1 Clinical and Microbiological Characteristics of Candida guilliermondii and

2 Candida fermentati

3

4 R	unning title:	Characteristics	of <i>C</i> .	guilliermondii	and C.	fermentati
-----	---------------	-----------------	---------------	----------------	--------	------------

 $\mathbf{5}$

6	Tatsuro Hirayama ^{a,b} , Taiga Miyazaki ^{b,c} #, Yuka Yamagishi ^d , Hiroshige Mikamo ^d , Takashi
7	Ueda ^e , Kazuhiko Nakajima ^e , Yoshio Takesue ^e , Yoshitsugu Higashi ^f , Yoshihiro
8	Yamamoto ^f , Muneyoshi Kimura ^g , Hideki Araoka ^g , Shuichi Taniguchi ^h , Yuichi Fukuda ⁱ ,
9	Yumi Matsuo ^j , Akiko Furutani ^k , Kohei Yamashita ^a , Takahiro Takazono ^{b,c} , Tomomi Saijo ^b ,
10	Shintaro Shimamura ^b , Kazuko Yamamoto ^b , Yoshifumi Imamura ^b , Koichi Izumikawa ^c ,
11	Katsunori Yanagihara ¹ , Shigeru Kohno ^b , Hiroshi Mukae ^{a,b}
12	
13	^a Department of Respiratory Medicine, Nagasaki University Graduate School of
14	Biomedical Sciences, Nagasaki, Japan
15	^b Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki,
16	Japan
17	°Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical
18	Sciences, Nagasaki, Japan

19	^d Department of Clinical Infectious Diseases, Aichi Medical University, Japan
20	^e Department of Infection Control and Prevention, Hyogo College of Medicine, Japan
21	^f Department of Clinical Infectious Diseases, Graduate School of Medicine and
22	Pharmaceutical Sciences for Research, University of Toyama, Japan
23	^g Department of Infectious Diseases, Toranomon Hospital, Japan
24	^h Department of Hematology, Toranomon Hospital, Japan
25	ⁱ Department of Respiratory Medicine, Sasebo City General Hospital, Japan
26	^j Department of Laboratory Medicine, Sasebo City General Hospital, Japan
27	^k Department of Laboratory Medicine, Sasebo Kyosai Hospital, Japan
28	¹ Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
29	
30	
31	#Address correspondence to Taiga Miyazaki, <u>taiga-m@nagasaki-u.ac.jp</u>

32 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; Tel: +81 95 819 7273; Fax: +81 95 849 7285

33 Abstract

34	The 46 clinical isolates of Candida guilliermondii and Candida famata were re-
35	identified genetically, resulting in 27 C. guilliermondii and 12 Candida fermentati strains.
36	The majority of <i>C. guilliermondii</i> , but no <i>C. fermentati</i> , were isolated from blood cultures.
37	C. fermentati was more sensitive to antifungals, hydrogen peroxide and killing by murine
38	macrophages than C. guilliermondii. The C. guilliermondii isolates were echinocandin
39	susceptible in vitro but resistant to micafungin in a murine model of invasive candidiasis.
40	
41	
42	Text
43	The Candida guilliermondii complex is a genetically heterogeneous complex of
44	several phenotypically indistinguishable species, including C. guilliermondii, Candida
45	fermentati, Candida carpophila, and Candida xestobii (1). The incidence of candidemia
46	due to the C. guilliermondii complex ranges from 1-3% depending on the geographic
47	region (2, 3). However, there have been limited studies reporting the epidemiological and
48	clinical information of C. guilliermondii complex infections (4-6). The C. guilliermondii
49	complex and Candida famata share similarities in biochemical characteristics, and it has
50	been reported that these species are sometimes misidentified in clinical laboratories (7,

51 8).

52	During a 12-year period from April 2005 to March 2017, 46 strains isolated from
53	46 patients across seven medical institutions in Japan. All isolates were originally
54	identified as C. guilliermondii or C. famata using standard laboratory identification
55	systems: VITEK 2 system (BioMérieux, Marcy L'Etoile, France), API ID 32C or API 20C
56	AUX (BioMérieux), or MALDI Biotyper (Bruker Daltonics, Bremen, Germany). The
57	institutions were either a university hospital or a teaching hospital: Nagasaki University
58	Hospital, Aichi Medical University Hospital, Hyogo College of Medicine Hospital,
59	Toyama University Hospital, Toranomon Hospital, Sasebo City General Hospital, and
60	Sasebo Kyosai Hospital. For all isolates, nucleotides of ITS regions were sequenced as
61	described previously (9) and analyzed using the ClustalW algorithm in MacVector
62	software (version 14.0.3, MacVector, Inc., NC, USA). PCR/RFLP of IGS was performed
63	to distinguish C. guilliermondii, C. fermentati, C. carpophila, and C. xestobii as
64	previously described (10). Identification results are shown in Table 1. Among 39 C.
65	guilliermondii clinical isolates, 38 isolates were confirmed as C. guilliermondii and one
66	isolate as Kodamaea ohmeri. Conversely, among seven clinical isolates originally
67	identified as C. famata by the VITEK 2 system, six isolates were re-identified as Candida
68	parapsilosis and one isolate as C. guilliermondii complex; no true C. famata strain was

69	identified. The results of our study, in conjunction with previous reports (7, 8, 11, 12),
70	suggest that C. famata is far less common as a cause of invasive candidiasis. The MALDI
71	Biotyper misidentified K. ohmeri, as this species was not included in the database when
72	the isolate was identified in 2013 (13). All three laboratory identification systems
73	identified the correct C. guilliermondii complex clade, however, these systems are not
74	able to accurately identify to a species level among the C. guilliermondii complex. The
75	ITS sequences of the clinical C. guilliermondii and C. fermentati isolates matched those
76	of the reference strains CBS566 and CBS2022, respectively, with 99.6–100% similarities.
77	Clinical C. fermentati isolates differed from C. guilliermondii isolates by 3-5 bp in the
78	ITS region sequences. The homology of nucleotide sequences of the ITS regions between
79	these two species was 99.0–99.3%. C. fermentati (CBS2022) differed from C. carpophila
80	(CBS5256) and C. xestobii (CBS5975) by two nucleotides. The PCR/RFLP analyses of
81	the IGS regions confirmed that 27 isolates were C. guilliermondii and 12 isolates were C.
82	fermentati. There were no C. carpophila or C. xestobii isolates.
83	Clinical information including specimen types, comorbidity, β -D glucan values
84	measured by Fungitec G Test MK II "Nissui" (Nissui Pharmaceutical Co. Ltd., Tokyo,
85	Japan; cutoff value: 20.0 pg/ml), initial antifungal agents administered, and therapeutic
86	outcomes was reviewed retrospectively, for all 39 patients from which C. guilliermondii

87	complex had been isolated. The investigators determined whether isolates caused
88	infection or colonized based on clinical courses. The study protocol was approved by the
89	ethical review boards in all institutions that participated in this study. The registration
90	number of this study is 14122267 in the principal investigator institution Nagasaki
91	University Hospital. Patient characteristics are shown in Table 2. All statistical analyses
92	were carried out using Prism 6.0 (Graphpad software, Inc., 2012). Nominal variables were
93	compared using Fischer's exact test and continuous variables of patient characteristics
94	were compared using the Mann-Whitney U test. Of the 39 patients, 28 patients (71.8%)
95	were diagnosed with complicated malignancies, notably 17 patients (43.6%) had
96	underlying hematological cancer. The C. guilliermondii complex isolates were obtained
97	from 31 patients (79.5%) with a central venous catheter; 19 patients (48.7%) administered
98	with steroids; and 21 patients (53.8%) receiving antifungal therapy with micafungin ($n =$
99	14), itraconazole $(n = 1)$, fluconazole $(n = 2)$, voriconazole $(n = 2)$, and liposomal
100	amphotericin B ($n = 5$). Among these patient characteristics, no significant difference was
101	found between the C. guilliermondii and C. fermentati groups. The only clinical
102	difference was that none of the 12 C. fermentati isolates were obtained from the
103	bloodstream whereas 81.5% ($n = 22/27$) of the C. guilliermondii isolates were obtained
104	from the bloodstream ($P < 0.0001$). The other C. guilliermondii isolates were from

105	cerebrospinal fluid ($n = 1$), ear discharge ($n = 1$), sputum ($n = 2$), and the urinary tract (n
106	= 1). In contrast, the majority of C. fermentati isolates were obtained from non-sterile
107	sites including stool ($n = 7$), sputum ($n = 2$), bile ($n = 2$), and the urinary tract ($n = 1$). In
108	previous studies, among the clinical cases diagnosed as C. guilliermondii infection, 77-
109	95% cases were actually caused by C. guilliermondii while 5-23% cases were due to C.
110	fermentati. (4, 5, 14, 15). The results of our study were in agreement with the previous
111	report that C. guilliermondii was more commonly isolated from the bloodstream than C.
112	fermentati (5). We collected the C. guilliermondii complex isolates from any type of
113	specimen regardless of whether they caused infections, in contrast, most previous studies
114	analyzed only infectious cases including candidemia. The elevation of serum β -D glucan
115	level was more frequently found in the C. guilliermondii group ($n = 16, 64.0\%$) compared
116	to the <i>C. fermentati</i> group ($n = 2, 16.7\%$) ($P = 0.01$). The findings in our study suggest
117	that C. fermentati colonizes at non-sterile sites but hardly invade into the bloodstream,
118	which may also be supported by the significantly low serum β -D glucan levels in the <i>C</i> .
119	fermentati group.
120	Antifungal susceptibility tests was performed using Sensititre YeastOne (SYO)

121

of C. guilliermondii complex isolates were interpreted by the species-specific clinical 122

microtiter panel (TREK Diagnostic Systems, Ltd., East Grinstead, UK) (16). The MICs

123	breakpoints (CBPs) (17) and the epidemiological cutoff values (ECVs) (18, 19). The
124	antifungal susceptibilities of the 27 C. guilliermondii and 12 C. fermentati isolates are
125	shown in Table 3. All the C. guilliermondii and C. fermentati isolates were susceptible to
126	micafungin, caspofungin, and anidulafungin, except one C. guilliermondii isolate that was
127	categorized as intermediate to an idula fungin when interpreted using the CBPs. All the C .
128	guilliermondii and C. fermentati isolates were categorized as wild-type for echinocandins,
129	amphotericin B, and 5-flucytosine by using the ECVs. C. guilliermondii is known to show
130	intrinsically higher echinocandin MIC values than other Candida species (2), and a recent
131	study has reported that 9.1-27.2% of C. guilliermondii isolates were not susceptible to
132	echinocandins (6). In contrast, most C. guilliermondii isolates were susceptible to
133	echinocandins in this study. The reason for this difference is unclear but may be related
134	to geographic location, prior exposure to echinocandins, or other unknown factors.
135	Nonetheless, all the C. fermentati isolates were susceptible to the nine antifungal agents
136	tested in this study, in agreement with the previous reports from China and Taiwan (4, 5).
137	Taken together, these findings suggest a lower frequency of resistant strains in C.
138	fermentati and certain variations in the frequency of echinocandin resistance in C.
139	guilliermondii. According to previous studies, approximately 5–15% of C. guilliermondii
140	isolates are azole resistant (2, 4, 5, 15). Correspondingly, 7.4–14.8% of C. guilliermondii

isolates were categorized as non-wildtype for azoles according to the ECVs in our study.
All of the *C. fermentati* isolates were categorized as wild-type for all azoles tested in this
study.

144 The sequences of the FKS1 hot spot regions of four C. guilliermondii and eight C. fermentati isolates were analyzed. Hot spot regions were amplified with the following 145forward and reverse primer pairs: HS1-F (5'-AATGGGCTGGTGCTCAACAT-3') and 146HS1-R (5'-CCTTCAATTTCAGATGGAACTTGATG-3') for hot spot 1, and HS2-F (5'-147AAGATTGGTGCTGGTATGGG-3') and HS2-R (5'-GTGGCGAAACCTCTACCAGT-1481493') for hot spot 2. The reference sequences of FKS1 were retrieved from the NCBI database and sequence analyses were performed with MacVector software. Decreased 150echinocandin susceptibility of C. guilliermondii was attributed to the intrinsic amino acid 151152changes in the hot spot 1 region of Fks1 (20-22). However, to our knowledge, there is only one study that analyzed the DNA sequence of the FKS1 hot spot region for a C. 153fermentati clinical isolate (23). The present study revealed that all the C. guilliermondii 154and C. fermentati isolates harbored two polymorphisms (L633M and T634A) in the first 155Fks1 hot spot, which may account for intrinsically higher echinocandin MICs of these 156157strains. No mutation was found in the second Fks1 hot spot region.

158

To examine in vivo echinocandin susceptibility of C. guilliermondii, mice were

159	infected intravenously with the C. guilliermondii clinical isolates (NGSCG1 and
160	ACHCG213) and treated with micafungin. The Candida glabrata wild-type strain
161	CBS138 (24) was used as a control as micafungin is known to be highly active against C .
162	glabrata. In vitro MICs of micafungin were 1 μ g/ml for NGSCG1, 0.25 μ g/ml for
163	ACHCG213, and 0.03 μ g/ml for CBS138. All animal experiments were performed in full
164	compliance with the Guide for the Care and Use of Laboratory Animals (National
165	Research Council, National Academy Press, Washington DC, 2011) and the institutional
166	regulations and guidelines for animal experimentation after pertinent review and approval
167	by the Institutional Animal Care and Use Committee of Nagasaki University under
168	protocol number 1407281164. Specific-pathogen-free, 7-week-old female BALB/c mice
169	(Japan SLC Inc., Shizuoka, Japan) were rendered neutropenic by intraperitoneal
170	administration of cyclophosphamide (Sigma-Aldrich, St; Louis, MO, USA) 4 days before
171	infection (150 mg/kg), 1 day before infection (100 mg/kg), 2 and 5 days post infection
172	(100 mg/kg) (25). The mice were infected intravenously through the lateral vein with 0.2
173	ml of the Candida cell suspension. The actual CFUs in the inocula were confirmed by
174	plating serial dilutions of cell suspension on YPD plates and were as follows: 7.2×10^6
175	cells for NGSCG1, 8.6 \times 10 ⁶ cells for ACHCG213, and 1.6 \times 10 ⁶ cells for CBS138.
176	Micafungin (Astellas Pharma Inc., Tokyo, Japan) was administered at 4 mg/kg/day

177	intraperitoneally for seven consecutive days in a 0.2 ml volume commencing 2 h post
178	infection. Taking into consideration the previous AUC data of micafungin in mice (26,
179	27), 4 mg/kg/day intraperitoneally administration to mice is expected to correspond to
180	approximately 100 mg/day administration to humans. The mice were euthanized 7 days
181	after infection. No mice died before euthanasia in this experiment. Appropriate dilutions
182	of organ homogenates were plated on YPD agar and the CFUs per organ were calculated.
183	Differences of fungal burden between the treatment and control groups were examined
184	using the Mann-Whitney test. In mice infected with C. guilliermondii isolates NGSCG1
185	and ACHCG213, micafungin at 4 mg/kg was effective at reducing the liver fungal burden
186	against the controls ($P = 0.0002$ for NGSCG1 and $P = 0.0006$ for ACHCG213). However,
187	the overall CFU reduction for C. guilliermondii was clearly less than that for C. glabrata
188	CBS138 (Figure 1). In mouse kidneys infected with C. guilliermondii, micafungin was
189	not effective to reduce fungal burden compared to the non-treatment controls ($P = 0.98$
190	for NGSCG1 and $P = 0.38$ for ACHCG213), although it significantly reduced the CFUs
191	in the liver and kidneys of mice infected with C. glabrata CBS138 ($P = 0.0002$). The
192	lower efficacy of micafungin against C. guilliermondii may be due to higher echinocandin
193	MIC values than in C. glabrata. A 4 mg/kg dose of micafungin was effective at reducing
194	the liver fungal burden in mice infected with C. guilliermondii isolates, yet ineffective in

195	the kidneys. It has been reported that micafungin concentrations in kidney tissues are less
196	than those in liver tissues (28), and micafungin translocates rapidly in and out of the
197	kidneys (29). The differences in micafungin concentrations in the kidney and liver tissues
198	may be reflected in therapeutic efficacy at those organs, although we were not able to
199	measure the actual drug concentrations in our mouse experiments. Nevertheless, our
200	study showed that, at a clinical dose, micafungin had a poor efficacy against C.
201	guilliermondii, while it was markedly more effective for C. glabrata.
202	To examine differences in phenotype between C. guilliermondii and C.
203	fermentati, we performed various assays related to pathogenicity. Biofilm formation
204	capacity of Candida cells was examined using the 2,3-bis(2-methoxy-4-nitro-5-sulfo-
205	phenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay (30). There was no
206	significant difference in the capacity of biofilm formation between C. guilliermondii
207	(optical density at 492 nm: 0.112 \pm 0.027) and <i>C. fermentati</i> (0.081 \pm 0.026) (Kruskal-
208	Wallis test, $P = 0.059$). Biofilm formation capacity of <i>C. guilliermondii</i> and <i>C. fermentati</i>
209	was significantly less than that of the Candida albicans wild-type strain SC5314 (0.774
210	\pm 0.036), respectively (<i>P</i> = 0.039 for <i>C. guilliermondii</i> vs <i>C. albicans</i> and <i>P</i> = 0.0001 for
211	C. fermentati vs C. albicans). We also performed spot dilution tests as described
212	previously (31) and found that <i>C. fermentati</i> isolates were more sensitive to H ₂ O ₂ than <i>C</i> .

213	guilliermondii isolates were (Figure 2A). There were no differences in sensitivity to other
214	oxidative stress inducers including diamide and menadione, osmotic stresses induced by
215	sorbitol and NaCl, acid and alkaline stresses (pH 2.2–9.4), and growth at 30°C and 37°C
216	between C. guilliermondii and C. fermentati strains tested in this study (data not shown).
217	To further examine H ₂ O ₂ sensitivity of these species, viable cell counts of nine isolates
218	for each of C. guilliermondii and C. fermentati were evaluated after incubation with 5
219	mM H ₂ O ₂ for 4 h. To avoid potential for bias, these isolates were selected by considering
220	medical institution, specimen type, and antifungal susceptibility profiles. Logarithmic-
221	phase cells were suspended in PBS (pH = 7.2) at the concentration of 5×10^6 cells/ml and
222	treated with H ₂ O ₂ at 30°C with agitation (250 rpm). Serial dilutions of cell suspensions
223	were plated on YPD agar and incubated at 30°C for 48 h to count viable cells. H2O2
224	exerted significant fungicidal effects against C. fermentati (Figures 2B and C). The
225	average viable cell counts before treatment were 6.8 \pm 0.3 -log cells/ml for C.
226	guilliermondii and 6.7 ± 0.3 -log cells/ml for C. fermentati. A 4-h treatment with 5 mM
227	H ₂ O ₂ reduced viable cell counts of <i>C. guilliermondii</i> and <i>C. fermentati</i> by 1.1 ± 0.4 and
228	3.4 ± 0.5 -log cells/ml, respectively. There was a significant difference between the two
229	groups (Mann-Whitney test, $P < 0.001$). These results suggest that C. fermentati was more
230	sensitive to H ₂ O ₂ than C. guilliermondii.

231	In the host environment, phagocytes are the first line of defense against fungal
232	infections. These cells produce reactive oxygen species such as superoxide, H ₂ O ₂ , and
233	hydroxyl radicals for damaging biomolecules and killing phagocytosed pathogens (32,
234	33). Murine macrophages are known to be capable of killing microbes including <i>Candida</i>
235	species (34, 35). We performed macrophage killing assays against C. guilliermondii and
236	C. fermentati using murine RAW 264 macrophages. RAW 264 cells were cultured at 37°C
237	in 5% CO2 in Dulbecco's Modified Eagle Medium (DMEM, Sigma-Aldrich)
238	supplemented with 10% fetal bovine serum (Life technologies, Japan) and 1% penicillin
239	and streptomycin (Sigma-Aldrich). Macrophages were scraped with trypsin-EDTA
240	(0.25%), phenol red (Invitrogen, Carlsbad, CA, USA) and rinsed in DMEM. The nine
241	clinical isolates of C. guilliermondii and C. fermentati, which were the same strains used
242	for the H ₂ O ₂ assay, were incubated in YPD broth at 30°C and logarithmic-phase cells
243	were prepared. The killing assay was performed by reference to the methods described
244	previously (36, 37). On the basis of pilot studies, 8.0×10^4 macrophages were co-cultured
245	with 5.3×10^3 Candida cells (15:1 ratio) in 1.5 ml microtubes with rotation at 37°C for 4
246	h. The cultures were sonicated, diluted and spread on YPD agar to count the viable cells.
247	CFUs of the co-cultures were compared with CFUs of growth control tubes containing
248	Candida cells without macrophages. Percentage of killing ratio was calculated as [1 -

(CFUs from co-culture tubes / CFUs from control tubes)]. The cell ratio before treatment 249were 14.7 ± 3.4 : 1 (macrophage: *Candida*) for *C. guilliermondii* and 13.1 ± 5.5 : 1 for *C.* 250*fermentati*. Viable cell counts after 4-h treatment were $2.43 \pm 0.80 \times 10^4$ cells/ml for C. 251guilliermondii and $2.56 \pm 1.11 \times 10^4$ cells/ml for C. fermentati without RAW 264 cells, 252and $2.39 \pm 0.81 \times 10^4$ cells/ml for C. guilliermondii and $1.86 \pm 0.92 \times 10^4$ cells/ml for C. 253fermentati with RAW 264 cells. The killing ratio of C. fermentati was significantly higher 254than that of C. guilliermondii, at 24.4 ± 14.6 % versus -0.6 ± 14.4 %, respectively (Mann-255Whitney test, P < 0.01) (Figure 2D). 256

257In conclusion, the present study demonstrates that C. guilliermondii and C. fermentati are closely related but have different microbiological and clinical 258characteristics. Among the C. guilliermondii complex, C. guilliermondii was highly 259260associated with bloodstream infections but C. fermentati was not. This may be explained, at least in part, by the lower resistance of C. fermentati to oxidative stress and killing by 261macrophages. Since no C. guilliermondii was accidentally identified as C. fermentati and 262263all of the C. fermentati isolates were more susceptible and less pathogenic, it may not be needed to distinguish C. fermentati from C. guilliermondii in clinical practice. However, 264265in vitro echinocandin MICs for C. guilliermondii should be regarded with some caution, because this species was less susceptible to micafungin in vivo. A limitation of this study 266

is the limited number of isolates analyzed, therefore our findings need to be confirmed infuture studies.

269

270 Acknowledgments

This work was partially supported by the Research Program on Emerging and Reemerging Infectious Diseases from the Japan Agency for Medical Research and Development (AMED) under Grant Number JP17fk0108208, the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP15K09573, and grants from the Takeda Science Foundation.

276

277

278 **References**

Vaughan-Martini A, Kurtzman CP, Meyer SA, O'Neill EB. 2005. Two new species
 in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state
 of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Res
 5:463-9.
 Pfaller MA, Diekema DJ, Mendez M, Kibbler C, Erzsebet P, Chang SC, Gibbs

284 DL, Newell VA. 2006. Candida guilliermondii, an opportunistic fungal pathogen

285		with decreased susceptibility to fluconazole: geographic and temporal trends from
286		the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol 44:3551-
287		6.
288	3.	Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, Horn
289		D. 2012. Epidemiology and outcomes of candidemia in 3648 patients: data from
290		the Prospective Antifungal Therapy (PATH Alliance(R)) registry, 2004-2008.
291		Diagn Microbiol Infect Dis 74:323-31.
292	4.	Cheng JW, Yu SY, Xiao M, Wang H, Kudinha T, Kong F, Xu YC. 2016.
293		Identification and Antifungal Susceptibility Profile of Candida guilliermondii and
294		Candida fermentati from a Multicenter Study in China. J Clin Microbiol 54:2187-
295		9.
296	5.	Chen CY, Huang SY, Tang JL, Tsay W, Yao M, Ko BS, Chou WC, Tien HF, Hsueh
297		PR. 2013. Clinical features of patients with infections caused by Candida
298		guilliermondii and Candida fermentati and antifungal susceptibility of the isolates
299		at a medical centre in Taiwan, 2001-10. J Antimicrob Chemother 68:2632-5.
300	6.	Tseng TY, Chen TC, Ho CM, Lin PC, Chou CH, Tsai CT, Wang JH, Chi CY, Ho
301		MW. 2017. Clinical features, antifungal susceptibility, and outcome of Candida
302		guilliermondii fungemia: An experience in a tertiary hospital in mid-Taiwan. J

303		Microbiol Immunol Infect doi:10.1016/j.jmii.2016.08.015.
304	7.	Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier JC, Dromer F. 2008.
305		Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often
306		misidentified as Pichia guilliermondii (Candida guilliermondii). J Clin Microbiol
307		46:3237-42.
308	8.	Kim SH, Shin JH, Mok JH, Kim SY, Song SA, Kim HR, Kook JK, Chang YH,
309		Bae IK, Lee K. 2014. Misidentification of Candida guilliermondii as C. famata
310		among strains isolated from blood cultures by the VITEK 2 system. Biomed Res
311		Int 2014:250408.
312	9.	Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. 2006.
313		Identification of medically important yeast species by sequence analysis of the
314		internal transcribed spacer regions. J Clin Microbiol 44:693-9.
315	10.	Cornet M, Sendid B, Fradin C, Gaillardin C, Poulain D, Nguyen HV. 2011.
316		Molecular identification of closely related Candida species using two ribosomal
317		intergenic spacer fingerprinting methods. J Mol Diagn 13:12-22.
318	11.	Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA. 2013. Candida
319		guilliermondii and other species of candida misidentified as Candida famata:
320		assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser

322

desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol 51:117-24.

- 12. Kim TH, Kweon OJ, Kim HR, Lee MK. 2016. Identification of Uncommon
 Candida Species Using Commercial Identification Systems. J Microbiol
 Biotechnol 26:2206-2213.
- 326 13. Ghosh AK, Paul S, Sood P, Rudramurthy SM, Rajbanshi A, Jillwin TJ,
- Chakrabarti A. 2015. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect 21:372-8.
- 330 14. Lockhart SR, Messer SA, Pfaller MA, Diekema DJ. 2009. Identification and
- Susceptibility Profile of Candida fermentati from a worldwide collection of
 Candida guilliermondii clinical isolates. J Clin Microbiol 47:242-4.
- 333 15. Marcos-Zambrano LJ, Puig-Asensio M, Perez-Garcia F, Escribano P, Sanchez-
- 334 Carrillo C, Zaragoza O, Padilla B, Cuenca-Estrella M, Almirante B, Martin-
- 335 Gomez MT, Munoz P, Bouza E, Guinea J. 2017. Candida guilliermondii Complex
- 336 Is Characterized by High Antifungal Resistance but Low Mortality in 22 Cases of
- 337 Candidemia. Antimicrob Agents Chemother 61.
- 16. Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian

339		SB, Knapp CC, Messer SA, Miskou A, Ramani R. 2012. Comparison of the
340		Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for
341		antifungal susceptibility testing of the echinocandins against Candida spp., using
342		new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol
343		Infect Dis 73:365-8.
344	17.	(CLSI) CaLSI. 2012. Reference method for broth dilution antifungal
345		susceptibility testing of yeasts; fourth informational supplement M27-S4. Clinical
346		and Laboratory Standards Institute, Wayne, PA.
347	18.	Espinel-Ingroff A, Alvarez-Fernandez M, Canton E, Carver PL, Chen SC,
348		Eschenauer G, Getsinger DL, Gonzalez GM, Govender NP, Grancini A, Hanson
349		KE, Kidd SE, Klinker K, Kubin CJ, Kus JV, Lockhart SR, Meletiadis J, Morris
350		AJ, Pelaez T, Quindos G, Rodriguez-Iglesias M, Sanchez-Reus F, Shoham S,
351		Wengenack NL, Borrell Sole N, Echeverria J, Esperalba J, Gomez GdlPE, Garcia
352		Garcia I, Linares MJ, Marco F, Merino P, Peman J, Perez Del Molino L, Rosello
353		Mayans E, Rubio Calvo C, Ruiz Perez de Pipaon M, Yague G, Garcia-Effron G,
354		Guinea J, Perlin DS, Sanguinetti M, Shields R, Turnidge J. 2015. Multicenter
355		study of epidemiological cutoff values and detection of resistance in Candida spp.
356		to anidulafungin, caspofungin, and micafungin using the Sensititre YeastOne

357		colorimetric method. Antimicrob Agents Chemother 59:6725-32.
358	19.	Pfaller MA, Diekema DJ. 2012. Progress in antifungal susceptibility testing of
359		Candida spp. by use of Clinical and Laboratory Standards Institute broth
360		microdilution methods, 2010 to 2012. J Clin Microbiol 50:2846-56.
361	20.	Dudiuk C, Macedo D, Leonardelli F, Theill L, Cabeza MS, Gamarra S, Garcia-
362		Effron G. 2017. Molecular Confirmation of the Relationship between Candida
363		guilliermondii Fks1p Naturally Occurring Amino Acid Substitutions and Its
364		Intrinsic Reduced Echinocandin Susceptibility. Antimicrob Agents Chemother 61.
365	21.	Perlin DS. 2015. Echinocandin Resistance in Candida. Clin Infect Dis 61 Suppl
366		6:S612-7.
367	22.	Walker LA, Gow NA, Munro CA. 2013. Elevated chitin content reduces the
368		susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother
369		57:146-54.
370	23.	Konuma T, Takahashi S, Kiyuna T, Miharu Y, Suzuki M, Shibata H, Kato S, Tojo
371		A. 2017. Breakthrough fungemia due to Candida fermentati with fks1p mutation
372		under micafungin treatment in a cord blood transplant recipient. Transpl Infect
373		Dis 19.
374	24.	Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De

375		Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M,
376		Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E,
377		Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A,
378		Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F,
379		Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M,
380		Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos
381		O, Pellenz S, Potier S, Richard GF, Straub ML, et al. 2004. Genome evolution in
382		yeasts. Nature 430:35-44.
383	25.	Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A. 2010.
384		In vivo comparison of the pharmacodynamic targets for echinocandin drugs
385		against Candida species. Antimicrob Agents Chemother 54:2497-506.
386	26.	Keirns J, Sawamoto T, Holum M, Buell D, Wisemandle W, Alak A. 2007. Steady-
387		state pharmacokinetics of micafungin and voriconazole after separate and
388		concomitant dosing in healthy adults. Antimicrob Agents Chemother 51:787-90.
389	27.	Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J. 2008. In vivo
390		pharmacodynamic target investigation for micafungin against Candida albicans
391		and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents
392		Chemother 52:3497-503.

393	28.	Groll AH, Mickiene D, Petraitis V, Petraitiene R, Ibrahim KH, Piscitelli SC,
394		Bekersky I, Walsh TJ. 2001. Compartmental pharmacokinetics and tissue
395		distribution of the antifungal echinocandin lipopeptide micafungin (FK463) in
396		rabbits. Antimicrob Agents Chemother 45:3322-7.
397	29.	Slater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, Alastruey-Izquierdo A,
398		Arendrup MC, Warn PA, Perlin DS, Hope WW. 2011. Disseminated Candidiasis
399		caused by Candida albicans with amino acid substitutions in Fks1 at position
400		Ser645 cannot be successfully treated with micafungin. Antimicrob Agents
401		Chemother 55:3075-83.
402	30.	Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, Lopez-
403		Ribot JL. 2008. A simple and reproducible 96-well plate-based method for the
404		formation of fungal biofilms and its application to antifungal susceptibility testing.
405		Nat Protoc 3:1494-500.
406	31.	Miyazaki T, Yamauchi S, Inamine T, Nagayoshi Y, Saijo T, Izumikawa K, Seki M,
407		Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Kohno S. 2010. Roles of
408		calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata.
409		Antimicrob Agents Chemother 54:1639-43.
410	32.	Gonzalez-Parraga P, Hernandez JA, Arguelles JC. 2003. Role of antioxidant

411		enzymatic defences against oxidative stress $H(2)O(2)$ and the acquisition of
412		oxidative tolerance in Candida albicans. Yeast 20:1161-9.
413	33.	Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. 2004. Cells have distinct
414		mechanisms to maintain protection against different reactive oxygen species:
415		oxidative-stress-response genes. Proc Natl Acad Sci U S A 101:6564-9.
416	34.	Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J. 2007. Differential
417		susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-
418		mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell
419		Microbiol 9:1647-59.
420	35.	Marcil A, Harcus D, Thomas DY, Whiteway M. 2002. Candida albicans killing by
421		RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection
422		ratios, and gamma interferon treatment. Infect Immun 70:6319-29.
423	36.	Baquir B, Lemaire S, Van Bambeke F, Tulkens PM, Lin L, Spellberg B. 2012.
424		Macrophage killing of bacterial and fungal pathogens is not inhibited by intense
425		intracellular accumulation of the lipoglycopeptide antibiotic oritavancin. Clin
426		Infect Dis 54 Suppl 3:S229-32.
427	37.	Spellberg BJ, Collins M, French SW, Edwards JE, Jr., Fu Y, Ibrahim AS. 2005. A
428		phagocytic cell line markedly improves survival of infected neutropenic mice. J

429 Leukoc Biol 78:338-44.

Table 1. Identification results by laboratory identification systems and ITS sequencing

Identification system	Species (no. isolates)				
Identification system	Original identification	Confirmation by ITS sequencing			
	C. guilliermondii (6)	C. guilliermondii complex (6)			
VITEK 2 system	C. francés (7)	C. guilliermondii complex (1)			
	C. jamaia (7)	C. parapsilosis (6)			
API series	C. guilliermondii (18)	C. guilliermondii complex (18)			
MALDI Biotyper	C. quillignmon dii (15)	C. guilliermondii complex (14)			
system	C. guillermonall (15)	Kodamaea ohmeri (1)			

432 ITS, internal transcribed spacer

Chamatariatia	C. guilliermondii	C. fermentati	Dychuc	
Characteristic	(<i>n</i> = 27)	(<i>n</i> = 12)	<i>P</i> value	
Age (yr), mean ± SD	63.3 ± 18.7	61.2 ± 19.0	0.75	
Male sex, no. (%)	20 (74.1)	7 (58.3)	0.46	
Co-malignancies, no. (%)	18 (66.7)	10 (83.3)	0.45	
Steroid use, no. (%)	11 (40.7)	8 (66.7)	0.18	
Central venous catheter, no. (%)	22 (81.5)	9 (75.0)	0.68	
In-hospital death, no. (%)	13 (48.1)	6 (50.0)	1.00	
Antifungal therapy, no. (%)	12 (44.4)	9 (75.0)	0.10	
Elevated β -D glucan, no. (%)	16 (64.0) ^a	2 (16.7)	0.01	
Bloodstream isolates, no. (%)	22 (81.5)	0 (0)	< 0.0001	
Cause of infection, no. (%)	24 (88.9)	0 (0)	< 0.0001	

Table 2. Patient characteristics associated with *C. guilliermondii* complex isolates

435 ^a Serum β -D glucan was measured for 25 patients.

Table 3. In vitro susceptibility of 27 *C. guilliermondii* isolates and 12 *C. fermentati*isolates to nine antifungal agents as interpreted by breakpoints for echinocandins and
epidemiological cutoff values for other agents

				No. (%) of		No. (%) of		
~	MI	MIC (µg/ml)		isolates		isolates		
C. guilliermondii				by ECVs		by CBPs		
complex	Range	MIC ₅₀	MIC90	WT	Non- WT	S	Ι	R
C. guilliermondii								
(<i>n</i> = 27)								
The second second	2 –	4	128	23	4			
Fluconazole	>256	4		(85.2)	(14.8)			
Ten	0.25 -		2	24	3			
Itraconazole	>16	0.5		(88.9)	(11.1)			
X 7 · 1	0.02	0.12	0.5	25	2			
voriconazole	0.03 – 8	0.12	0.5	(92.6)	(7.4)			
	0.06 2	0.25	0.5	25	2			
Posaconazole	0.06 - 2	0.25		(92.6)	(7.4)			

5-Flucytosine	≤0.06	≤0.06	≤0.06	27	0			
				(100)	(0)			
Micafungin	0.25 – 1	0.5	1	27	0	27	0	0
				(100)	(0)	(100)	(0)	(0)
Caspofungin	0.12 - 1	0.5	1	27	0	27	0	0
				(100)	(0)	(100)	(0)	(0)
Anidulafungin	0.5 - 4	2	2	27	0	26	1	0
				(100)	(0)	(96.3)	(3.7)	(0)
Amphotericin B	0.25 - 2	0.5	1	27	0			
				(100)	(0)			
C. fermentati								
(<i>n</i> = 12)								
Fluconazole	2-8	4	4	12	0			
				(100)	(0)			
Itraconazole	0.25 -	0.25	0.5	12	0			
	0.5			(100)	(0)			
Voriconazole	0.06 -	0.12	0.25	12	0			
	0.25			(100)	(0)			

Posaconazole	0.03 -	0.12	0.25	12	0			
	0.25			(100)	(0)			
5-Flucytosine	≤0.06 –	≤0.06	0.12	12	0			
	0.12			(100)	(0)			
Micafungin	0.25 – 1	0.5	1	12	0	12	0	0
				(100)	(0)	(100)	(0)	(0)
Caspofungin	0.25 - 1	0.5	0.5	12	0	12	0	0
				(100)	(0)	(100)	(0)	(0)
Anidulafungin	0.5 - 2	1	2	12	0	12	0	0
				(100)	(0)	(100)	(0)	(0)
Amphotericin B	0.5 – 1	0.5	1	12	0			
				(100)	(0)			

440 Epidemiological cutoff values (ECVs) (42): fluconazole 8 μ g/ml, itraconazole 1 μ g/ml,

441 voriconazole 0.25 μg/ml, posaconazole 0.5 μg/ml, 5-flucytosine 1 μg/ml, micafungin 2

442 μ g/ml, caspofungin 2 μ g/ml, anidulafungin 4 μ g/ml, and amphotericin B 2 μ g/ml.

443 Species-specific clinical breakpoints (CBPs) of echinocandins in CLSI M27-S4 (16): S,

 $444 \qquad \leq 2 \ \mu g/ml; \ I, \ 4 \ \mu g/ml; \ R, \geq 8 \ \mu g/ml.$

446 Figures and Figure legends

447 Figure 1. Treatment efficacy of micafungin against C. guilliermondii clinical isolates

- 448 and a *C. glabrata* wild-type strain in a mouse model of disseminated candidiasis
- 449 Immunocompromised mice were inoculated with C. guilliermondii NGSCG1, C.
- 450 guilliermondii ACHCG213, and C. glabrata CBS138. Micafungin was administered at 4
- 451 mg/kg/day intraperitoneally for seven consecutive days. The number of cells recovered
- 452 from the liver and bilateral kidneys is indicated for individual mice in the plots and error
- 453 bars represent SDs. NT indicates no treatment. Asterisks and NS indicate statistically
- 454 significant differences (*** P < 0.001) and no significance (P > 0.05), respectively.

455

Figure 2. Growth and killing assay in the presence of H₂O₂ and killing assay by RAW
264

458 (A) Serial dilutions of logarithmic-phase cells of *C. guilliermondii* and *C. fermentati*

- 459 strains were spotted onto SC plates containing H_2O_2 at the indicated concentrations. C.
- 460 guilliermondii strains: NGSCG3, TYMCG251, and CBS566; C. fermentati strains:
- 461 NGSCF1, ACHCF243, and CBS2022. (B) Logarithmic-phase cells of C. guilliermondii
- and *C. fermentati* were treated with 5 mM H₂O₂ for 4 h. The number of cells at 0 h; *C.*
- 463 guilliermondii was 6.8 ± 0.3 -log cells/ml and C. fermentati was 6.7 ± 0.3 -log cells/ml.

464	After 4 h treatment; C. guilliermondii was 5.7 ± 0.6 -log cells/ml and C. fermentati was
465	3.3 ± 0.5 -log cells/ml. (C) The reduced viable cell counts of C. guilliermondii and C.
466	<i>fermentati</i> were 1.1 ± 0.4 and 3.4 ± 0.5 -log cells/ml, respectively. There was a significant
467	difference between the two groups (*** $P < 0.001$). (D) Logarithmic-phase cultures of
468	Candida cell suspensions were co-cultured with RAW 264 cells at 37°C for 4 h. Mean in
469	vitro killing of C. guilliermondii and C. fermentati is expressed as the percent reduction
470	of CFUs recovered from co-cultures compared with CFUs from control cultures (Candida
471	cells without macrophages). Dots represent results of the killing ratio of individual
472	clinical isolates. The percent killing ratios of C. guilliermondii and C. fermentati were -
473	0.6 ± 14.4 % and 24.4 \pm 14.6 %, respectively. There was a significant difference between
474	the two groups (** $P < 0.01$).
475	
476	
477	
478	

479

Figure 1. Treatment efficacy of micafungin against *C. guilliermondii* clinical isolates and a *C. glabrata* wild-type strain in a mouse model of disseminated candidiasis Immunocompromised mice were inoculated with *C. guilliermondii* NGSCG1, *C. guilliermondii* ACHCG213, and *C. glabrata* CBS138. Micafungin was administered at 4 mg/kg/day intraperitoneally for seven consecutive days. The number of cells recovered from the liver and bilateral kidneys is indicated for individual mice in the plots and error bars represent SDs. NT indicates no treatment. Asterisks and NS indicate statistically significant differences (*** *P* < 0.001) and no significance (*P* > 0.05), respectively.

Figure 2. Growth and killing assay in the presence of H₂O₂ and killing assay by RAW 264

(A) Serial dilutions of logarithmic-phase cells of *C. guilliermondii* and *C. fermentati* strains were spotted onto SC plates containing H_2O_2 at the indicated concentrations. *C. guilliermondii* strains: NGSCG3, TYMCG251, and CBS566; *C. fermentati* strains: NGSCF1, ACHCF243, and CBS2022. (B) Logarithmic-phase cells of *C. guilliermondii* and *C. fermentati* were treated with 5 mM H_2O_2 for 4 h. The number of cells at 0 h; *C. guilliermondii* was 6.8 ± 0.3 -log cells/ml and *C. fermentati* was 6.7 ± 0.3 -log cells/ml. After 4 h treatment; *C. guilliermondii* was 5.7 ± 0.6 -log cells/ml and *C. fermentati* was 3.3 ± 0.5 -log cells/ml. (C) The reduced viable cell counts of *C. guilliermondii* and *C. fermentati* were 1.1 ± 0.4 and 3.4 ± 0.5 -log cells/ml, respectively. There was a significant difference between the two groups (*** *P* < 0.001). (D) Logarithmic-phase cultures of *Candida* cell suspensions were co-cultured with RAW 264 cells at 37° C for 4 h. Mean in vitro killing of *C. guilliermondii* and *C. fermentati* is expressed as the percent reduction of CFUs recovered from co-cultures compared with CFUs from control cultures (*Candida* cells without macrophages). Dots represent results of the killing ratio of individual clinical isolates. The percent killing ratios of *C. guilliermondii* and *C. fermentati* were -0.6 \pm 14.4 % and 24.4 \pm 14.6 %, respectively. There was a significant difference between the two groups (**P < 0.01).