Graphical Abstract

To create your abstract, type over the instructions in the template box below.

Fonts or abstract dimensions should not be changed or altered.

Facile synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate from L-proline

Shigeo Hirata, Masami Kuriyama, Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract- Diastereoselective introduction of phosphono groups into L-proline derivatives at the 5-position was achieved with suitable selection of *N*-protecting group. *N*-Benzoyl-L-prolinate preferentially gave *trans*-phosphorylated products which could be easily transformed into (*S*)-(pyrrolidin-2-yl)phosphonates. On the other hand, *N*-benzyloxycarbonyl-L-prolinate reacted with phosphite to give *cis*-substituted products which could be easily transformed into (*R*)-(pyrrolidin-2-yl)phosphonates.

Keywords: Diastereoselective phosphorylation; Arbusov reaction; (Pyrrolidin-2-yl)phosphonate; L-Proline.

1. Introduction

Optically active α -amino phosphonates and their derivatives are biologically important compounds structurally analogous to α -amino acids.¹ A lot of useful methods have been developed for the diastereo- or enantio-selective synthesis of acyclic α -amino phosphonates.² On the other hand, there are fewer methods for the diastereoselective synthesis of optically active cyclic α -amino phosphonates which have found promising

^{*}Corresponding author, Tel +81-95-819-2429, Fax +81-95-819-2476, E-mail: onomura@nagasaki-u.ac.jp

applications as surrogates of proline.³ These methods use (+)- or (-)-2-hydroxy-3-pinenone,^{3b} (+)-camphor,^{3c} (*R*)- or (*S*)-phenylglycinol,^{3d,e} L-menthol,^{3f} (*S*)-(+)-*p*-toluenesulfinamide^{3g} as chiral auxiliaries, while easily available L-proline on manufacturing scale has not used for the synthesis.

Recently, we have reported Lewis acid-catalyzed arylation of *N*-acylated 5-methoxy-L-proline **2** which are electrochemically prepared from L-proline derivatives **1** proceeded diastereoselectively. Namely, *N*-benzoylated prolinate **2a** afforded *trans*-5-arylated L-proline *trans*-**3a**, while *N*-benzyloxycarbonylated prolinate **2b** afforded *cis*-5-arylated L-proline *cis*-**3b** (Eq. 1).⁴

We wish herein to report the effect of *N*-acyl groups on the diastereoselective introduction of phosphonate groups into L-proline derivatives **2** at the 5-position and its application to synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate **6** (Scheme 1).

Scheme 1.

2. Results and discussion

2.1. Effect of Lewis Acid on the Arbusov reaction

First, we investigated effect of Lewis acid on introduction of triethyl phosphite $4p^5$

into *N*-benzoylated or *N*-benzyloxycarbonylated 5-methoxylated L-prolinate⁶ **2a** or **2b** (Eq. 3). The results are shown in Table 1. In the case of **2a**, TiCl₄ mediated α -phosphorylation in good yield but with low diastereoselectivity (entry 1). BF₃·OEt₂ promoted the phosphorylation in moderate diastereoselectivity (entry 2), while SnCl₄ did not work as an effective Lewis acid (entry 3).⁷ Using Cu(OTf)₂, AlCl₃, Hf(OTf)₄, or In(OTf)₃ as Lewis acid afforded phosphorylated product **5ap** in low yields (entries 4-7).⁷ In the case of **2b**, similar tendency for tested Lewis acids was observed (entries 8-14), and BF₃·OEt₂ afforded the best result (entry 9).

Table 1. Effect of Lewis acid on the Arbusov reaction

Entry	Substrate	e PG	Lewis Acid	Product	Yield (%) ^a	De (%) ^b	Major isomer
1 ^c	2a	Bz	TiCl ₄	5ap	66	26	trans
2	2a	Bz	$BF_3 \cdot OEt_2$	5ap	59	43	trans
3	2a	Bz	SnCl ₄	5ap	0	-	-
4	2a	Bz	Cu(OTf) ₂	5ap	27	30	trans
5	2a	Bz	AlCl ₃	5ap	37	53	trans
6	2a	Bz	Hf(OTf) ₄	5ap	32	15	trans
7	2a	Bz	In(OTf) ₃	5ap	14	32	trans
8 ^c	2b	Cbz	TiCl ₄	5bp	49	51	cis
9	2b	Cbz	$BF_3 \cdot OEt_2$	5bp	45	78	cis
10	2b	Cbz	SnCl ₄	5bp	0	-	-
11	2b	Cbz	Cu(OTf) ₂	5bp	35	55	cis
12	2b	Cbz	AlCl ₃	5bp	44	29	cis
13	2b	Cbz	Hf(OTf) ₄	5bp	33	61	cis
14	2b	Cbz	In(OTf) ₃	5bp	26	70	cis

^a Yield of isolated product as a mixture of diastereomers after purification by column chromatography.

^b The diastereomer excess was determined by ¹H-NMR spectroscopy after purification. ^c Reaction temperature: -78 ^oC to rt.

2.2. Effect of N-protective group

Next, we investigated effect of N-ptotecting group on the diastereoselectivity for the Arbusov reaction of **2c-f** with **4p** in the presence of $BF_3 \cdot OEt_2$ (Eq. 4). The results are shown in Table 2. Diastereoselectivities of phosphorylated products 5cp and 5dp which were obtained from N-methoxycarbonylated proline 2c and N-t-butoxycarbonylated proline $2d^8$ (entries 1 and 2 in Table 2) lowered compared with that of *N*-benzyloxycarbonylated proline 5bp (entry 9 in Table 1). Similarly, diastereoselectivities of phosphorylated products 5ep and 5fp which were obtained from N-acetylated proline 2e and N-p-toluenesulfonylated proline 2f (entries 3 and 4 in table 2) did not exceed that of *N*-benzoylated proline **5ap** (entry 2 in Table 1).

Entry	Substra	ate PG	Product	Yield (%) ^a	De (%) ^b	Major isomer
1	2c	CO ₂ Me	5ср	68	50	nd
2	2d	Boc	5dp	20	41	nd
3	2e	Ac	5ep	60	15	nd
4	2f	Ts	5fp	98	29	nd

Table 2. Effect of N-protective group on the Arbusov reaction

^a Yield of isolated product as a mixture of diastereomers after purification by column chromatography. ^b The diastereomer excess was determined by ¹H-NMR spectroscopy after purification.

2.3. Effect of ester group in phosphite

Next, we investigated effect of ester group of phosphites on the diastereoselectivity for the Arbusov reaction of **2a** or **2b** in the presence of $BF_3 \cdot OEt_2$ (Eq. 5). The results are shown in Table 3. *N*-Benzoylated proline **2a** reacted with trimethyl phosphite **4q** gave

trans-phosphorylated product **5aq** in similar yield and diastereoselectivity (entry 1 in Table 3) to those of **5ap** (entry 2 in Table 1). Although triphenyl phosphite **4r**, tribenzyl phosphite **4s**, and tri-*n*-butyl phosphite **4u** were ineffective (entries 2, 3 and 5 in Table 3),⁷ triisopropyl phosphite **4t** was effective to afford *trans*-phosphorylated product **5at** in good yield with high diastereoselectivity (entry 4 in Table 3). In the case of *N*-benzyloxycarbonylated proline **2b**, similar tendencies were observed with respect to effect of phosphites (entries 6-10 in Table 3).⁷ The reaction of **2b** with **4t** gave the best result to afford *cis*-**5bt** in 50% yield with 85% de (entry 9 in Table 3).

Entry	Substrate PG		P(OR) ₃		Product	Yield (%) ^a	De (%) ^b	Major isomer
			R					
1	2a	Bz	Me	4 q	5aq	52	40	trans
2	2a	Bz	Ph	4r	5ar	17	57	trans
3	2a	Bz	Bn	4 s	5as	0	-	-
4	2a	Bz	<i>i</i> -Pr	4t	5at	61	84	trans
5	2a	Bz	<i>n</i> -Bu	4u	5au	28	10	trans
6	2b	Cbz	Me	4 q	5bq	72	59	cis
7	2b	Cbz	Ph	4r	5br	34	84	cis
8	2b	Cbz	Bn	4 s	5bs	0	-	-
9	2b	Cbz	<i>i</i> -Pr	4t	5bt	50	85	cis
10	2b	Cbz	<i>n</i> -Bu	4u	5bu	45	75	cis

Table 3. Effect of alcohol redisue of phosphites on the Arbusov reaction

^a Yield of isolated product as a mixture of diastereomers after purification by column chromatography. ^b The diastereomer excess was determined by ¹H-NMR spectroscopy after purification.

2.4. Determination of stereoconfiguration

Transformation of **5bp** into diethyl (S)-(pyrrolidin-2-yl)phosphonate (S)-**9p** shown in Eq. 6 revealed that the relative stereoconfiguration of **5bp** was *cis*-form. Namely, removal of 2-methoxycarbonyl group of **5bp** was accomplished by alkaline hydrolysis of **5bp** to afford carboxylic acid **7bp**, and decarboxylative methoxylation⁹ of **7bp**, **8bp**¹⁰ followed reduction of N.O-acetal give by to N-benzyloxycarbonyl-2-pyrrolidinylphosphonate **6bp**. Successive debenzyloxycarbonylation of **6bp** afforded (*S*)-**9p**.^{3c,11}

Opposite diastereoselectivity for the reaction of **2b** with **4p** was confirmed by transformation of *cis*-**5bp** into *cis*-**5ap** shown in Eq. 7. The major diastereomer of *cis*-**5ap** in Eq. 7 was consistent with the minor diastereomer obtained in Entry 1 of Table 1. Accordingly, **5ap** shown in entry 1 in Table 1 was *trans*-configuration.

Similarly, demethoxylation of $8at^{10}$ obtained from 5at by hydrolysis and successively decarboxylative methoxylation smoothly proceeded to give diisopropyl *N*-benzoylated (*R*)-(pyrrolidin-2-yl)phosphonate **6at** (Eq. 8).

2.5. C₂-Symmetrical pyrrolidine-2,5-diphosphate

 C_2 -Symmetrical pyrrolidine derivative **11ap** was prepared from *trans*-phosphorylated *N*-benzoylproline **5ap** as follows (Eq. 9); Alkaline hydrolysis of **5ap** afforded carboxylic acid **7ap**. Electrochemical decarboxylative methoxylation⁷ of **7ap** in methanol afforded methoxylated compound **8ap**,¹⁰ which reacted with triethyl phosphite in the presence of BF₃·OEt₂ to majorly afford *trans*-2,5-diphosphorylated pyrrolidine **11ap** in 35% yield from **5ap**.¹²

3. Conclusion

We have accomplished diastereoselective introduction of phosphono groups into L-proline derivatives at the 5-position. *N*-Benzoylated L-proline derivative **2a** mainly gave *trans*-phosphorylated products, while *N*-benzyloxycarbonylated L-proline **2b** was majorly transformed into *cis*-phosphorylated products.

4. Experimental Section

4.1. General

¹H NMR spectra were measured on a JEOL JNM-AL 400 spectrometer with TMS as

an internal standard. ¹³C NMR spectra were measured on a JEOL JNM-AL 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-700N instrument.

All reagents and solvents were used as supplied without further purification.

4.2. Methyl N-protected 5-methoxy-L-prolinates 2a-f

N-Protected 5-methoxy-L-prolinates **2a**,^{6b} **2b**,^{6e} **2c**,^{6a} **2d**,^{6c} **2e**,^{6d} and **2f**^{5b} were known compounds.

4.3. General procedure for phosphorylation of methyl *N*-protected-5-methoxy-L-prolinates 2a-f

Under an argon atmosphere, $BF_3 \cdot OEt_2$ (0.246 mL, 2 mmol) was added dropwise to the solution of **2a** (291 mg, 1 mmol) and triethyl phosphite **4p** (332 mg, 2 mmol) in CH_2Cl_2 (10 mL) at room temperature. After stirring for 12 h, the solution was poured in brine (10 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layer was dried over MgSO₄ and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (*n*-hexane : AcOEt = 1 : 1) to afford a mixture of *cis*- and *trans*-**5ap** as a colorless oil (218 mg, 59 %).

4.3.1. Diethyl (5*R*)-[*N*-benzoyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (**5ap**) Colorless oil; [α]²⁰_D -74.3 (*c* 1.1, EtOH, 43% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.60-7.30 (m, 5H), 5.30 and 5.02-3.30 (s and m, 9H), 2.90-1.95 (m, 4H), 1.45-1.05 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 171.4, 136.1, 130.0, 128.2, 127.2, 62.0, 54.2, 52.6, 52.1, 30.8, 24.6, 16.3; IR (neat) 1743, 1655, 1394, 1242, 1016, 795 cm⁻¹; MS [EI(+)]: m/z calcd for C₁₇H₂₄NO₆P [M]⁺: 369.1341, found: 369.1351; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 33.7 min (*trans*), 38.1min (*cis*).

4.3.2 Dimethyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5aq):

Colorless oil; $[\alpha]^{20}_{D}$ –102.9 (*c* 1.9, EtOH, 40% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.60-7.31 (m, 5H), 5.05-4.96 and 4.78-4.72 (2m, 1H), 4.61 (d, *J*=9.3Hz, 1H), 3.90-3.50 (m, 6H), 3.42-3.25 (m, 3H), 2.78-2.04 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 176.0, 172.3, 136.0, 130.4, 128.3, 127.3, 62.1, 53.8, 53.2, 53.0, 52.2, 30.8, 24.6; IR (neat) 1743, 1655, 1375, 1246, 1061, 833 cm⁻¹; HRMS [EI (+)]: *m/z* calcd for C₁₅H₂₀NO₆P [M]⁺: 341.1028, found: 341.1020; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 43.3 min (*trans*), 56.3 min (*cis*).

4.3.3. Diphenyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate(5ar)

Colorless oil; $[\alpha]^{20}_{D}$ –148.2 (*c* 0.8, EtOH, 57% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.93-6.75 (m, 15H), 5.88-5.29 (m, 1H), 4.93-4.59 (m, 1H), 3.82-3.70 and 3.38 (m and s, 3H), 2.93-2.03 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.2, 171.7, 150.2, 135.8, 129.8, 129.6, 128.2, 127.4, 125.3, 120.2, 62.2, 55.3, 52.3, 31.0, 24.9; IR (neat) 1746, 1661, 1360, 1273, 1210, 1188, 933 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₂₅H₂₅NO₆P [M]⁺: 465.1341, found: 465.1339; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time : 49.2 min (trans), 58.2 min (cis).

4.3.4. Diisopropyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5at)

Colorless oil; $[\alpha]^{20}{}_{D}$ –74.6 (*c* 4.6, EtOH, 84% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.70-7.32 (m, 5H), 5.30 and 5.10-4.20 (s and m, 4H), 3.90-3.55 and 3.37 (m and s, 3H), 2.87-1.97 (m, 4H), 1.60-1.01 (m, 12H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 136.3, 135.9, 129.9, 128.2, 127.3, 62.0, 55.1, 53.4, 52.4, 30.8, 24.7, 23.9; IR (neat) 1747, 1655, 1387, 1242, 1018, 729 cm⁻¹; MS [EI(+)]: *m/z* calcd for C₁₉H₂₈NO₆P [M]⁺: 397.1654, found : 397.1657; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 16.1 min (*cis*), 22.6 min (*trans*).

4.3.5. Di-n-butyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5au)

Colorless oil; $[\alpha]^{20}_{D}$ –73.4 (*c* 4.7, EtOH, 10% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.59-7.31 (m, 5H), 5.04- 4.58 (m, 2H), 4.22-3.80 (m, 4H), 3.80-3.37 (m, 3H), 2.87-1.98 (m, 4H), 1.72-1.51 (m, 4H), 1.51-1.13 (m, 4H), 1.01-0.82 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 171.2, 136.2, 130.2, 128.2, 127.3, 66.1, 62.1, 54.2, 52.1, 32.5, 30.8, 24.7, 18.6, 13.5; IR (neat) 1744, 1655, 1308, 1240, 1028, 731, 702 cm⁻¹; MS [EI (+)] : *m/z* calcd for C₂₁H₃₂NO₆P [M]⁺: 425.1967, found: 425.1960; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 21.8 min (*trans*), 25.3 min (*cis*).

4.3.6. Diethyl

(5*S*)-[*N*-benzyloxycarbonyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5*bp*) Colorless oil; $[\alpha]^{20}_{D}$ +4.78 (*c* 1.55, EtOH, 78% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.45-7.25 (m, 5H), 5.30-4.95 (m, 2H), 4.47-3.90 (m, 6H), 3.90-3.46 (m, 3H), 2.81-1.95 (m, 4H), 1.39-1.24 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.2, 153.6, 136.1, 128.4, 127.8, 67.7, 60.0, 55.8, 54.1, 52.0, 29.6, 16.3; IR (neat) 1759, 1710, 1354, 1248, 1053, 772 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₈H₂₆NO₇P [M]⁺: 399.1447, found : 399.1450; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 18.8 min (*cis*), 25.9 min (*trans*).

4.3.7. Dimethyl

(5*S*)-[*N*-benzyloxycarbonyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5*bq*) Colorless oil; $[\alpha]^{20}_{D}$ –1.01 (*c* 4.10, EtOH, 59% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.55-7.21 (m, 5H), 5.29-4.95 and 4.51-4.25 (2m, 4H), 3.87-3.47 (m, 9H), 2.80-1.85 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.9, 154.5, 136.0, 128.3, 128.1, 127.7, 67.6, 59.9, 53.6, 52.8, 52.0, 29.5, 26.5; IR (neat) 1757, 1701, 1354, 1252, 1055, 833 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₆H₂₂NO₇P [M]⁺: 371.1134, found : 371.1150; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength : 254 nm, flow rate: 1.0 mL/min, retention time: 26.9 min (*cis*), 37.1 min (*trans*).

4.3.8. Diphenyl

(5*S*)-[*N*-benzyloxycarbonyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5br) Colorless oil; $[\alpha]^{20}_{D}$ –43.9 (c 3.85, EtOH, 84% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.40-6.98 (m, 15H), 5.18 and 4.99 (2d, *J*=11.7Hz, 1.2H and 0.8H), 4.88 and 4.80 (2d, *J*=9.3 and 9.2 Hz, 0.6H and 0.4H), 4.52 and 4.45 (2d, *J*=9.3Hz and 9.2Hz, 0.4H and 0.6H), 3.75 and 3.49 (2s, 1.2H and 1.8H), 2.76-1.81 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.7, 154.3, 150.1, 135.8, 128.2, 125.2, 124.9, 120.5, 120.2, 67.6, 59.8, 52.1, 29.4, 25.4; IR (neat) 1748, 1707, 1348, 1192, 938 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₂₆H₂₆NO₇P [M]⁺: 495.1447, found : 495.1465; HPLC chiralpak AD column (4.6 mmφ, 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate : 1.0 mL/min, retention time: 40.0 min (*trans*), 48.7 min (*cis*).

4.3.9. Diisopropyl

(5*S*)-[*N*-benzyloxycarbonyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5*bt*) Colorless oil; $[\alpha]^{20}_{D}$ –10.1 (*c* 3.6, EtOH, 85% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.50-7.08 (m, 5H), 5.30-4.60 (m, 4H), 4.48-3.85 (m, 2H), 3.85-3.37 (m, 3H), 2.72-1.85 (m, 4H), 1.50-1.11 (m, 12H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 154.7, 136.1, 128.3, 127.9, 127.8, 71.7, 67.4, 60.1, 55.3, 51.9, 24.4, 23.9, 14.1; IR (neat) 1752, 1717, 1350, 1244, 1013, 772 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₂₀H₃₀NO₇P [M]⁺: 427.1760, found : 427.1758; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate : 1.0 mL/min, retention time: 12.8 min (*cis*), 17.8 min (*trans*).

4.3.10. Di-n-butyl

(5*S*)-[*N*-benzyloxycarbonyl-(2*S*)-methoxycarbonylpyrrolidin-5-yl]phosphonate (**5bu**) Colorless oil; [α]²⁰_D +2.4 (*c* 5.6, EtOH, 75% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.42-7.22 (m, 5H), 5.29-4.95 and 4.48-4.25(m, 4H), 4.25-3.90 (m, 4H), 3.77-3.45 (m, 3H), 2.81-1.85 (m, 4H), 1.70-1.56 (m, 2H), 1.56-1.28 (m, 2H), 0.93-0.89 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.7, 154.4, 136.0, 128.2, 127.9, 127.5, 66.9, 65.6, 59.9, 54.8, 51.8, 32.4, 29.4, 26.5, 18.5, 13.4; IR (neat) 1759, 1717, 1352, 1248, 1030, 752 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₂₂H₃₄NO₇P [M]⁺: 455.2073, found : 455.2055; HPLC chiralpak AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 11.9 min (*cis*), 18.4 min (*trans*).

4.3.11. Diethyl [N,(2S)-di(methoxycarbonyl)pyrrolidin-5-yl]phosphonate (5cp)

Colorless oil; $[\alpha]^{20}_{D}$ –6.2 (*c* 0.9, EtOH, 50% de); ¹H-NMR (400 MHz, CDCl₃) δ 4.11-3.78 (m, 6H), 3.51-3.24 (m, 3H), 2.51-1.42 (m, 4H), 1.22-0.98 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.2, 154.9, 61.7, 59.7, 52.2, 51.5, 47.8, 20.4, 15.8, 13.6; IR (neat) 1750, 1717, 1448, 1375, 1049, 776 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₂H₂₂NO₇P [M]⁺: 323.1134, found: 323.1121; HPLC chiracel OD-H column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 500 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 7.31 min (*cis*), 8.78 min (*trans*).

4.3.12. Diethyl

[*N*-tert-buthoxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5dp)

Colorless oil; $[\alpha]^{20}_{D}$ –2.0 (*c* 1.0, EtOH, 41% de); ¹H-NMR (400 MHz, CDCl₃) δ 4.42-4.01 (m, 6H), 3.82-3.62 (m, 3H), 2.49-1.70 (m, 4H), 1.66-1.01 (m, 15H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.3, 153.8, 61.8, 51.8, 48.4, 29.5, 28.0, 16.3, 6.4; IR (neat) 1698, 1445, 1395, 1063, 793 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₅H₂₈NO₇P [M]⁺: 365.1607, found: 365.1613; HPLC chiracel OD-H column (4.6 mm ϕ , 250 mm), *n*-Hexane :

Isopropanol = 500 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 7.37 min (*cis*), 8.62 min (*trans*).

4.3.13. Diethyl [N-acetyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5ep)

Colorless oil; $[\alpha]^{20}_{D}$ –21.1 (*c* 1.1, EtOH, 15% de); ¹H-NMR (400 MHz, CDCl₃) δ 4.76-4.08 (m, 6H), 3.81-3.68 (m, 3H), 2.84-1.90 (m, 7H), 1.39-1.24 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.4, 170.6, 59.4, 56.6, 55.0, 52.0, 27.7, 22.2, 16.3; IR (neat) 1755, 1665, 1406, 1244, 1063, 799 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₂H₂₂NO₆P [M]⁺: 307.1185, found: 307.1191; HPLC chiracel OD-H column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 500 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time: 6.9 min (*cis*), 8.0 min (*trans*).

4.3.14. Diethyl [(2S)-methoxycarbonyl-N-p-toluenesulfonylpyrrolidin-5-yl]phosphonate (5fp)

Colorless oil; $[\alpha]^{20}_{D}$ –21.1 (*c* 1.1, EtOH, 29% de); ¹H-NMR (400 MHz, CDCl₃) δ 7.80 (q, *J*=12.0, 8.6 Hz, 2H), 7.35 and 7.29 (2d, *J*=8.1, 7.6 Hz, 2H), 4.42-3.76 (m, 6H), 3.75 (d, *J*=3.2 Hz, 3H) 2.65-1.93 (m, 7H) 1.37-1.15 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.4, 170.6, 59.4, 56.6, 55.0, 52.0, 27.7, 22.2, 16.3; IR (neat) 1755, 1665, 1406, 1244, 1063, 799 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₂H₂₂NO₆P [M]⁺: 307.1185, found: 307.1191; HPLC chiracel AD column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254nm, flow rate: 1.0 mL/min, retention time : 31.0 min (*trans*), 35.2 min (*cis*).

4.4. Decarboxylation of 5bp

To a solution of **5bp** (1.945g, 5.27 mmol, 78% de) in a mixture of THF and water (1 : 1, 50 mL) was added NaOH (0.422 g, 10.54 mmol). After stirred for 12 h at room temperature, to the resulting mixture was acidified by conc. HCl. Organic portion was extracted with ethyl acetate (3 x 30mL). Combined organic layer was dried over MgSO₄ and then the solvent was removed under reduced pressure to give the corresponding acid **7bp**.

The **7bp** and 2,6-lutidine (0.798 mL, 6.85 mmol) were placed in a beaker type cell containing a stirring bar. Methanol (50 mL) was added and the mixture was stirred at 0 $^{\circ}$ C. Graphite anode (10 cm × 5 cm) and platinum cathode (10 cm × 5 cm) were fitted and a 3 *F*/mol of electricity was passed through. The solvent was evaporated and to the residue was added saturated aqueous NaCl (50 mL). The mixture was extracted with ethyl acetate (3 x 50 mL) and the combined organic layer was dried using anhydrous MgSO4 and filtered. The solvent was removed under *vacuo* to give the corresponding methoxylated compound **8bp**.

To a stirred solution of **8bp** (0.731 g, 2.14 mmol) in CH_2Cl_2 (15 mL) was added Et_3SiH (0.410 mL, 2.57 mmol) and MeSO₃H (0.208 mL, 3,21 mmol) under nitrogen. After stirring for 4 h at room temperature, to the resulting mixture was added saturated aqueous NaHCO₃ (20 mL). The mixture was extracted with ethyl acetate (3 x 50 mL) and the combined organic layer was dried using anhydrous MgSO₄ and filtered. The solvent was removed under *vacuo* and the residue was purified using a silica gel column chromatography to give diethyl *N*-benzoylpyrrolidine-(2*R*)-phosphonate (**6bp**) in 50% yield from **5bp**.

Colorless oil; $[\alpha]^{20}_{D}$ +25.3 (*c* 2.3, EtOH, 79% ee); ¹H-NMR (400 MHz, CDCl₃) δ 7.46-7.10 (m, 5H), 5.23-5.01 (m, 2H), 4.38-3.83 (m, 5H), 3.65-3.33 (m, 2H), 2.31-1.62 (m, 4H), 1.38-1.11 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 154.7, 136.4, 128.1, 127.7, 127.6, 66.8, 61.9, 53.3, 46.4, 25.2, 16.1, 6.2; IR (neat) 1717, 1699, 1362, 1244, 1058, 768 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₆H₂₄NO₅P [M]⁺: 341.1392, found : 341.1390; HPLC chiralcel OJ-H column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 14.2 min (*S*), 19.7 min (*R*).

4.5. Deprotection of 6bp

Under a hydrogen atmosphere, to a solution of **6bp** (2.148 g, 6.29 mmol) and triethylamine (0.877 mL, 6.29 mmol) in methanol (20 mL) was added 10% palladium-carbon (0.107 g). After stirring at room temperature for 12 h, the resulting mixture was filtered by celite. The filtrate was concentrated under reduced pressure to give diethyl (2*S*)-(pyrrolidin-2-yl)phosphonate (**9p**)^{3c} in 66% yield.

4.5.1. Diethyl (2S)-(pyrrolidin-2-yl)phosphonate (9p)

Colorless oil; $[\alpha]^{20}_{D}$ +6.82 (*c* 1.45, EtOH, 78% ee); ¹H-NMR (400 MHz, CDCl₃) δ 4.25-4.08 (m, 4H), 3.40-3.27 (m, 1H), 3.11-3.00 (m, 1H), 3.00-2.89 (m, 1H), 2.50-2.30 (s, 1H), 2.12-1.70 (m, 4H), 1.34 (t, *J*=6.8 Hz, 6H); MS [EI (+)]: *m/z* calcd for C₈H₁₈NO₃P [M]⁺: 207.1025, found : 207.1012; HPLC chiralcel AY-H column (4.6 mm ϕ , 250 mm), *n*-Hexane : EtOH = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 27.1 min (*R*), 46.9 min (*S*).

4.6. Preparation of diisopropyl (2*R*)-(*N*-benzoylpyrrolidin-2-yl)phosphonate [(*R*)-6at]

In a similar manner to preparation of **6bp** from **5bp**, diisopropyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-2-yl]phosphonate (**5at**) was transformed into diisopropyl (2R)-(N-benzyolpyrrolidin-2-yl)phosphonate [(R)-**6at**] in 32% yield.

4.6.1. Diisopropyl (2R)-(N-benzoylpyrrolidin-2-yl)phosphonate [(R)-6at]

Colorless oil; $[\alpha]^{20}{}_{D}$ –49.4 (*c* 1.2, EtOH, 83% ee); ¹H-NMR (400 MHz, CDCl₃) δ 7.82-7.31 (m, 5H), 4.91 and 4.29-4.05 (s and m, 4H), 3.83-3.31 (m, 3H), 2.38-1.65 (m, 4H), 1.45-1.12 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.3, 130.3, 128.5, 128.2, 127.5, 62.2, 52.5, 50.3, 25.6, 25.1, 16.3; IR (neat) 1640, 1397, 1246, 1028, 968, 791 cm⁻¹; MS [EI (+)]: *m/z* calcd for C₁₅H₂₂NO₄P [M]⁺: 311.1287, found : 311.1312; HPLC chiralcel OJ-H column (4.6 mm ϕ , 250 mm), *n*-Hexane : Isopropanol = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 17.0 min (*R*), 28.9 min (*S*).

4.7. Preparation of C₂-symmetrical (N-benzoylpyrrolidin-2,5-diyl)phosphonate

In similar preparation 8bp 5bp, diethyl а manner to of from (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (**5ap**) was transformed into diethyl (2R)-[N-benzoyl-5-methoxypyrrolidin-2-yl]phosphonate (8ap). Under an argon atmosphere, BF₃·OEt₂ (0.246 mL, 2 mmol) was added dropwise to the solution of 8ap (341 mg, 1 mmol) and triethyl phosphite 4p (332 mg, 2 mmol) in CH₂Cl₂ (5 mL) at room temperature. After stirred for 12 h, the solution was poured in saturated aqueous NaCl (10 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layer was dried over MgSO₄ and the solvent removed under reduced pressure.

The residue was purified by silica gel column chromatography (AcOEt : methanol = 10 : 1) to afford **11ap** as a colorless oil (259 mg, 35% yield from **5ap**).

4.7.1. Tetraethyl (2R,5R)-[N-benzoylpyrrolidin-2,5-diyl]phosphonate [(R,R)-**11ap**] yellow oil; $[\alpha]^{20}_{D}$ –25.5 (*c* 1.4, EtOH, (*S*,*S*): (*R*,*R*): *meso*=26: 68: 6); ¹H-NMR (400 MHz, CDCl₃) δ 7.75-7.33 (m, 5H), 4.78-3.52 (m, 10H), 2.81-2.00 (m, 4H), 1.45-0.88 (m, 12H); ¹³C-NMR (100 MHz, CDCl₃) δ 171.3, 136.7, 130.4, 128.1, 128.1, 62.2, 52.2, 26.9, 16.4; IR (neat) 1651, 1362, 1240, 1019, 963 cm⁻¹; MS [EI(+)]: *m/z* calcd for C₁₉H₃₁NO₇P₂ [M]⁺: 447.1576, found : 447.1573; HPLC AS coating type column (4.6 mm ϕ , 500 mm), *n*-Hexane : EtOH = 10 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 30.5 min (*S*,*S*), 33.4min (*R*,*R*), 50.9 min (*meso*).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis", and a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Science, Sports and Culture, Japan.

References and notes

- (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassal, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. *Nature* 1978, *272*, 56-58. (b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. *J. Med. Chem.* 1986, *29*, 29-40. (c) Hirschmann, R.; Smith, A. B., III; Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengeler, P. A.; Benkovic, S. J. *Science* 1994, *265*, 234-237. (d) Smith, A. B.; Yager, K. M.; Taylor, C. M. *J. Am. Chem. Soc.* 1995, *117*, 10879-10888. (e) Alonso, E.; Alonso, E.; Solís, A.; del Pozo, C. *Synlett* 2000, 698-700.
- Representative reviews, see: (a) Yokomatsu, T.; Yamaguchi T.; Shibuya, S. Yuki Gosei Kagaku Kyokaishi 1995, 53, 881-892. (b) Shibuya, S. Yakugaku Zasshi 2004, 124, 725-749. (c) Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009, 65, 17-49.
- A representative recent review, see: (a) Moonen, K.; Laureyn, I.; Stevens, C. V. *Chem. Rev.* 2004, 104, 6177-6215. Representative literatures, see: (b) Jacquier, R.; Ouazzani, F.; Roumestant, M.-J.; Viallefont, P. *Phosphorus and Sulfur* 1988, 36, 73-77. (c) Groth, U.; Richter, L.; Schöllkopf, U. *Tetrahedron* 1992, 48, 117-122. (d) Katritzky, A. R.; Cui, X.-L.; Yang, B.; Steel, P. J. J. Org. Chem. 1999, 64, 1979-1985. (e) Amedjkouh, M.; Westerlund, K. *Tetrahedron Lett.* 2004, 45, 5175-5177. (f) Kaname, M.; Arakawa, Y.; Yoshifuji, S. *Tetrahedron Lett.* 2001, 42, 2713-2716. (g) Davis, F. A.; lee, S. H.; Xu, H. J. Org. Chem. 2004, 69, 3774-3781. (h) Wuggenig, F.; Schweifer, A.; Mereiter, K.; Hammerschmidt, F. *Eur. J. Org. Chem.* 2011, 1870-1879.
- 4. Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S. *Tetrahedron* **2008**, *64*, 7498-7503.

- Arbusov reaction of electrochemically prepared *N*,*O*-acetal with phosphites: (a) Shono, T.; Matsumura, Y.; Tsubata, K. *Tetrahedron Lett.* **1981**, *22*, 3249-3252. (b) Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K.; Kanazawa, T.; Tsuda, K. *J. Org. Chem.* **1984**, *49*, 3711-3716. (c) Renaud, P.; Seebach, D. *Helv. Chim. Acta* **1986**, *69*, 1704-1710.
- (a) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.-I.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697-6703. (b) Shono, T.; Matsumura, Y.; Kanazawa, T.; Habuka, M.; Uchida, K.; Toyoda, K. J. Chem. Res. (S). 1984, 320-321; J. Chem. Res. (M). 1984, 2873-2889. (c) Asada, S.; Kato, M.; Asai, K.; Ineyama, T.; Nishi, S.; Izawa, K.; Shono, T. J. Chem. Soc., Chem. Commun. 1989, 486-488. (d) Wong, P. L.; Moeller, K. D. J. Am. Chem. Soc. 1993, 115, 11434-11435. (e) Célimène, C.; Dhimane, H.; Lhommet, G. Tetrahedron 1998, 54, 10457-10468.
- 7. Recoveries of starting methoxylated compounds caused low yields.
- In case of *N-t*-butoxycarbonylated proline 2d, deprotection of the *t*-butoxycarbonyl group occurred.
- (a) Iwasaki, T.; Horikawa, H.; Matsumoto, K.; Miyoshi, M. J. Org. Chem. 1979, 44, 1552-1554.
 (b) Shono, T.; Matsumura, Y.; Onomura, O.; Sato, M. J. Org. Chem. 1988, 53, 4118-4121.
 (c) Matsumura, Y.; Wanyoike, G. N.; Onomura, O.; Maki, T. *Electrochim. Acta* 2003, 48, 2957-2966.
 (d) Minato, D.; Mizuta, S.; Kuriyama, M.; Matsumura, Y.; Onomura, O. *Tetrahedron* 2009, 65, 9742-9748.
- 10. Diastereoselectivity in these decarboxylative methoxylation was not clear.
- Hydrolysis of enantiomerically enriched (S)-9p and successive recrystallization of the obtained acid might afford enantiomerically pure

(S)-(pyrrolidine-2-yl)phosphonic acid.^{3f,h}

 Although similarly **8at** was transformed into the corresponding tetraisopropyl ester, its stereochemistry could not be determined.