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ABSTRACT 

 
In this paper, we propose a robust classification strategy for 
distinguishing between a healthy subject and a patient with 
pulmonary emphysema on the basis of lung sounds. A symptom of 
pulmonary emphysema is that almost all lung sounds include some 
abnormal (i.e., adventitious) sounds. However, the great variety of 
possible adventitious sounds and noises at auscultation makes 
high-accuracy detection difficult. To overcome this difficulty, our 
strategy is to adopt a two-step classification approach based on the 
detection of “confident abnormal respiration.” In the first step, 
hidden Markov models and bigram models are used for acoustic 
features and the occurrence of acoustic segments in each abnormal 
respiratory period, respectively, to calculate two kinds of 
stochastic likelihoods: the highest likelihood for a segment 
sequence to be abnormal respiration and the likelihood for normal 
respiration. In the second step, the patients are identified on the 
basis of the detection of confident abnormal respiration, which is 
when difference between these two likelihoods is larger than a 
predefined threshold. Our strategy achieved the highest 
classification rate of 88.7% between healthy subjects and patients 
among three basic classification strategies, which shows the 
validity of our approach. 
 

Index Terms— lung sound, adventitious sound, acoustic 
model 
 

1. INTRODUCTION 

The auscultation of lung sounds is one of the most popular medical 
examination methods for identifying respiratory illnesses. This is 
because abnormal respiratory sounds usually appear in patients. 
Sounds such as wheezes are caused by abnormalities in the lungs 
and bronchial tubes; they are termed as “adventitious sounds.” The 
intensity and distinctness of adventitious sounds are very low. 
Hence, these sounds could be mistaken for environmental noises, 
which are frequently mixed in with lung sounds. To detect 
adventitious sounds correctly, in-depth experience and knowledge 
possessed by doctors are required. Then, automated diagnosis of 
pulmonary emphysema through the detection of abnormal 
respiratory sounds by using a stethoscope at home would be 
beneficial because appropriate medical treatment could be 
administered to patients at an early stage. 

Several studies have been conducted on acoustic analysis of 
respiratory sounds for the detection of specific adventitious sounds 
[1-4]. These studies were not, however, aimed at developing 
devices to identify respiratory illness at home; instead, they were 
aimed at assisting doctors in hospitals to make diagnoses. 

The objective of our study is to develop a home-use device for 
identifying the respiratory illness by detecting abnormal 

respiratory sounds in lung sounds. For this purpose, we collected 
lung sound data from patients and healthy subjects and then 
developed a classification procedure for distinguishing between 
normal and abnormal respiratory sounds on the basis of a 
maximum likelihood approach using hidden Markov models 
(HMMs) [5,6]. To calculate the likelihood of normal/abnormal 
respiration, we assumed that one section of each respiratory period 
consisted of a time series of acoustic segments that express 
specific acoustic features such as adventitious sounds. In these 
preliminary classification experiments, we used deterministic rules 
or a segment bigram to express the occurrence of acoustic 
segments in abnormal respiratory sounds. Classification results 
from these experiments indicated that the stochastic method related 
to acoustic HMMs and segment n-grams shows promise.   

In our study, we attempted to design a classification system to 
differentiate between a healthy subject and patient with pulmonary 
emphysema by the detection of adventitious sounds. Due to the 
various kinds of adventitious sounds and noises at auscultation, it 
is difficult to detect adventitious sounds in during respiration with 
high accuracy. This problem leads to low classification 
performance between healthy subjects and patients.  

To address this problem, we propose a robust classification 
strategy based on the detection of “confident abnormal-
respiration.” Our classification consists of a two-step process. In 
the first step, for each respiration in a lung sound sample, the 
highest stochastic likelihoods to be an abnormal respiration and a 
normal respiration are each calculated. In the second step, for each 
respiration, the difference between these likelihoods is calculated. 
If this difference is larger than the predefined threshold, this 
respiration can be confidently regarded to be normal or abnormal. 
If there is at least one confident abnormal respiration in the tested 
lung sound sample, our system regards the test subject to be a 
patient with pulmonary emphysema. Next, we used the predefined 
threshold identified by polynomial curve fitting of the histogram of 
the difference values. The validity of this method for determining 
the threshold is also discussed in this paper.  
 

2. LUNG SOUND DATA 

2.1. Recording conditions 

We recorded 112 lung sound samples from 101 patients with 
pulmonary emphysema and 39 samples from 39 healthy subjects. 
In the recording at auscultation, an electronic stethoscope 
incorporating a piezoelectric microphone was used. We used the 
second intercostal space on the subjects’ front right as the 
recording point.  

Each lung sound sample consisted of successive respiratory 
phase segments, and the average number of respiratory segments 



was 8. These segments were labeled according to the respiratory 
phase (inspiratory or expiratory), diagnostic state (normal or 
abnormal), and subject’s states (healthy or patient). The subject’s 
state was identified by a doctor using not only auscultation but also 
many other medical conditions. In the recording using the 
stethoscope, mixing with noises is inevitable, and consequently 
79.6% of all respiration included some noises from the stethoscope 
or internal organs. In this paper, the meaning and abbreviation for 
each kind of respiration is as follows: 
 Abnormal respiration from patient subjects (AP): respiration that 

contains obvious adventitious sounds. 
 Abnormal respiration from healthy subjects (AH): respiration 

that contains noises from internal organs similar to adventitious 
sounds. The number of this type was rather small. 
 Normal respiration from healthy subjects (NH): respiration that 

contains neither adventitious sounds nor adventitious-like noises. 
 Normal respiration from patient subjects (NP): respiration that 

does not contain obvious adventitious sounds but sometimes 
contains adventitious-like noises. 

Each of our lung sound data from patients contained one or 
more adventitious sounds; the detection of abnormal respiration 
from patient subjects (AP) is then necessary to identify the patients. 
Respiration data concerning AP and NH were used to confirm the 
ability to classify the adventitious sounds of patients and normal 
respiratory sounds of healthy subjects, and all respirations were 
used to classify the patients and healthy subjects. The number of 
respiratory segments is listed in Table 1. 

 
2.2. Hand labeling of acoustic segments 

We considered an abnormal respiratory period to be composed of 
successive acoustic segments. In order to detect the adventitious 
sounds of patient subjects by using a stochastic method, we 
defined the segments according to their acoustic features and 
assigned a symbol to each segment. The respiratory data were 
labeled by hand with the symbols by two experts and one doctor.  

Suppose a respiratory period W comprises N segments: let the 
i-th segment be wi )1( Ni  . Then, 

Ni wwwwW 21 .                                   (1) 

In our data, one abnormal respiratory period comprises several 
segments, and one normal respiratory period comprises one breath 
segment ( 1N ). In this study, each adventitious sound was 
presented by using a continuous or discontinuous sound segment; 
the segment sequence of an abnormal respiratory period thus 
consisted of one of two types of segments and respiratory-sound 
segments not including adventitious sounds. Typical examples of 
continuous sound segments are coarse crackle, fine crackle, and 
pleural friction rub. Types such as rhonchus or wheezing sounds 
belong to the discontinuous segments. These classes of 
adventitious sounds were designed based on classification by the 
American Thoracic Society (ATS). 

 
3. CLASSIFICATION PROCEDURE 

3.1. Abnormal respiratory detection 

Let the occurrence probability of the segment sequence W in 
respiration be P(W): 
             )()( 21 Ni wwwwPWP  .                                       (2) 

In this study, we used a segmental bigram to calculate P(W): 

                 N
i ii wwPWP 2 1|)( .                                            (3) 

The total likelihood composed of the acoustic likelihood derived 
from HMMs and the segmental sequence likelihood derived from 
equation (3) is calculated by using a weight factor  . The derived 
diagnostic state (normal/abnormal) for respiratory input that gives 
the segment (sequence) Ŵ  with the highest likelihood  XWP |ˆ is 

given below.  
             WXPWPXWP

WW
|loglogmaxarg)|(maxarg   .  (4) 

where X is the respiratory input and  WXP |  is the acoustic 

likelihood. The weight factor   controls the contribution of the 
bigram. If   is equal to 0, classification is carried out by using 
acoustic HMMs and the deterministic connection rules of the 
acoustic segments. In this study, the value of   was 
experimentally acquired.  
 
3.2. Criteria of patient detection 

The classification between healthy and patient subjects was 
carried out by using two likelihoods obtained using  XWP |ˆ  for 

normal and abnormal respiration. The “confident abnormal 
respiration” is defined as follows: if the difference between the 
likelihood Q for the normal respiration candidate normalW  and the 

likelihood for abnormal respiration candidate 
abnormalŴ  is larger 

than the threshold Th for respiratory input, we regard this test 
respiration X  to be abnormal with confidence. That is, 

  .)|(log)|ˆ(log ThXWPXWPXQ normalabnormal  .              (5) 

A lung sound sample consists of several respiratory periods. Then, 
if our system detects one or more confident abnormal respiration 
periods in a test lung sound sample, it classifies the result to be a 
“patient subject.”  

Setting an adequate threshold Th is also a difficult problem. 
To cope with this issue, we prepared two kinds of histograms for 
the difference value Q: one for abnormal samples that were 
classified correctly, and the other for abnormal samples that were 
mistakenly classified as normal. We carried out fitting by using a 
fourth-polynomial curve for each histogram, and we set the cross-
point of these two curves as the threshold Th. In our experiments, 
two kinds of thresholds for inspiration and expiration were used. 
 
3.3. Patient detection procedure 

The architecture of our classification system is shown in Figure 1. 
The system comprises two steps: first, abnormal and normal 
respirations are classified by calculating the stochastic likelihoods, 
and second, healthy and patient subjects are classified. 

 In the first step, we used HMMs for acoustic spectral features 
and bigram models for the occurrence of acoustic segments in 
each respiratory period. This step comprised a training process 
and a test process. In the training process, acoustic HMMs for 

Table 1.  Number of respiratory periods 

Respiration Patients Healthy subjects 

Normal 451 (NP) 348 (NH) 

Abnormal 371 (AP) 33 (AH) 



each kind of segment were generated for each respiratory phase. 
Thus, we prepared two models for inspiration and expiration. 
With regard to abnormal respiration, acoustic models 
corresponding to each acoustic segment type were generated for 
inspiration/expiration. Segment bigrams with reference to the 
occurrence sequences of the segments in abnormal respiration 
were also estimated according to the segment labels. Rules 
concerning occurrence sequences of the acoustic segments in the 
abnormal respiration were also represented by hand. In the test 
process, the two acoustic likelihoods of an input respiration were 
calculated by using the trained HMMs and segment bigrams. One 
likelihood is for the segment sequence with the highest likelihood 
of abnormal respiration, and the other is for normal respiration. 

In the second step, based on the detection of confident 
abnormal respiration in the test lung sound, the test subject is 
determined to be ill or healthy, as described in section 3.2.   
 

4. EVALUATION EXPERIMENTS 

We conducted two types of classification tests to evaluate our 
proposed strategy. First, we classified between abnormal and 
normal respiration by using the first step. The lung sound data 
were sampled at 10 kHz. Every 10 ms, a vector of 5 mel-warped 
cepstral coefficients and power was computed using a 25-ms 
Hamming window. Acoustic models for normal respiration were 
generated using the respiratory sounds from healthy subjects (NH 
in section 2.1), and models for abnormal respiration were 
generated using the sounds from patients (AP). HMMs with 3 
states and 2 Gaussian probability density functions (2-mixture of 
PDFs) were used. In our experiments, we assumed that the 
respiratory phase and respiratory boundaries are known. As such, 
if the test sample was expiratory, acoustic models generated with 
expiratory sounds were used for respiratory classification.  
 
4.1. Performance of classification between abnormal and 
normal respiration 

To confirm the detection performance of adventitious sounds in the 
first step, a classification experiment between abnormal respiration 
for patients and normal respiration for healthy subjects was carried 
out using the deterministic connection rules or segmental bigrams, 
respectively. Evaluation samples were abnormal respirations from 
patients (AP) and normal respirations from healthy subjects (NH). 
We performed a leave-one-out cross validation on these samples. 
In addition, samples recorded from the same subject as the test 

sample were excluded in the training process so that our 
experiments would be subject-independent. The classification 
results are shown in Table 2. The recall rate of the abnormal 
respiration was 93.7%, and that of the normal respiration was 
89.2% when the segment bigram was used. The average 
classification rate weighted with the data amount is indicated as 
“Average.” This result shows that each method using the detection 
rules or segment bigram achieved a good performance, and the 
latter method achieved a slightly better performance. 

Furthermore, we carried out recognition experiments for 
abnormal respiration from healthy subjects (AH) and for normal 
respiration from patients (NP). The recognition results are shown 
in Table 3. This result shows that identification of NP that does not 
include obvious adventitious sounds to be normal respiration was 
difficult; however, this problem is not insurmountable for 
identifying respiratory illnesses by using our classification strategy.  

 

 
4.2. Effect of confident abnormal respiration 

One of the main characteristics of our proposed strategy is to find 
confident abnormal respiration to detect patients by using the 
thresholds derived from fourth polynomial curve fitting. To 
confirm the validity of this threshold, we investigated the recall 
rates of abnormal respiration for the results whose difference value 
Q was over and under the threshold.  Table 4 shows the 
investigation results. For both experiments using the deterministic 
rules and segment bigram, the recall rates for the samples Q > Th 
were far better than those of samples Q < Th. This result indicates 
the promising potential of using confident abnormal respiration. 

Table 2: Classification rates of abnormal respiration for patients 
and normal  respiration for healthy subjects  [%] 

Segment 
connection 

Patient, 
abnormal(AP) 

Healthy, 
normal(NH)

Averag
e 

Deterministic rules 92.2 84.9 88.5 

Segment bigram 93.7 89.2 91.4 

Table 3: Recognition results for abnormal respiration of healthy 
subjects and normal  respiration of patient subjects  [%] 

Segment connection 
Healthy, 

abnormal (AH) 
Patient, 

normal (NP) 

Deterministic rules 97 59.9 

Segment bigram 97 62.1 

Figure  1. Classification procedure for distinguishing between healthy and patient subjects
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4.3. Classification between healthy and patient subjects 

The classification experiments were carried out by using 112 lung 
sounds samples. To evaluate our proposed strategy, three criteria 
to identify a patient were compared: (C1) detecting one or more 
confident abnormal respirations; (C2) detecting abnormal 
respiration, i.e., if a lung sound data sample includes at least one 
abnormal respiration, the subject is regarded as patient; (C3) 
comparing results of two total likelihoods for all respiratory 
periods of normal respiration i iabnormal XWP )|ˆ(log  and for 

abnormal respiration i inormal XWP )|(log .  If the total likelihood 

for abnormal respiration is larger than that for normal respiration, 
the subject is regarded as a patient.  

Table 5 shows the classification performance using each 
classification criterion. The proposed strategy with confident 
abnormal respiration detection C1 achieved the highest 
performance among the three criteria. We believe that this result 
indicates the feasibility of automatic detection of patients with 
pulmonary emphysema by using lung sounds. 

 

4.4. Validity of difference value for patient detection 

In the previous experiments, the difference value Th that was 
derived from the fitting of the fourth-polynomial curve was used 
(312 for inspiration and 301 for expiration). To confirm the 
validity of this obtained value Th, classification experiments 
between healthy and patient subjects were carried out using several 
thresholds. The recall rates of healthy subjects and patients 
subjects, and the classification rate of all subjects are shown in 
Figure 2; the horizontal axis indicates the threshold, and the 
vertical axis indicates the performance. The highest classification 
performance among these thresholds was 89.4% ( 213Th ), which 
is slightly superior to the figure shown in Table 5 (88.7%). This 
result shows that the difference value derived from the polynomial 
fitting gave a good performance; however, there is still room to 
improve the performance by selecting better thresholds. 
 

5. CONCLUSIONS 

This paper proposes a procedure for discriminating between 
healthy subjects and patients with abnormal respiration based on 
the detection of “confident abnormal respiration.” In our procedure, 
two stochastic likelihoods concerning the best abnormal and 
normal respiration candidates play an important role. These 
likelihoods were calculated by using HMMs for acoustic spectral 
features and bigram models for the occurrence of acoustic 
segments in each respiratory period. By using the difference value 
between these two likelihoods, a robust classification system for 
healthy and patient subjects was constructed. According to the 
classification experiments, our detection strategy achieved the best 
classification rate among three basic patient-detection criteria, 
which shows its effectiveness. 

Concerning the threshold of the difference value to detect 
confident abnormal respiration, our experiments indicated that 
there is still room for improving the performance by setting a more 
appropriate threshold. Devising a method to capture the difference 
threshold is a subject for future work. 
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Table 4: Recall rates of abnormal respiration for patients [%] 

Segment connection Q > Th Q < Th 

Deterministic rules 93.9 84.2 

Segment bigram 96.5 84.8 

Table 5: Classification performance between healthy subjects and  
patient subjects (C1: confident abnormal respiration, C2: 
abnormal respiration, C3: total likelihoods) [%] 

Segment 
connection 

Classification 
criterion 

Healthy 
subject 

Patient 
subject 

Avera
ge 

Deterministic 
rules 

C1 (proposed) 95 86 87.4 

C2 18 95 75.4 

C3 77 73 74.2 

Segment 
bigram 

C1 (proposed) 95 88 88.7 

C2 18 95 75.4 

C3 77 74 74.8 

Figure 2: Classification rate for each threshold 
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