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Abstract. This paper introduces a novel approach for large-scale unsu-
pervised segmentation of bibliographic elements. Our problem is to seg-
ment a word token sequence representing a citation into subsequences
each corresponding to a different bibliographic element, e.g. authors,
paper title, journal name, publication year, etc. Obviously, each biblio-
graphic element should be represented by contiguous word tokens. We
call this constraint contiguity constraint. Therefore, we should infer a se-
quence of assignments of word tokens to bibliographic elements so that
this constraint is satisfied. Many HMM-based methods solve this problem
by prescribing fixed transition patterns among bibliographic elements.
In this paper, we use generalized Mallows models (GMM) in a Bayesian
multi-topic model, effectively applied to document structure learning by
Chen et al. [4], and infer a permutation of latent topics each of which can
be interpreted as one among the bibliographic elements. According to the
inferred permutation, we arrange the order of the draws from a multi-
nomial distribution defined over topics. In this manner, we can obtain
an ordered sequence of topic assignments satisfying contiguity constraint.
We do not need to prescribe any transition patterns among bibliographic
elements. We only need to specify the number of bibliographic elements.
However, the method proposed by Chen et al. works for our problem
only after introducing modification. The main contribution of this paper
is to propose strategies to make their method work also for our problem.

1 Introduction

Multi-topic modeling, inaugurated by the proposal of latent Dirichlet allocation
(LDA) [2], provides successful solutions to many applications. In this paper, we
use multi-topic modeling for clustering word tokens so that the same cluster (i.e.,
the same topic) correspond to the same real-world category.

In this paper, we consider segmentation of bibliographic elements. It is as-
sumed that each citation data is represented as a sequence of untagged word
tokens. Our problem is to assign each word token to a topic so that the word
tokens assigned to the same topic refer to the same bibliographic element, e.g.
authors, paper title, journal name, publication year, etc. We solve this prob-
lem in an unsupervised manner. We use no knowledge about transition patterns



Fig. 1. An example of segmentation our method provides for DBLP dataset (cf. Ta-
ble 1). Each line corresponds to a different citation, and long lines are cut off at the
right side to present more citations with larger fonts. Each subsequence separated by
� corresponds to the assignment to a different topic inferred by our method. In our
experiment, the number of topics is set to be larger than the number of bibliographic
elements by one. In this example, the number of topics is five, because the number
of bibliographic elements is four. Those four elements are: author names, paper title,
conference name (or journal name), and publication year.

among bibliographic elements. Further, bibliographic elements do not need to
be identified beforehand. We only assume that the number of different biblio-
graphic elements is known. The number of topics can be set to be larger than
that of different bibliographic elements, because we can identify multiple topics
with the same bibliographic elements when we interpret the topic assignments
provided by our method. Figure 1 gives an example of segmentation obtained
by our method in the experiment whose details will be explained later.

Our target data is a set of citations obtained, for example, after an OCR
processing of the reference section of printed papers. While correction of OCR
errors is important and may be realized by introducing extensions to our model
as Takasu [10] did for HMM, we regard it as future work. In this paper, we
concentrate on segmentation of bibliographic elements by assuming that OCR
errors are already corrected. Further, publication data presented on the Web by
researchers can also be regarded as our target data, because most of such data
are presented not as a segmented data, e.g. in BibTeX format, but just as a
sequence of untagged word tokens.
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Fig. 2. How to obtain a sequence of topic assignments satisfying contiguity constraint
by inferring a topic permutation. In the resulting topic sequence, we can interpret, for
example, topic 2 as representing author names, topic 5 as publication year, etc.

In any solution to our problem, each bibliographic element should be referred
to by contiguous word tokens. In other words, the word tokens referring to
the same bibliographic element should not be separated by the word tokens
referring to other elements. We call this constraint contiguity constraint. Many
HMM-based methods put contiguity constraint by prescribing fixed transition
patterns among bibliographic elements [3, 8, 10]. In contrast, we provide a more
flexible answer where we infer a permutation of topics in multi-topic modeling.
By inferring a topic permutation for each citation, we arrange the order of the
topic draws according to the inferred permutation, where the number of the
topic draws is the same with the word tokens included in each citation. In this
manner, we obtain a sequence of topic draws satisfying contiguity constraint (see
Figure 2). For the resulting topic sequences, we interpret each topic as one among
the bibliographic elements to obtain a segmentation of bibliographic elements.

This paper shows that we can use a Bayesian probabilistic model proposed by
Chen et al. [4] to solve our problem in the manner described above. We call their
model CBBK by taking the initials of the authors’ last names. While LDA [2]
is a standard model for Bayesian multi-topic modeling, we cannot use LDA,
because LDA gives topic assignments not satisfying contiguity constraint. CBBK
can successfully put contiguity constraint on topic assignments by incorporating
generalized Mallows model (GMM) [6] that defines a probability distribution
over all permutations of topics. We can infer a topic permutation as a draw from
this distribution whose parameters are fitted to the input data.

However, CBBK is devised by Chen et al. for document structure learning,
a problem widely different from ours. In document structure learning, we are
given a set of documents, each of which is regarded as a sequence of untagged
paragraphs, and infer a semantic structure of each document by assigning each



paragraph to a topic so that contiguity constraint is satisfied. Then, document
structure is recovered as a sequence of topics, where each topic is represented
by a set of contiguous paragraphs. For example, the semantic structure of every
academic paper can be recovered as an ordered set of sections, and each section
is a set of contiguous paragraphs related to the same semantic content.

However, CBBK works for our problem only after introducing modification.
In this paper, we regard each word token in citation data as a paragraph con-
sisting of only one token. That is, we assign each word token to a topic as in
LDA. Consequently, the unit for topic assignment loses richness in its semantic
content, because the assignment unit is now a single word token. Chen et al.
did not have a provision for using CBBK in this manner. They only considered
the assignment of paragraphs, a semantic unit far larger than word tokens, to
topics. Actually, Chen et al. only used documents whose paragraphs consist of
tens of word tokens in their evaluation experiment. Therefore, we cannot know
whether CBBK works for our problem based only on their results.

The main contribution of this paper is to show that CBBK can be applied to
our problem, i.e., unsupervised segmentation of bibliographic elements, by using
the following two strategies to modify the settings with which CBBK is applied:

1. We realize a dense topic distribution for each document (i.e., for each cita-
tion) by choosing an appropriate topic Dirichlet prior distribution.

2. We use large-scale datasets for capturing topical relatedness across docu-
ments and recoup the loss of content richness of topic assignment unit.

The latter strategy aims to fully utilize the advantage of CBBK, i.e., the ad-
vantage that topical relatedness across documents can be effectively captured,
for example, when compared with BayesSeg [5] that processes each document
only separately. In our case, each document is just a sequence of tens of untagged
word tokens and gives almost no clue to segmentation when processed separately.
Therefore, it is highly favorable that CBBK is applied to large-scale datasets for
utilizing that advantage. We will discuss the former strategy after giving the
details of Markov-chain Monte Carlo (MCMC) inference for our proposal.

The rest of the paper is organized as follows. Section 2 shows how we modify
CBBK to realize segmentation of bibliographic elements. Section 3 gives the
details of MCMC inference. Section 4 includes the settings and the results of our
experiment. Section 5 concludes the paper with discussions and future work.

2 Model

2.1 Generalized Mallows Model

The key technology in CBBK is generalized Mallows model (GMM) [6]. GMM
defines a probability distribution over all permutations of a fixed number of
items. In CBBK, for each document, we draw as many topics as the paragraphs
from a multinomial distribution defined over a fixed set of K topics {1, . . . ,K}1.
1 In this paper, we identify each topic with its ID number.



Further, we draw a permutation of these K topics from GMM. Then, by ar-
ranging the drawn topics according to the drawn permutation, we can obtain an
ordered multiset of topics satisfying contiguity constraint. For example, when we
draw topics as {3, 1, 2, 2, 4, 4, 2, 3, 3, 1, 5} and draw a permutation (2, 1, 3, 4, 5),
we obtain an ordered topic multiset (2, 2, 2, 1, 1, 3, 3, 3, 4, 4, 5) (see Figure 2). The
obtained ordered multiset induces topic assignments of paragraphs. For example,
the first paragraph is assigned to topic 2, the fifth paragraph to topic 1, etc.

When we use GMM, every permutation of K topics is represented as a (K−
1)-dimensional vector v = (v1, . . . , vK−1) whose entries are non-negative integers
called inversion counts. Each inversion count vk satisfies 0 ≤ vk ≤ K − k and
tells how many topics appear before topic k among the K − k topics larger than
k, i.e., among {k+1, . . . ,K}. Note that each inversion count vector corresponds
to a unique permutation. To the permutation represented as an inversion count
vector v = (v1, . . . , vK−1), GMM gives the following probability:

p(v|ρ) =
K−1∏
k=1

exp(−ρkvk)
ψk(ρk)

, (1)

where each ρk is a non-negative real parameter of GMM, and each ψk(ρk) is a
normalization constant obtained as

ψk(ρk) =
1− exp{−(K − k + 1)ρk}

1− exp(−ρk)
, (2)

which is a sum of a geometric series. The probability distribution of GMM in
Eq. (1) admits the following conjugate prior distribution:

p(ρk|γk, ν) ∝ exp{−γkνρk − ν logψk(ρk)} . (3)

Throughout the paper, we set each hyperparameter γk as follows:

γk =
1

eρ0 − 1
− K − k + 1

e(K−k+1)ρ0 − 1
. (4)

This setting of each γk is recommended by [4] so as to fix the mode of the prior
in Eq.(3) to the constant ρ0. Further, we set ρ0 = 1 and ν = 0.1 as in [4].

GMM has the following special feature. As Eq. (1) shows, GMM gives a more
or at least an equal probability to the case vk = 0 when compared with the other
strictly positive cases. In other words, GMM prefers permutations represented
as an inversion count vector including many zeros. Note that the permutation
represented as the zero vector is the identity permutation. Therefore, GMM is
likely to give a large probability mass to the identity permutation and also to
the permutations showing only a small deviation from the identity permutation.
This feature of GMM is useful, because we can hope that there will be a unique
canonical order of bibliographic elements in the given citation dataset as long as
we fix the source of the data, e.g. the journals published by the same publisher.



2.2 Modifying CBBK

In this paper, we use CBBK for segmenting bibliographic elements. However,
we have no paragraphs, because each citation is represented as a sequence of
untagged word tokens. Therefore, we regard each word token as a paragraph
consisting of only one word token and draw as many topics as the word tokens
for each citation. Precisely, we modify CBBK as follows:

1. For each topic k, draw a word multinomial distribution Multi(ϕk), defined
over the set of W different words, from the corpus-wide symmetric Dirichlet
prior Dirichlet(β).

2. Draw a GMM parameter ρk from the prior in Eq. (3) for each topic k < K
and obtain a GMM GMM(ρ).

3. The jth citation xj as a sequence of nj word tokens xj = (xj1, . . . , xjnj ) is
generated as follows:
(a) Draw a topic multinomial distribution Multi(θj) from the corpus-wide

symmetric Dirichlet prior Dirichlet(α).
(b) Draw nj topics from the topic multinomial Multi(θj) and obtain an

unordered multiset tj of nj topics.
(c) Draw a permutation vj of K topics from GMM(ρ).
(d) By ordering the topics in tj according to vj , obtain an ordered topic

multiset zj = (zj1, . . . , zjnj ) satsifying contiguity constraint.
(e) For each word token xji, i = 1, . . . , nj , draw a word w from the word

multinomial Multi(ϕzji) and set xji = w.

The generative process of modified CBBK now looks similar to LDA, because we
assign not each paragraph but each word token to a topic. However, the topic
assignment is affected by how drawn topics are ordered by the permutation
drawn from GMM. Therefore, modified CBBK behaves quite differently from
LDA in how word tokens are assigned to topics.

However, LDA and CBBK have an important common feature. Both models
can intensively capture topical relatedness across documents. Both in LDA and
in CBBK, per-topic word multinomials Multi(ϕ1), . . . , Multi(ϕK) are shared by
all documents. The two Dirichlet priors, Dirichlet(α) and Dirichlet(β), are
also shared. This feature differentiates CBBK from BayesSeg [5], which processes
each document separately and thus captures no relatedness across documents.

3 MCMC Inference

We use MCMC inference described in [4] to infer posterior distributions. Each
iteration consists of updates of GMM parameters, updates of inversion counts,
and updates of topic draws. Further, we optimize the hyperparameter β of the
word Dirichlet prior once per every iteration, though this optimization is not
considered in [4]. The details of each part of the iteration are given below.

We draw GMM parameter ρk from the following conditional distribution:

p(ρk| . . .) ∝ exp

{
−
(
γkν +

∑
j

vjk

)
ρk − (N + ν) logψk(ρk)

}
, (5)



where N is the number of documents and vjk is the kth inversion count for the
jth citation. We cannot analytically obtain the normalization constant for the
distribution in Eq. (5). Therefore, a slice sampling is conducted. While Chen et
al. [4] used MATLAB blackbox sampler, we implemented a customized sampler
to achieve computational efficiency, because we target large-scale datasets.

For the jth citation, we draw each of theK−1 inversion counts vj1, . . . , vjK−1

from the following conditional distribution:

p(vnewjk | . . .) ∝
exp(−ρkvnewjk )

ψk(ρk)
· p(xj |znewj ,x−j , z−j , β) . (6)

The first half of the right hand side of Eq. (6) is the probability of a new inversion
count coming from Eq. (1). The latter half is the conditional probability of the
observed word token sequence xj in the jth citation, where x−j (resp. z−j) means
the set of the observed word token sequences (resp. the set of the latent ordered
topic multisets) for all citations except the jth citation. Further, znewj refers to
the ordered topic multiset obtained after updating vjk for the jth citation. Note
that, by updating an inversion count, topic assignments may be altered with
respect to more than one word tokens simultaneously. Therefore, the latter half
of the right hand side of Eq. (6) reflects possible changes of topic assignments
for multiple word tokens and is written as

p(xj |znewj ,x−j , z−j , β) =
∏
k

Γ (n¬j
k +Wβ)

∏
w Γ (n

new
kw + β)

Γ (nnewk +Wβ)
∏

w Γ (n
¬j
kw + β)

, (7)

where nnewkw means how many tokens of the word w are assigned to the the topic

k after an update of an inversion count. In Eq. (7), n¬j
kw means how many tokens

of the word w are assigned to the topic k except the word tokens in the jth
citation, nnewk is defined to be

∑
w n

new
kw , and n¬j

k is defined to be
∑

w n
¬j
kw.

For each citation, we update topic draws as many times as the number of
the word tokens in the citation. The probability that topic k is drawn as the ith
topic draw for the jth citation can be written as follows:

p(tji = k| . . .) ∝ (n¬j
jk + α) ·

∏
k

Γ (n¬j
k +Wβ)

∏
w Γ (n

new
kw + β)

Γ (nnewk +Wβ)
∏

w Γ (n
¬j
kw + β)

, (8)

where n¬j
jk means how many word tokens in the jth document are assigned to

topic k except the ith topic draw. Note that more than one topic assignments
can be altered even when we change only one topic draw. Therefore, Eq. (8) is
more complicated than the equation used for LDA [7].

While Chen et al. [4] set the hyperparameters of the symmetric Dirichlet
priors to constants, we use an empirical Bayes method proposed by Minka [9]
and reestimate the Dirichlet hyperparameters once per each iteration. However,
many trials in a preliminary experiment reveal that the reestimation works only
for β. In constrast, for α, our preliminary experiment simply shows that a larger
value leads to a better result. This observation is in contrast with [4] where



a small value is recommended to encourage a sparse topic distribution for each
document. Consequently, we set α→ ∞ and encourage dense topic distributions.
This corresponds to the case where we replace Eq. (8) by

p(tji = k| . . .) ∝
∏
k

Γ (n¬j
k +Wβ)

∏
w Γ (n

new
kw + β)

Γ (nnewk +Wβ)
∏

w Γ (n
¬j
kw + β)

. (9)

That is, we drop the term related to α.
We can guess the reason why dense topic distributions are favorable for our

problem as follows. In our case, each paragraph contains only one word token.
Therefore, different paragraphs in the same document (i.e., in the same citation)
do not show a meaningful divergence in word frequencies. However, by combin-
ing statistics of topic assignments across many citations, we can capture topical
differences as differences in word frequencies. To combine statistics of topic as-
signments across many citations, we make topic distributions dense for every
citation, because dense topic distributions can make many topics shared by dif-
ferent citations and thus can establish many “bonds” connecting the citations.
Along such bonds, the statistics from many different citations can be summa-
rized. Consequently, we can have meaningful differences in word frequencies.
These differences may lead to an effective topic differentiation.

4 Experiment

4.1 Evaluation Settings

To obtain the datasets for our evaluation experiment, we used DBLP cita-
tion database2 and MEDLINE/PUBMED database3. With respect to DBLP
database, we used the XML file dblp.xml distributed on February 8, 2010 and
composed three datasets D0, D20, and D50 as follows:

1. We collect the citations whose publication year ranges from 2000 to 2009.
The number of citations amounts to 944,755. The number of different words
is 685,799. Further, the number of word tokens is 17,408,876, which is larger
by 35 times than the “Cities” corpus used in the experiment of [4].

2. We extract the five bibliographic elements: authors, article title, booktitle,
journal, and year. However, we identify booktitle with journal, because not
a few citations have completely the same content for both elements. As a
result, we have the following four bibiliographic elements: authors, article
title, booktitle, and year.

3. We fix the canonical order of the four bibliographic elements as follows:
authors, article title, booktitle, and year. Note that the canonical order is
not used in MCMC inference as an input. We do not need to specify anything
other than the number of topics. We first sort the bibliographic elements in
this order for all citations and compose three datasets D0, D20, and D50 as
follows:

2 http://dblp.uni-trier.de/xml/
3 MEDLINER⃝/PUBMEDR⃝, a database of the U.S. National Library of Medicine.



Table 1. Dataset specifications.

DBLP datasets MEDLINE datasets

citations word tokens different words citations word tokens different words

944,755 17,408,876 685,799 3,001,207 87,085,708 2,168,061

(a) By erasing the information about bibliographic elements, we make each
citation into a sequence of untagged word tokens, i.e., into a raw text.
We denote the set of these citations by D0. Since bibliographic elements
are sorted in the same order for all citations, D0 provides an “ideal”
problem to be solved.

(b) Before erasing the information about bibliographic elements, we ran-
domly select 20% of the citations and randomly shuffle the order of
bibliographic elements. We do not change the order of word tokens in
each bibliographic element. For example, we do not change the ordering
of the word tokens giving each paper title. After this random shuffling
of the order of bibliographic elements, we erase the information about
bibliographic elements. We denote this dataset by D20.

(c) We randomly shuffle the order of bibiliographic elements for the ran-
domly selected 50% of the citations and erase the information about
bibliographic elements. We denote the resulting dataset by D50. In D50,
bibliographic elements are sorted in the canonical order for a far smaller
subset of citations than in D20.

These three datasets, i.e., D0, D20, and D50, are called DBLP datasets in the
discussions below.

From MEDLINE/PUBMED database, 100 files whose names range from
medline09n0400.xml to medline09n0499.xml were used. In these 100 files, we
could find 3,001,207 citations and 87,085,708 word tokens. We applied the pro-
cedure described above also to these files and composed three datasets M0, M20,
and M50 in the same manner as D0, D20, and D50, respectively. We extracted
the following five bibliographic elements: authors, publication year, article title,
journal title, and pages. Further, this order was used as the canonical order. The
three datasets, i.e., M0, M20, and M50, are called MEDLINE datasets.

For all six datasets, we applied no preprocessing like stemming, punctuation
removal, and stop word elimination, because we wanted to compose datasets
including citations similar to those obtained after an OCR processing of the
reference part of printed papers or from the researchers’ Web sites. However, for
MEDLINE datasets, we eliminated the parentheses ‘[’ and ‘]’ appearing at the
head and the tail of each article title, because they are artifacts which will not
appear in any real data. Consequently, the number of different words is 2,168,061
for MEDLINE datasets. Table 1 summarizes dataset specifications.

We implemented MCMC inference for CBBK in gcc on Linux PC from
scratch. The soundness of our implementation was checked by using the dataset
in [4]. Our implementation gives intermediate sampling results per a fixed num-
ber of iterations. We combine all intermediate results to obtain a final answer as



follows: We assign each word token to the topic to which the word token is most
frequently assigned among all intermediate results. The answer obtained in this
manner leads to a better evaluation score than the sampling result available at
the final iteration of MCMC.

Our problem is to obtain clusters of word tokens so that the word tokens in
the same cluster refers to the same bibliographic element. Therefore, we evalu-
ate the results by precision, recall, and F-score, which are standard evaluation
measures for clustering. We adopt the definitions of these measures given by [4].

4.2 Preliminary Experiment

We first conducted a preliminary experiment on DBLP datasets and tested vari-
ous settings for evaluation. Consequently, we obtained the following observations:

– While Chen et al. [4] set the number of MCMC iterations to 10,000, we
needed at most 1,000 iterations to achieve a good enough result. This may
be because our datasets, far larger than those used in [4], include redundancy.

– We parallelized MCMC with OpenMP library and obtained almost the same
evaluation results as when we implemented no parallelization. We ran eight
threads on Intel Core i7 920 CPU and made each thread process a non-
overlapping subset of citations. Several types of statistics should be shared
among the threads. Therefore, we made write operations to the variables
holding such statistics mutually exclusive.

– We achieved better results for a smaller K, i.e., a smaller number of top-
ics. However, when we made K equal to the true number of bibliographic
elements, we could not obtain any good results. Therefore, we set K to the
number greater by one than the true number of bibliographic elements. That
is, we set K = 5 for DBLP datasets and set K = 6 for MEDLINE datasets.

Our experiment settings were fixed based on these preliminary observations.

4.3 Evaluation Results for DBLP Datasets

Figure 3 summarizes the results of the experiment conducted on DBLP datasets.
Each solid bar represents an F-score averaged over 15 results of different MCMC
inferences, and each error bar indicates plus and minus one standard deviation.
Each of the 15 results, corresponding to a different MCMC inference, is obtained
by combining 20 intermediate results. These 20 intermediate results are given by
MCMC per 50 iterations from the 50th to the 1,000th iteration. The wall-clock
time of 1,000 MCMC iterations was 11 hours on a PC equipped with Intel Core
i7 920 and 12 Gbytes main memory.

The solid bars labaled as D0, D20, and D50 give F-scores for each of the
three datasets, D0, D20, and D50, respectively. The dark gray solid bars labeled
as “Opt. β” in the legend show F-scores obtained by optimizing β with Minka’s
method [9]. On the other hand, the light gray bars labeled as “β = 0.05” show
F-scores obtained when β is fixed to 0.05. For both cases, we set α is set to
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∞. We can observe that β set to 0.05 gave almost the same results with the
optimized β for all cases.

The six solid bars in the leftmost area of Figure 3 represent F-scores achieved
by the constrained model, one among the two variants of CBBK described in [4].
The constrained model forces the topic permutation distribution to give all its
probability to one amongK! permutations and is implemented by fixing all inver-
sion counts to zero. On the other hand, the six solid bars in the rightmost area
represent F-scores achieved by the uniform model, another variant of CBBK.
The uniform model gives the same probability to all K! permutations and is
implemented by setting ρk = 0 for all k. The six F-scores in the middle area
are achieved by the CBBK with no restriction on permutation distributions. As
Figure 3 shows, the unrestricted CBBK can provide better segmentation results
than its two variants having a restriction on permutation distributions.

While the constrained model (see the leftmost area of Figure 3) leads to
the results comparable with the unrestricted CBBK (see the middle area of
Figure 3) only for D0 dataset, this may be because the bibliographic elements in
all citations are sorted in the same order for D0. This situation poses no difficulty
for the constrained model. However, when bibliographic elements appear in a
non-canonical order for not a few citations, both of the constrained model and
the uniform model are not effective.

Figure 3 also shows that the difficulty of our problem is not increased even
when we randomly rearrange the order of bibliographic elements for 20% of
the citations, as long as we use the CBBK with no restriction on permutation
distributions. Further, even when we introduce a random rearrangement into
50% of the citations, F-score decreases only by two or three percent points.
Therefore, we can say that GMM effectively infers the order of bibliographic



elements even when not a few citations include bibliographic elements in some
non-canonical order.

We only consider the CBBK with no restriction on permutation distributions
from now on and conduct no experiments related to the two variants of CBBK
for MEDLINE datasets.

Finally, we add the following fact with respect to DBLP datasets: LDA only
gives F-scores around 0.290 for all of D0, D20, and D50. Obviously, LDA gives
almost the same F-scores for all of D0, D20, and D50, because LDA does not
model any topic orderings and thus cannot make distinction between D0, D20,
and D50. As The F-scores given by LDA are disastrously bad, we can say that
contiguity constraint is mandatory for an effective segmentation of bibliographic
elements with multi-topic modeling approaches.

4.4 Evaluation Results for MEDLINE Datasets

We next discuss the evaluation experiment conducted on MEDLINE datasets.
The evaluation results are given in Table 2, which includes not only F-scores,
but also precisions and recalls for revealing more details.

The number of word tokens of each MEDLINE dataset, M0, M20, and M50,
is larger by 177 times than the “Cities” dataset in [4]. Therefore, we achieved an
efficiency in computational time by reducing the number of MCMC iterations to
150. This number of iterations was determined based on an observation that topic
assignments were not largely modified by MCMC after around this number of
iterations. We think that the redundancy may be more common in MEDLINE
datasets than in DBLP datasets. Therefore, we could reduce the number of
MCMC iterations. The wall-clock time of 150 MCMC iterations was 17 hours
on a PC equipped with Intel Core i7 920 and 12 GBytes main memory. We
modified our implementation to output intermediate results per 10 iterations.
Consequently, we obtained 15 intermediate results in total from the 10th to
the 150th iteration for each execution of MCMC. Table 2 gives the precision,
recall, and F-score averaged over 10 MCMC executions. Each averaged value is
accompanied with the corresponding standard deviation.

With respect to β, we only show the results for the optimized β in Table 2,
though, as in case of DBLP datasets, we could obtain almost the same results
when β = 0.05. Instead, we show the results when we optimize α. The optimiza-
tion is realized with Minka’s method [9] as in case of β. The right half of Table 2
shows the results for the optimized α. Obviously, the optimized α gave segmen-
tations of lower quality when compared with the results for α → ∞, which are
given in the left half of Table 2, with respect to all three measures, i.e., precision,
recall, and F-score. It can be said that we should make topic distributions dense
by setting α→ ∞. We only discuss this case from now on.

In Table 2, the F-score for M20 is less than that for M0, though the F-score for
D20 is almost the same with that for D0 in Figure 3. Further, the difference of F-
scores between M20 and M50 is larger than the difference between D20 and D50
presented in Figure 3. These results can be explained in the following manner.
Recall that the number of bibliographic elements is five in MEDLINE datasets



Table 2. Comparing precisions, recalls, and F-scores obtained for MEDLINE datasets.

Fixing α to ∞ Optimizing α
precision recall F-score precision recall F-score

M0 0.870±0.001 0.828±0.001 0.849±0.001 0.469±0.001 0.798±0.001 0.591±0.001
M20 0.855±0.002 0.803±0.001 0.828±0.001 0.652±0.007 0.664±0.004 0.658±0.004
M50 0.791±0.002 0.726±0.001 0.757±0.002 0.718±0.004 0.618±0.003 0.664±0.002

and is four in DBLP datasets. Consequently, M20 and M50 includes 5!=120
variations of orderings of bibliographic elements. This number is larger than
the number of ordering variations in D20 and D50, i.e., 4!= 24. Therefore, the
segmentation of bibliographic elements for M20 and M50 becomes more difficult
than that for D20 and D50. However, even when the number of bibliographic
elements is large, our method can give a fairly good segmentation as long as
the proportion of the noisy citations, i.e., the citations including bibliographic
elements in a non-canonical order, is small.

5 Conclusions and Future Work

This paper provides a new method for segmentation of bibliographic elements by
modifying CBBK, a probabilistic model proposed by Chen et al. [4]. We propose
two strategies to solve the difficulties caused by regarding each word token as
a paragraph and make CBBK applicable to our problem. Our two strategies,
i.e., a special treatment of topic Dirichlet prior and a usage of large datasets,
are aimed at intensively capturing topical relatedness across citations under
a situation where we assign quite small units (i.e., word tokens) to topics. The
evaluation experiment shows that our strategies realize an effective segmentation
of bibliographic elements.

In a more realistic situation, OCR errors may be included in the citation
data obtained from scanned articles. Therefore, it is an important future work to
incorporate correction of OCR errors into our model as Takasu did for HMM [10].
With respect to the citations after this error correction, and also with respect to
the citations downloaded from theWeb pages, it is a possible direction to improve
the quality of segmentation by controlling word probability distributions for each
topic, as is proposed in [1], where we can use some external knowledge related
to each bibliographic element.

We know that existing successful citation databases mainly adopt HMM-
based approaches. However, such databases achieve their efficiency not only with
an HMM modeling but also with other practical fine-tuning techniques. While
our approach also requires many additional fine-tuning techniques, we think
that our unsupervised approach can be an alternative to HMM as the basis for
obtaining a new style of segmentation of bibliographic elements.
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