinical severity of RSV disease, [5,7-9] while other studies have reported
90	opposite findings.[10-12] These differences may be attributable to variations in clinical
91	settings, study populations, and the seasonality of circulating viruses. No similar studies

92	have been	formally	conducted in	East Asian	countries,	including Japan.
----	-----------	----------	--------------	------------	------------	------------------

94	The aim of this study was to determine the frequency of respiratory virus
95	co-infection with RSV and to investigate the impact of RSV/non-RSV respiratory virus
96	co-infection on the severity of ARI among children less than 5 years of age.
97	

Materials and Methods

99	Participant and clinical data collection
100	This hospital-based prospective study was conducted in Nagasaki, Japan. The total
101	population in the city in 2010 was 443,000, with 16,700 (3.8%) individuals less than 5
102	years of age. Nagasaki City Municipal Hospital (NCMH) is one of two referral hospitals
103	for sick children in Nagasaki. NCMH has 414 beds, including 38 beds in the pediatric
104	ward. The hospital also cares for patients who walk in with mild symptoms. About a
105	half of outpatients are cases without referral letters. We expect that the characteristics of
106	these children do not differ from those patients in neighboring clinics.
107	
108	We approached all children less than 5 years of age who showed signs of ARI
109	and who were tested using the rapid RSV diagnostic kit in either the outpatient
110	department (OPD) or the pediatric ward of NCMH. The children were evaluated by
111	hospital pediatricians regardless of their participation in the study and the rapid
112	diagnostic tests were ordered by them based on their clinical judgment; no standardized
113	testing/admission criteria were used in the study. All children who had been
114	administered the rapid RSV diagnostic tests were enrolled in the study regardless of
115	their test findings." A commercial RSV diagnostic kit (a rapid

116	immunochromatographic assay; Check RSV, Alfresa Farmer Co., Ltd., Japan)[14] was
117	routinely used whenever RSV infection was clinically suspected. The sensitivity and
118	specificity of the RSV diagnostic kits which were commercially available in Japan were
119	32-79% and 100% when compared with RT-PCR.[15]
120	
121	The study period was from April 1st 2009 through March 31st 2010 including
122	the four seasons: spring (March-May), summer (June-August), fall (Spring-November),
123	and winter (December-February). Information from clinical findings, chest radiographs,
124	and blood examinations were retrospectively obtained from the hospital records. The
125	information on some risk factors for severe diseases such as prematurity and
126	breastfeeding status were not always available in the hospital records, and the blood
127	examination was not usually done for the majority of outpatients. Thus these data were
128	not collected in our study.
129	
130	Sample collection and storage
131	Residual nasopharyngeal swabs were temporarily stored at -20° C in the
132	laboratory department of NCMH after being used for the rapid RSV diagnostic test.
133	Within a week, the samples were transported to the Institute of Tropical Medicine at

134 Nagasaki University for storage in a deep freezer (-80 °C) until they were used for
135 further molecular tests.

136

137 Multiplex PCR analysis

The viral nucleic acid was extracted using a QIA viral RNA minikit (QIAGEN 138Inc., Valencia, CA). The following four multiplex PCR assays were performed for each 139140 sample to detect 13 respiratory viruses in the RNA: (1) RSV, influenza A/B (FLUA, FLUB), and HMPV; (2) human parainfluenza virus (HPIV) types 1-4; (3) HRV and 141 142human coronavirus OC43/229E (HCoV); and (4) human adenovirus (HAdV) and human bocavirus (HBoV). The details of the multiplex PCR assays are published 143elsewhere.[13,16] Briefly, reverse transcription-PCR (RT-PCR) assays were performed 144using the one-step RT-PCR kit from QIAGEN. Confirmatory-PCR was performed using 145a hemi-nested PCR assay on samples that were positive in the initial PCR test. Samples 146147positive for both PCR assays were defined as positive, and PCR positive samples were considered as confirmed respiratory virus infections. The results of rapid RSV 148diagnostic test kit were not used to define our cases. 149150

151 Data analysis

152	The patients were classified into one of the following three case categories: (1)
153	a pneumonia case, if the hospitalized child had consolidation on the chest radiograph;
154	(2) a moderate-to-severe non-pneumonic ARI case, if the hospitalized child did not have
155	consolidation on the chest radiograph; and (3) a mild ARI case, if the child was not
156	hospitalized and did not have a chest radiograph. Most of the moderate-to-severe
157	non-pneumonic ARI cases had bronchiolitis or severe bronchitis. Children who were
158	hospitalized but did not have a chest radiograph were excluded from the analysis.
159	
160	Patient characteristics were compared using the chi-square test for categorical
161	variables and the Kruskal-Wallis test for continuous variables. Odds ratios were
162	calculated to demonstrate the associations between the viral infection status and the
163	disease severity (i.e. mild ARI vs. moderate-to-severe non-pneumonic ARI and mild
164	ARI vs. pneumonia). The effect of RSV infection with or without other respiratory viral
165	co-infection on the disease severity were investigated using logistic regression models.
166	Sex and age group (<12 months, 12-23 months, and 24-59 months) were included in the
167	final model as potential confounders. The Hosmer-Lemeshow test was used to
168	determine the goodness-of-fit of the model. All data management was performed using
169	Microsoft Excel 2007, and statistical analyses were performed using STATA 11.2

170	(STATA Corp., USA). The significant level was taken to be 5% for two-tailed tests.
171	
172	Ethics approval
173	The study was approved by the Institutional Review Board (IRB) of NCMH
174	and the IRB of the Institute of Tropical Medicine, Nagasaki University, Nagasaki,
175	Japan.
176	

Results

178	During the study period, a total of 385 children were tested for RSV, and all
179	were recruited for this study. In all, 86 (22%) children were classified as pneumonia
180	cases, 137 (36%) were classified as moderate-to-severe non-pneumonic ARI cases, and
181	149 (39%) were classified as mild ARI cases. Thirteen (3%) children were hospitalized
182	but did not have a chest radiograph; these children were excluded from the analysis.
183	Among the 372 children, 227 (61%) were male, and the median age (inter-quartile
184	range) was 12 (5.5) months, ranging from 0 to 96 months. When the characteristics of
185	the three groups were compared, there were no significant differences in sex and age.
186	However, pneumonia cases had significantly higher white blood cell (WBC) counts and
187	C-reactive protein (CRP) levels than the moderate-to-severe non-pneumonic ARI cases
188	(Table 1).
189	
190	At least one virus was detected in 279 (75%) of the cases by the multiplex PCR
191	assay. Of these, two or more viruses were concurrently detected in 44 (15.8%) cases; 39
192	(14.0%) cases had dual virus infections, and 5 $(1.8%)$ cases had triple infections. RSV
193	was by far the most common pathogen and was identified in 172 (61.7%) children,
194	followed by HRV (n = 63, 22.6%), HMPV (n = 23, 8.2%), HPIV-1 (n = 22, 7.8%), and

195	HAdV ($n = 21, 7.5\%$) (Table 2). Among the 172 children with confirmed RSV infection,
196	31 (18.0%) of RSV positive children had double or triple infections with other
197	respiratory viruses; HRV was the most common co-infecting virus, followed by HAdV
198	(Table 2). Among the 200 RSV-negative children, 107 (53.5%) were positive for at least
199	one non-RSV respiratory virus, and 13 were double or triple infections. HRV/HAdV (n
200	= 3) was the leading combination followed by HRV/HBoV (n = 2) and HRV/PIV-1 (n =
201	2).
202	
203	We then analyzed associations between infection with each virus and the
204	disease categories. RSV infection had significant associations with both pneumonia
205	cases and moderate-to-severe non-pneumonic ARI cases in comparison with mild ARI
206	cases; the level of association was stronger with moderate-to-severe non-pneumonic
207	ARI cases (OR, 2.95; 95% CI, 1.82–4.78; $P < 0.001$) than with pneumonia cases (OR,
208	2.2; 95% CI, 1.27–3.8; $P = 0.004$). In addition, HPIV-3 infection was strongly
209	associated with pneumonia cases (OR, 7.54; 95% CI, 1.56–36.4; $P = 0.012$) but was not
210	significantly associated with moderate-to-severe non-pneumonic ARI cases (OR, 2.21;
211	95% CI, 0.4–12.3; <i>P</i> = 0.4) (Table 3).
919	

213	Because we found the most significant association between moderate-to-severe
214	non-pneumonic ARI cases and RSV infection, we further analyzed the possible risk
215	factors for moderate-to-severe non-pneumonic ARI. An age of older than 24 months
216	was protective against moderate-to-severe non-pneumonic ARI. Interestingly, when
217	RSV-infected children were stratified into those that were or were not co-infected with
218	other viruses, the association with moderate-to-severe non-pneumonic ARI was stronger
219	among RSV-infected children with non-RSV virus co-infection than in children with
220	RSV single infection. This association was even clearer in the multivariate analysis,
221	which adjusted for sex and age groups (Table 4). However, non-RSV respiratory virus
222	co-infection did not exhibit a significant effect on the degree of association with
223	pneumonia cases (data not shown). We also analyzed the association between
224	moderate-to-severe non-pneumonic ARI and non-RSV respiratory virus infection
225	among RSV-negative children. The association was stronger with multiple non-RSV
226	respiratory virus infections than single non-RSV respiratory virus infection, but the
227	confidence intervals were wide because of the small sample size (data not shown).
228	
229	Results from the PCR and the RSV rapid test were almost compatible. The rate
230	of overall agreement between both assays was 86% (n = $332/385$, Cohen's kappa

- coefficient=0.72, p=0.0001); 30 samples were positive for PCR but negative for the
- rapid test, and 23 samples were negative for PCR but positive for the rapid test.

Discussion

235	In our study population, we showed that respiratory virus co-infection with
236	RSV infection had a prevalence of 18% and was associated with moderate-to-severe
237	non-pneumonic ARI. The rates of respiratory virus co-infection in RSV-infected cases
238	have varied substantially in past studies, ranging from 11% to 53%.[17,18] The
239	co-infection rate may be affected by the composition of the study population; more
240	hospitalized children may result in a higher rate of co-infection. In our case, OPD
241	children constituted 40% of the total population, and their low co-infection rate (14.6%)
242	may have reduced the overall rate. Seasonal variations in circulating respiratory viruses
243	also determine the co-infection rate. In our one-year study, the co-infection rate during
244	the cold season (from October to March, 19.7%) was higher than the rate during the hot
245	season (from April to September, 12.5%). Thus, the comparison of co-infection rates
246	between studies requires careful interpretation.
247	
248	Our findings indicate that respiratory virus co-infections with RSV infection
249	increases the risk of developing more severe ARI with respiratory distress, such as
250	bronchiolitis, compared to RSV single infection. The effect of multiple viral infections
251	on the clinical picture of ARI has been controversial. Previous studies have reported that

252	co-infection with non-RSV respiratory viruses, particularly HMPV, increased the risk of
253	hospitalization, pneumonia, and the receipt of mechanical ventilation among
254	RSV-infected children,[5,7-9] whereas other studies noted no association between
255	respiratory virus co-infection and the severity of RSV disease.[10-12,19] Inconsistent
256	findings have also been reported for associations between ARI severity and respiratory
257	virus co-infections with non-RSV respiratory virus infections.[12,20] These variations
258	may be explained by the different combinations of virus co-infections. Franz et al.
259	reported that RSV/non-RSV co-infection was more strongly associated with pneumonia
260	than RSV single infection, and the primary co-infecting virus in their study was HBoV
261	(8.8% of all RSV infections, $n = 14/160$).[9] However, Martin et al. found that multiple
262	viral infections did not increase the severity of RSV single infection; the leading
263	combinations in their study were RSV/HAdV (25% of dual viral infections, $n = 24/96$)
264	and RSV/HCoV (17.7% of dual infections, $n = 17/96$).[12] In our study, the most
265	common virus that was present in an RSV co-infection was HRV (11%, $n = 19/172$).
266	Therefore, our findings may not be directly comparable with those from previous
267	reports.

269 Several hypotheses have been proposed to explain the association between

270	multiple respiratory virus co-infections and ARI severity; these hypotheses include
271	modification of immune responses after the initial infection,[17,21] host susceptibility
272	to multiple viruses,[8] and associations of specific respiratory viruses with colonized
273	bacteria.[9,16] However, our study does not give a causal explanation for the observed
274	phenomenon due to limited biological data. In our study, the evidence for an increased
275	risk of developing pneumonia when co-infected with non-RSV respiratory viruses was
276	not significant, which is probably due to the small sample size or because bacterial
277	infection played a major role in the pathogenesis of pneumonia. Our results involving
278	associations between clinical severity and higher WBC counts and CRP levels may
279	reflect the latter explanation.
280	
281	Despite the small sample size, we again demonstrate a strong and significant
282	association of HPIV-3 infection with severe ARI in the Japanese population. We have
283	previously shown a compatible association with children with ARI in Vietnam.[13] Both
284	parainfluenza viruses and RSV are enveloped RNA viruses that are in the family
285	Paramyxoviridae. Parainfluenza viruses have many epidemiologic and clinical
285 286	Paramyxoviridae. Parainfluenza viruses have many epidemiologic and clinical similarities to RSV and thus require medical attention as the second most important

289	On the other hand, the positivity of influenza was conspicuously low (1.3%) in
290	our children. This was because in our setting, a commercial rapid influenza diagnostic
291	test (RIDT) was routinely performed for any outpatient with influenza-like illnesses
292	prior to the RSV diagnostic test and children with positive RIDT results were usually
293	not tested for RSV. Consequently influenza cases were screened out from our study
294	population. Further investigations are needed to evaluate the association between
295	influenza infection and the disease severity.
296	
297	In our study population, 25% of the children less than 5 years of age were
298	negative for any virus. This result was compatible with previous reports that found that
299	virus is not detected in a considerable proportion (10-30%) of patients with respiratory
300	diseases, despite intensive investigations.[6,7,9,12,20,23] Several reasons have been
301	proposed to explain this virus-negative population. First, conventional virus detection
302	tests, such as immunochromatography, are not sensitive. In our study, the sensitivity of
303	the RSV rapid test was 83.2%, referring to the PCR results. However, the sensitivity of
304	this rapid test is 100% if compared with other immunochromatography-based tests.[14]
305	Second, infection with other respiratory viruses, such as HCoV-NL63,[24]

306	HCoV-HKU1,[25] and human enteroviruses[26] that are not included as target viruses
307	in our current multiplex PCR system may have been missed. Third, targeted viruses
308	might have been cleared by the time of sampling because it was often several days or
309	over a week after the onset of disease when the sampling was performed. Such delayed
310	sampling may underestimate the true viral infection rate.[9,27,28] Fourth, some viral
311	RNA may have been degraded during the temporary storage at -20° C in the hospital.
312	However, the rate of viral detection was not low in our study as compared with previous
313	reports. Finally, there is always the possibility that an unknown virus might have caused
314	the disease.
315	
316	In addition to the examples mentioned above, this study has additional
317	limitations. First is the nature of cross-sectional studies. We expect that sequential
318	sample collections will uncover the natural courses of respiratory virus co-infections
319	and their causal effects on the clinical outcomes. Second, our study lacked data
320	regarding the timing of infection and disease onset. Third, our specimens were not
321	tested for viral load by quantitative PCR. The viral load of RSV may have been
322	associated with the co-infection status and the disease severity.[12] Fourth, we did not
323	have information regarding bacterial infection because non-invasive collection of

324 appropriate sputum samples is not feasible among young children.

326	In summary, RSV is the leading viral cause of lower respiratory infections and
327	causes substantial hospitalization burden during the winter season in Japan.[29] Our
328	findings indicate that co-infection with RSV and other respiratory viruses is not
329	uncommon and that co-infections may increase the severity of RSV disease in children.
330	Further investigations are warranted to investigate the determinants of RSV disease
331	severity.
332	

333 Acknowledgements

- 334 We thank Ms. Midori Dejima at the laboratory of NCMH and Dr. Hideki
- 335 Motomura at the Nagasaki University Hospital for supporting the study.

337	References
338	1. Liu L, Johnson HL, Cousens S, Perin J, Scott S, et al. (2012) Global, regional, and
339	national causes of child mortality: an updated systematic analysis for 2010 with
340	time trends since 2000. Lancet 379: 2151-2161.
341	2. UNICEF/WHO (2006) Pneumonia: the forgotten killer of children. Geneva: World Health
342	Organization. pp. 40 p.
343	3. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, et al. (2010) Global burden of
344	acute lower respiratory infections due to respiratory syncytial virus in young
345	children: a systematic review and meta-analysis. Lancet 375: 1545-1555.
346	4. Mahony JB (2008) Detection of respiratory viruses by molecular methods. Clin Microbiol
347	Rev 21: 716-747.
348	5. Foulongne V, Guyon G, Rodiere M, Segondy M (2006) Human metapneumovirus infection
349	in young children hospitalized with respiratory tract disease. Pediatr Infect Dis J 25 :
350	354-359.
351	6. Schlaudecker EP, Heck JP, Macintyre ET, Martinez R, Dodd CN, et al. (2012) Etiology and
352	Seasonality of Viral Respiratory Infections in Rural Honduran Children. Pediatr
353	Infect Dis J.
354	7. Richard N, Komurian-Pradel F, Javouhey E, Perret M, Rajoharison A, et al. (2008) The
355	impact of dual viral infection in infants admitted to a pediatric intensive care unit
356	associated with severe bronchiolitis. Pediatr Infect Dis J 27: 213-217.
357	8. Semple MG, Cowell A, Dove W, Greensill J, McNamara PS, et al. (2005) Dual infection of
358	infants by human metapneumovirus and human respiratory syncytial virus is
359	strongly associated with severe bronchiolitis. J Infect Dis 191: 382-386.
360	9. Franz A, Adams O, Willems R, Bonzel L, Neuhausen N, et al. (2010) Correlation of viral
361	load of respiratory pathogens and co-infections with disease severity in children
362	hospitalized for lower respiratory tract infection. J Clin Virol 48: 239-245.
363	10. Marguet C, Lubrano M, Gueudin M, Le Roux P, Deschildre A, et al. (2009) In very young
364	infants severity of acute bronchiolitis depends on carried viruses. PLoS One 4:
365	e4596.
366	11. Papenburg J, Hamelin ME, Ouhoummane N, Carbonneau J, Ouakki M, et al. (2012)
367	Comparison of risk factors for human metapneumovirus and respiratory syncytial
368	virus disease severity in young children. J Infect Dis 206: 178-189.
369	12. Martin ET, Kuypers J, Wald A, Englund JA (2012) Multiple versus single virus
370	respiratory infections: viral load and clinical disease severity in hospitalized
371	children. Influenza Other Respi Viruses 6: 71-77.

37213. Yoshida LM, Suzuki M, Yamamoto T, Nguyen HA, Nguyen CD, et al. (2010) Viral 373pathogens associated with acute respiratory infections in central vietnamese 374children. Pediatr Infect Dis J 29: 75-77. 375 14. Alfresa (2007) Check RSV. 376 15. Takeyama A, Hahimoto K, Kawasaki Y, Katayose M, Hosoda M (2011) Usefulness and 377 problems of rapid antigen test for respiratory syncytial virus detection. The Journal 378 of Pediatric Infectious Diseases and Immunology 22: 337-342. 379 16. Vu HT, Yoshida LM, Suzuki M, Nguyen HA, Nguyen CD, et al. (2011) Association 380 between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and 381radiologically confirmed pneumonia in Vietnamese children. Pediatr Infect Dis J 30: 38211-18. 383 17. Aberle JH, Aberle SW, Pracher E, Hutter HP, Kundi M, et al. (2005) Single versus dual 384 respiratory virus infections in hospitalized infants: impact on clinical course of 385disease and interferon-gamma response. Pediatr Infect Dis J 24: 605-610. 386 18. Calvo C, Garcia-Garcia ML, Blanco C, Vazquez MC, Frias ME, et al. (2008) Multiple 387 simultaneous viral infections in infants with acute respiratory tract infections in 388Spain. J Clin Virol 42: 268-272. 38919. De Paulis M, Gilio AE, Ferraro AA, Ferronato AE, do Sacramento PR, et al. (2011) 390 Severity of viral coinfection in hospitalized infants with respiratory syncytial virus 391infection. J Pediatr (Rio J) 87: 307-313. 392 20. Laurent C, Dugue AE, Brouard J, Nimal D, Dina J, et al. (2012) Viral epidemiology and 393 severity of respiratory infections in infants in 2009: a prospective study. Pediatr 394 Infect Dis J 31: 827-831. 39521. Spann KM, Tran KC, Chi B, Rabin RL, Collins PL (2004) Suppression of the induction of 396 alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human 397 respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J 398 Virol 78: 4363-4369. 399 22. Hall CB (2001) Respiratory syncytial virus and parainfluenza virus. N Engl J Med 344: 400 1917-1928. 401 23. Singleton RJ, Bulkow LR, Miernyk K, DeByle C, Pruitt L, et al. (2010) Viral respiratory 402infections in hospitalized and community control children in Alaska. J Med Virol 82: 403 1282-1290. 404 24. Chiu SS, Chan KH, Chu KW, Kwan SW, Guan Y, et al. (2005) Human coronavirus NL63 405infection and other coronavirus infections in children hospitalized with acute 406 respiratory disease in Hong Kong, China. Clin Infect Dis 40: 1721-1729. 40725. Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, et al. (2006) Coronavirus HKU1 and other

408	coronavirus infections in Hong Kong. J Clin Microbiol 44: 2063-2071.
409	26. Imamura T, Fuji N, Suzuki A, Tamaki R, Saito M, et al. (2011) Enterovirus 68 among
410	children with severe acute respiratory infection, the Philippines. Emerg Infect Dis
411	17: 1430-1435.
412	27. Tamura D, Sugaya N, Ozawa M, Takano R, Ichikawa M, et al. (2011) Frequency of
413	drug-resistant viruses and virus shedding in pediatric influenza patients treated
414	with neuraminidase inhibitors. Clin Infect Dis 52: 432-437.
415	28. Okiro EA, White LJ, Ngama M, Cane PA, Medley GF, et al. (2010) Duration of shedding
416	of respiratory syncytial virus in a community study of Kenyan children. BMC Infect
417	Dis 10: 15.
418	29. Kaneko M, Watanabe J, Kuwahara M, Ueno E, Hida M, et al. (2002) Impact of
419	respiratory syncytial virus infection as a cause of lower respiratory tract infection in
420	children younger than 3 years of age in Japan. J Infect 44: 240-243.
421	
422	

2 Characteristics of the study patients by their case categories.

3

	Mild ARI	Moderate-to-severe non-pneumonic ARI	Pneumonia	Total	P value ^a
	N = 149	N = 137	N = 86	N = 372	
Sex, N (%)					
Male	94 (63.1)	83 (60.6)	50 (58.1)	227 (61)	n 6
Female	55 (36.9)	54 (39.4)	36 (41.9)	145 (39)	11.5.
Age average (months), median (IQR)	12 (7)	12 (7)	12 (13)	12 (5.5)	n.s.
Age group (months), N (%)					
<12	62 (41.6)	63 (46)	26 (30.2)	151 (40.6)	
12–23	52 (34.9)	57 (41.6)	37 (43)	146 (39.2)	n.s
>24	35 (23.5)	17 (12.4)	23 (26.8)	75 (20.2)	
WBC (per mm ³), median (IQR)	n.a.	10,200 (5,900)	11,250 (7,200)	10,700 (6,400) ^b	0.04
CRP (mg/dl), median (IQR)	n.a.	0.9 (2.1)	3.1 (4.7)	1.6 (3.4) ^b	0.0001

4

5 NOTE. n.s., not significant; n.a., data not available; SD, standard deviation; IQR, inter-quartile range.

⁶ ^aP value calculated from univariate analysis that the chi-square test was used for categorical variables whereas the Kruskal-Wallis test was

7 applied for continuous variables.

^bData was available for 223 patients.

Virus distribution in the total samples and in the RSV-positive samples. $\mathbf{2}$

	No. of positive	No. of positives in				
	samples, N=372			RSV-positive samp		
	-			N=172		
	Ν	%		Ν	%	
RSV	172	46.2	HRV	19	11.1	
HRV	63	16.9	HAdV	6	3.5	
HMPV	23	6.2	HBoV	3	1.7	
HPIV-1	22	5.9	HMPV	2	1.2	
HAdV	21	5.7	HPIV-1	2	1.2	
HPIV-3	14	3.8	FluA	2	1.2	
HBoV	7	1.9				
FluA	5	1.3				
HPIV-4	1	0.3				

3

NOTE. RSV, respiratory syncytial virus; HRV, human rhinovirus; HMPV, human metapneumovirus; HPIV, human parainfluenza virus; HAdV, human adenovirus; HBoV, human bocavirus; FluA, influenza A virus. 4

 $\mathbf{5}$

2 Comparison of respiratory viral infections and clinical case categories.

9
Э

		Mild ARI	Moderate-to-severe non-pneumonic ARI	Pneumonia	Mild vs. moderate-to-severe non-pneumonic ARI		e RI	Mild vs. pneumonia		
		N = 149 (%)	N = 137 (%)	N = 86 (%)	OR	95% CI	P value	OR	95% CI	P value
RSV	Pos Neg	48 (32.2) 101 (67.8)	80 (58.4) 57 (41.6)	44 (51.2) 42 (48.8)	2.95 Refer	1.82–4.78 ence	< 0.001	2.2 Referen	1.27–3.80 ce	0.004
HRV	Pos Neg	25 (16.8) 124 (83.2)	30 (21.9) 107 (78.1)	8 (9.3) 78 (90.7)	1.39 Refer	0.77–2.51 ence	0.3	0.5 Referen	0.22–1.18 ce	0.1
HMPV	Pos Neg	9 (6) 140 (94)	9 (6.6) 128 (93.4)	5 (5.8) 81 (94.2)	1.09 Refer	0.42–2.84 ence	0.9	0.96 Referen	0.31–2.96 ce	0.9
HAdV	Pos Neg	10 (6.7) 139 (93.3)	6 (4.4) 131 (95.6)	5 (5.8) 81 (94.2)	0.64 Refef	0.23–1.80 erence	0.4	0.86 Referen	0.28–2.60 ce	0.8
HPIV-1	Pos Neg	11 (7.4) 138 (92.6)	9 (6.6) 128 (93.4)	2 (2.3) 84 (97.7)	0.88 Refer	0.35–2.20 ence	0.8	0.3 Referen	0.06–1.38 ce	0.1
HPIV-3	Pos Neg	2 (1.3) 147 (98.7)	4 (2.9) 133 (97.1)	8 (9.3) 78 (90.7)	2.21 Refer	0.40–12.3 ence	0.4	7.54 Referen	1.56–36.4 ce	0.012

4

5 NOTE. OR, odds ratio; CI, confidence interval.

2 Associations between RSV single/multiple infections and moderate-to-severe non-pneumonic ARI cases.

റ
\cdot

		Unadjusted OR	95% CI	P value	Adjusted OR	95% CI	<i>P</i> value
Sex	Male	Reference			Reference		
	Female	1.11	0.69–1.79	0.7	1.06	0.64-1.77	0.8
Age group	<12	Reference			Reference		
(months)	12–23	1.07	0.65 - 1.80	0.8	1.03	0.6-1.77	0.9
	>24	0.48	0.24-0.94	0.033	0.42	0.2-0.85	0.016
RSV	Negative	Reference			Reference		
	Single infection	2.68	1.61-4.47	< 0.001	2.77	1.64-4.70	< 0.001
	Multiple infection	4.56	1.80-11.57	0.001	4.91	1.90-12.7	0.001

4

5 NOTE. OR, odds ratio; CI, confidence interval.

6 Logistic regression analysis was done for mild ARI cases vs. moderate-to-severe non-pneumonic ARI cases. The multiple logistic

7 regression model included the explanatory variables listed in the table. The result of the Hosmer-Lemeshow test indicated high

8 goodness-of-fit for the final model (P=0.62).