Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.

Facile synthesis of both enantiomers of (pyrrolidin-2yl)phosphonate from L-proline Shigeo Hirata, Masami Kuriyama, Osamu Onomura*		Leave this area blank for abstract info.	
		$\begin{aligned} & \mathrm{P}^{\prime \prime} \mathrm{O} \\ & \text { OR } \\ & \text { OR } \\ & \text { ee } \end{aligned}$	

Facile synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate from L-proline

Shigeo Hirata, Masami Kuriyama, Osamu Onomura*
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki
852-8521, Japan

Abstract

Diastereoselective introduction of phosphono groups into L-proline derivatives at the 5 -position was achieved with suitable selection of N-protecting group. N-Benzoyl-L-prolinate preferentially gave trans-phosphorylated products which could be easily transformed into (S)-(pyrrolidin-2-yl)phosphonates. On the other hand, N-benzyloxycarbonyl-L-prolinate reacted with phosphite to give cis-substituted products which could be easily transformed into (R)-(pyrrolidin-2-yl)phosphonates.

Keywords: Diastereoselective phosphorylation; Arbusov reaction; (Pyrrolidin-2-yl)phosphonate; L-Proline.

1. Introduction

Optically active α-amino phosphonates and their derivatives are biologically important compounds structurally analogous to α-amino acids. ${ }^{1}$ A lot of useful methods have been developed for the diastereo- or enantio-selective synthesis of acyclic α-amino phosphonates. ${ }^{2}$ On the other hand, there are fewer methods for the diastereoselective synthesis of optically active cyclic α-amino phosphonates which have found promising

[^0]applications as surrogates of proline. ${ }^{3}$ These methods use (+)- or $(-)$-2-hydroxy-3-pinenone, ${ }^{3 \mathrm{~b}}(+)$-camphor, ${ }^{3 \mathrm{c}}(R)$ - or (S)-phenylglycinol, ${ }^{3 \mathrm{~d}, \mathrm{e}}$ L-menthol, ${ }^{3 \mathrm{f}}$ $(S)-(+)-p$-toluenesulfinamide ${ }^{3 \mathrm{~g}}$ as chiral auxiliaries, while easily available L-proline on manufacturing scale has not used for the synthesis.

Recently, we have reported Lewis acid-catalyzed arylation of N -acylated 5-methoxy-L-proline 2 which are electrochemically prepared from L-proline derivatives 1 proceeded diastereoselectively. Namely, N-benzoylated prolinate 2a afforded trans-5-arylated L-proline trans-3a, while N-benzyloxycarbonylated prolinate $\mathbf{2 b}$ afforded cis-5-arylated L-proline cis-3b (Eq. 1). ${ }^{4}$

We wish herein to report the effect of N -acyl groups on the diastereoselective introduction of phosphonate groups into L-proline derivatives 2 at the 5-position and its application to synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate 6 (Scheme 1).

Scheme 1.

2. Results and discussion

2.1. Effect of Lewis Acid on the Arbusov reaction

First, we investigated effect of Lewis acid on introduction of triethyl phosphite $\mathbf{4} \mathbf{p}^{5}$
into N-benzoylated or N-benzyloxycarbonylated 5-methoxylated L-prolinate ${ }^{6}$ 2a or 2b (Eq. 3). The results are shown in Table 1. In the case of $\mathbf{2 a}, \mathrm{TiCl}_{4}$ mediated α-phosphorylation in good yield but with low diastereoselectivity (entry 1). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ promoted the phosphorylation in moderate diastereoselectivity (entry 2), while SnCl_{4} did not work as an effective Lewis acid (entry 3). ${ }^{7}$ Using $\mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{AlCl}_{3}, \mathrm{Hf}(\mathrm{OTf})_{4}$, or $\operatorname{In}(\mathrm{OTf})_{3}$ as Lewis acid afforded phosphorylated product 5ap in low yields (entries $4-7){ }^{7}$ In the case of $\mathbf{2 b}$, similar tendency for tested Lewis acids was observed (entries $8-14$), and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ afforded the best result (entry 9).

2a: PG=Bz
2b: $\mathrm{PG}=\mathrm{Cbz}$

5ap: PG=Bz
5bp: PG=Cbz

Table 1. Effect of Lewis acid on the Arbusov reaction

Entry	Substrate	PG	Lewis Acid	Product	Yield (\%) ${ }^{\text {a }}$	De (\%) ${ }^{\text {b }}$	Major isomer
$1{ }^{\text {c }}$	2a	Bz	TiCl_{4}	5 ap	66	26	trans
2	2a	Bz	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	5ap	59	43	trans
3	2a	Bz	SnCl_{4}	5ap	0	-	-
4	2a	Bz	$\mathrm{Cu}(\mathrm{OTf})_{2}$	5ap	27	30	trans
5	2a	Bz	AlCl_{3}	5ap	37	53	trans
6	2a	Bz	$\mathrm{Hf}(\mathrm{OTf})_{4}$	5ap	32	15	trans
7	2a	Bz	$\mathrm{In}(\mathrm{OTf})_{3}$	5ap	14	32	trans
$8^{\text {c }}$	2b	Cbz	TiCl_{4}	5bp	49	51	cis
9	2b	Cbz	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	5bp	45	78	cis
10	2b	Cbz	SnCl_{4}	5bp	0	-	-
11	2b	Cbz	$\mathrm{Cu}(\mathrm{OTf})_{2}$	5bp	35	55	cis
12	2b	Cbz	AlCl_{3}	5bp	44	29	cis
13	2b	Cbz	$\mathrm{Hf}(\mathrm{OTf})_{4}$	5bp	33	61	cis
14	2b	Cbz	$\mathrm{In}(\mathrm{OTf})_{3}$	5bp	26	70	cis

[^1]
2.2. Effect of N-protective group

Next, we investigated effect of N -ptotecting group on the diastereoselectivity for the Arbusov reaction of $\mathbf{2 c} \mathbf{c} \mathbf{f}$ with $\mathbf{4 p}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Eq. 4). The results are shown in Table 2. Diastereoselectivities of phosphorylated products 5cp and 5dp which were obtained from N-methoxycarbonylated proline 2c and N - t-butoxycarbonylated proline $2 \mathbf{d}^{8}$ (entries 1 and 2 in Table 2) lowered compared with that of N-benzyloxycarbonylated proline $\mathbf{5 b p}$ (entry 9 in Table 1). Similarly, diastereoselectivities of phosphorylated products 5ep and 5fp which were obtained from N-acetylated proline 2e and N-p-toluenesulfonylated proline $\mathbf{2 f}$ (entries 3 and 4 in table 2) did not exceed that of N -benzoylated proline 5ap (entry 2 in Table 1).

$\xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt, 12h }} \xrightarrow{\begin{array}{l}\mathrm{P}(\mathrm{OEt})_{3}(4 \mathrm{p})(2.0 \text { equiv) } \\ \mathrm{BF}_{3}-\mathrm{OEt}_{2}(2.0 \text { equiv) }\end{array}}$

5cp: $\mathrm{PG}=\mathrm{CO}_{2} \mathrm{Me}$
2c: $\mathrm{PG}=\mathrm{CO}_{2} \mathrm{Me}$
2d: PG=Boc
2e: $\mathrm{PG}=\mathrm{Ac}$
2f: $\mathrm{PG}=\mathrm{Ts}$

5dp: PG=Boc
5ep: $\mathrm{PG}=\mathrm{Ac}$
5fp: PG=Ts

Table 2. Effect of N-protective group on the Arbusov reaction

Entry	Substrate	PG	Product	Yield (\%) $^{\text {a }}$	De (\%)	Major isomer
1	2c	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathbf{5 c p}$	68	50	nd
2	2d	Boc	5dp	20	41	nd
3	2e	Ac	$\mathbf{5 e p}$	60	15	nd
4	2f	Ts	$\mathbf{5 f p}$	98	29	nd

${ }^{\text {a }}$ Yield of isolated product as a mixture of diastereomers after purification by column chromatography. ${ }^{\text {b }}$ The diastereomer excess was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy after purification.

2.3. Effect of ester group in phosphite

Next, we investigated effect of ester group of phosphites on the diastereoselectivity for the Arbusov reaction of $\mathbf{2 a}$ or $\mathbf{2 b}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Eq. 5). The results are shown in Table 3. N-Benzoylated proline 2a reacted with trimethyl phosphite 4q gave
trans-phosphorylated product 5aq in similar yield and diastereoselectivity (entry 1 in
Table 3) to those of 5ap (entry 2 in Table 1). Although triphenyl phosphite 4r, tribenzyl phosphite 4s, and tri- n-butyl phosphite $\mathbf{4 u}$ were ineffective (entries 2, 3 and 5 in Table 3), ${ }^{7}$ triisopropyl phosphite $\mathbf{4 t}$ was effective to afford trans-phosphorylated product 5at in good yield with high diastereoselectivity (entry 4 in Table 3). In the case of N-benzyloxycarbonylated proline $\mathbf{2 b}$, similar tendencies were observed with respect to effect of phosphites (entries 6-10 in Table 3). ${ }^{7}$ The reaction of $\mathbf{2 b}$ with $\mathbf{4 t}$ gave the best result to afford cis-5bt in 50% yield with 85% de (entry 9 in Table 3).

Table 3. Effect of alcohol redisue of phosphites on the Arbusov reaction

Entry	Substrate	PG	$\mathrm{P}(\mathrm{OR})_{3}$		Product	Yield (\%) ${ }^{\text {a }}$	De (\%) ${ }^{\text {b }}$	Major isomer
			R					
1	2a	Bz	Me	4q	5aq	52	40	trans
2	2a	Bz	Ph	4r	5ar	17	57	trans
3	2a	Bz	Bn	4s	5as	0	-	-
4	2a	Bz	$i-\mathrm{Pr}$	4t	5at	61	84	trans
5	2a	Bz	$n-\mathrm{Bu}$	4u	5au	28	10	trans
6	2b	Cbz	Me	4q	5bq	72	59	cis
7	2b	Cbz	Ph	4r	5br	34	84	cis
8	2b	Cbz	Bn	4s	5bs	0	-	-
9	2b	Cbz	$i-\mathrm{Pr}$	4t	5bt	50	85	cis
10	2b	Cbz	$n-\mathrm{Bu}$	4u	5bu	45	75	cis

2.4. Determination of stereoconfiguration

Transformation of 5bp into diethyl (S)-(pyrrolidin-2-yl)phosphonate (S)-9p shown in Eq. 6 revealed that the relative stereoconfiguration of $\mathbf{5 b p}$ was cis-form. Namely, removal of 2-methoxycarbonyl group of 5bp was accomplished by alkaline hydrolysis of $\mathbf{5 b p}$ to afford carboxylic acid $\mathbf{7 b} \mathbf{p}$, and decarboxylative methoxylation ${ }^{9}$ of $\mathbf{7 b p}$, followed by reduction of N, O-acetal $\mathbf{8 b} \mathbf{p}^{10}$ to give N -benzyloxycarbonyl-2-pyrrolidinylphosphonate

6bp.
Successive debenzyloxycarbonylation of $\mathbf{6 b p}$ afforded (S)-9p. ${ }^{3 \mathrm{c}, 11}$

Opposite diastereoselectivity for the reaction of $\mathbf{2 b}$ with $\mathbf{4 p}$ was confirmed by transformation of cis-5bp into cis-5ap shown in Eq. 7. The major diastereomer of cis-5ap in Eq. 7 was consistent with the minor diastereomer obtained in Entry 1 of Table 1. Accordingly, 5ap shown in entry 1 in Table 1 was trans-configuration.

Similarly, demethoxylation of 8at ${ }^{10}$ obtained from 5at by hydrolysis and successively decarboxylative methoxylation smoothly proceeded to give diisopropyl N -benzoylated (R)-(pyrrolidin-2-yl)phosphonate 6at (Eq. 8).

2.5. C2-Symmetrical pyrrolidine-2,5-diphosphate
C_{2}-Symmetrical pyrrolidine derivative 11ap was prepared from trans-phosphorylated N -benzoylproline 5ap as follows (Eq. 9); Alkaline hydrolysis of 5ap afforded carboxylic acid 7ap. Electrochemical decarboxylative methoxylation ${ }^{7}$ of 7ap in methanol afforded methoxylated compound 8ap, ${ }^{10}$ which reacted with triethyl phosphite in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to majorly afford trans-2,5-diphosphorylated pyrrolidine 11ap in 35% yield from 5ap. ${ }^{12}$

3. Conclusion

We have accomplished diastereoselective introduction of phosphono groups into L-proline derivatives at the 5-position. N-Benzoylated L-proline derivative 2a mainly gave trans-phosphorylated products, while N-benzyloxycarbonylated L-proline $\mathbf{2 b}$ was majorly transformed into cis-phosphorylated products.

4. Experimental Section

4.1. General

${ }^{1}$ H NMR spectra were measured on a JEOL JNM-AL 400 spectrometer with TMS as
an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-AL 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-700N instrument.

All reagents and solvents were used as supplied without further purification.

4.2. Methyl N-protected 5-methoxy-L-prolinates 2a-f

N-Protected 5-methoxy-L-prolinates $\mathbf{2 a},{ }^{6 \mathrm{~b}} \mathbf{2 b},{ }^{6 \mathrm{e}} \mathbf{2 c},{ }^{6 \mathrm{a}} \mathbf{2 d},{ }^{6 \mathrm{c}} \mathbf{2 e},{ }^{6 \mathrm{~d}}$ and $\mathbf{2 f}{ }^{5 \mathrm{~b}}$ were known compounds.

4.3. General procedure for phosphorylation of methyl

 N-protected-5-methoxy-L-prolinates 2a-fUnder an argon atmosphere, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.246 \mathrm{~mL}, 2 \mathrm{mmol})$ was added dropwise to the solution of $\mathbf{2 a}(291 \mathrm{mg}, 1 \mathrm{mmol})$ and triethyl phosphite $\mathbf{4} \mathbf{p}(332 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. After stirring for 12 h , the solution was poured in brine (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane : $\mathrm{AcOEt}=1: 1$) to afford a mixture of cis- and trans-5ap as a colorless oil ($218 \mathrm{mg}, 59 \%$).
4.3.1. Diethyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5ap) Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-74.3$ (c 1.1, EtOH, 43% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ 7.60-7.30 $(\mathrm{m}, 5 \mathrm{H}), 5.30$ and 5.02-3.30 (s and $\mathrm{m}, 9 \mathrm{H}), 2.90-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.05(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,171.4,136.1,130.0,128.2,127.2,62.0,54.2$, 52.6, 52.1, 30.8, 24.6, 16.3; IR (neat) $1743,1655,1394,1242,1016,795 \mathrm{~cm}^{-1}$; MS
$[\mathrm{EI}(+)]: m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}: 369.1341$, found: 369.1351; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \mathrm{\phi}, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 33.7 min (trans), 38.1 min (cis).

4.3.2 Dimethyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate

(5aq):

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-102.9$ (c 1.9, EtOH, 40% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.60-7.31 (m, 5 H$), 5.05-4.96$ and $4.78-4.72(2 \mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.50$ $(\mathrm{m}, 6 \mathrm{H}), 3.42-3.25(\mathrm{~m}, 3 \mathrm{H}), 2.78-2.04(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0$, $172.3,136.0,130.4,128.3,127.3,62.1,53.8,53.2,53.0,52.2,30.8,24.6$; IR (neat) 1743 , 1655, 1375, 1246, 1061, $833 \mathrm{~cm}^{-1}$; HRMS [EI (+)]: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}$: 341.1028, found: 341.1020; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 43.3 min (trans), $56.3 \mathrm{~min}($ (cis).

4.3.3. Diphenyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate

 (5ar)Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-148.2$ (c 0.8, EtOH, 57% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.93-6.75 (m, 15H), 5.88-5.29 (m, 1H), 4.93-4.59 (m, 1H), 3.82-3.70 and $3.38(\mathrm{~m}$ and s, 3H), 2.93-2.03 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,171.7,150.2,135.8$, $129.8,129.6,128.2,127.4,125.3,120.2,62.2,55.3,52.3,31.0,24.9$; IR (neat) 1746 , 1661, 1360, 1273, 1210, 1188, $933 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}$: 465.1341, found: 465.1339; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol $=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention
time : 49.2 min (trans), 58.2 min (cis).
4.3.4. Diisopropyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5at)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-74.6$ (c 4.6, EtOH, 84% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.70-7.32 ($\mathrm{m}, 5 \mathrm{H}$), 5.30 and 5.10-4.20 (s and $\mathrm{m}, 4 \mathrm{H}$), 3.90-3.55 and $3.37(\mathrm{~m}$ and $\mathrm{s}, 3 \mathrm{H})$, 2.87-1.97 (m, 4H), 1.60-1.01 (m, 12H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,136.3$, 135.9, 129.9, 128.2, 127.3, 62.0, 55.1, 53.4, 52.4, 30.8, 24.7, 23.9; IR (neat) 1747, 1655, 1387, 1242, 1018, $729 \mathrm{~cm}^{-1} ; \operatorname{MS}[\mathrm{EI}(+)]: m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}: 397.1654$, found : 397.1657; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 16.1 $\min (c i s), 22.6 \min ($ trans $)$.
4.3.5. Di-n-butyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5au)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-73.4$ (c 4.7, EtOH, 10% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.59-7.31 (m, 5H), 5.04-4.58 (m, 2H), 4.22-3.80 (m, 4H), 3.80-3.37 (m, 3H), 2.87-1.98 $(\mathrm{m}, 4 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.13(\mathrm{~m}, 4 \mathrm{H}), 1.01-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,171.2,136.2,130.2,128.2,127.3,66.1,62.1,54.2,52.1,32.5,30.8$, 24.7, 18.6, 13.5; IR (neat) $1744,1655,1308,1240,1028,731,702 \mathrm{~cm}^{-1}$; MS [EI (+)] : m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}: 425.1967$, found: 425.1960; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane $:$ Isopropanol $=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 21.8 min (trans), 25.3 min (cis).

4.3.6. Diethyl

(5S)-[N-benzyloxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5bp)
Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+4.78$ (c 1.55, EtOH, 78% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.45-7.25 (m, 5H), 5.30-4.95 (m, 2H), 4.47-3.90 (m, 6H), 3.90-3.46 (m, 3H), 2.81-1.95 ($\mathrm{m}, 4 \mathrm{H}$), 1.39-1.24 (m, 6H) ${ }^{13}{ }^{3} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.2, 153.6, 136.1, 128.4, $127.8,67.7,60.0,55.8,54.1,52.0,29.6,16.3$; IR (neat) $1759,1710,1354,1248,1053$, $772 \mathrm{~cm}^{-1}$; MS [EI (+)]: m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 399.1447$, found : 399.1450; HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol $=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 18.8 min (cis), 25.9 min (trans).

4.3.7. Dimethyl

(5S)-[N-benzyloxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5bq) Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-1.01$ (c 4.10, EtOH, 59% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.55-7.21 (m, 5H), 5.29-4.95 and 4.51-4.25 ($2 \mathrm{~m}, 4 \mathrm{H}$), 3.87-3.47 (m, 9H), 2.80-1.85 (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,154.5,136.0,128.3,128.1,127.7,67.6,59.9$, 53.6, 52.8, 52.0, 29.5, 26.5; IR (neat) 1757, 1701, 1354, 1252, 1055, $833 \mathrm{~cm}^{-1}$; MS [EI $(+)]: m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 371.1134$, found : 371.1150; HPLC chiralpak AD column (4.6 mm $\phi, 250 \mathrm{~mm}), n$-Hexane: Isopropanol $=10: 1$, wavelength : 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 26.9 min (cis), 37.1 min (trans).

4.3.8. Diphenyl

(5S)-[N-benzyloxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5br) Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-43.9$ (c 3.85, EtOH, 84% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
7.40-6.98 (m, 15H), 5.18 and $4.99(2 \mathrm{~d}, J=11.7 \mathrm{~Hz}, 1.2 \mathrm{H}$ and 0.8 H$), 4.88$ and $4.80(2 \mathrm{~d}$, $J=9.3$ and $9.2 \mathrm{~Hz}, 0.6 \mathrm{H}$ and 0.4 H$), 4.52$ and $4.45(2 \mathrm{~d}, J=9.3 \mathrm{~Hz}$ and $9.2 \mathrm{~Hz}, 0.4 \mathrm{H}$ and 0.6 H), 3.75 and $3.49(2 \mathrm{~s}, 1.2 \mathrm{H}$ and 1.8 H$), 2.76-1.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.7,154.3,150.1,135.8,128.2,125.2,124.9,120.5,120.2,67.6,59.8,52.1$, 29.4, 25.4; IR (neat) $1748,1707,1348,1192,938 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 495.1447$, found : 495.1465; HPLC chiralpak AD column (4.6 mm ϕ, $250 \mathrm{~mm}), n$-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate $: 1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 40.0 min (trans), 48.7 min (cis).

4.3.9. Diisopropyl
 (5S)-[N-benzyloxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5bt)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-10.1$ (c 3.6, EtOH, 85% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ 7.50-7.08 (m, 5H), 5.30-4.60 (m, 4H), 4.48-3.85 (m, 2H), 3.85-3.37 (m, 3H), 2.72-1.85 $(\mathrm{m}, 4 \mathrm{H}), 1.50-1.11(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,154.7,136.1,128.3$, 127.9, 127.8, 71.7, 67.4, 60.1, 55.3, 51.9, 24.4, 23.9, 14.1; IR (neat) 1752, 1717, 1350, 1244, 1013, $772 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 427.1760$, found : 427.1758; HPLC chiralpak AD column (4.6 mmф, 250 mm), n-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate : $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $12.8 \mathrm{~min}($ cis $), 17.8$ \min (trans).

4.3.10. Di-n-butyl

(5S)-[N-benzyloxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5bu)
Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+2.4$ (c 5.6, EtOH, 75% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.22 (m, 5H), 5.29-4.95 and 4.48-4.25(m, 4H), 4.25-3.90 (m, 4H), 3.77-3.45 (m,
$3 \mathrm{H}), 2.81-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,154.4,136.0,128.2,127.9,127.5,66.9,65.6$, 59.9, 54.8, 51.8, 32.4, 29.4, 26.5, 18.5, 13.4; IR (neat) 1759, 1717, 1352, 1248, 1030, $752 \mathrm{~cm}^{-1} ; \mathrm{MS}[\mathrm{EI}(+)]: m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 455.2073$, found : 455.2055;

HPLC chiralpak AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol $=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 11.9 min (cis), 18.4 min (trans).

4.3.11. Diethyl [N,(2S)-di(methoxycarbonyl)pyrrolidin-5-yl]phosphonate (5cp)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-6.2$ (c 0.9, EtOH, 50% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.11-3.78 (m, 6H), 3.51-3.24(m, 3H), 2.51-1.42(m, 4H), 1.22-0.98 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 171.2,154.9,61.7,59.7,52.2,51.5,47.8,20.4,15.8,13.6$; IR (neat) $1750,1717,1448,1375,1049,776 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{P}$ $[\mathrm{M}]^{+}: 323.1134$, found: 323.1121 ; HPLC chiracel OD-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $500: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $7.31 \mathrm{~min}(c i s), 8.78 \mathrm{~min}($ trans $)$.

4.3.12. Diethyl

[N-tert-buthoxycarbonyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5dp) Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-2.0$ (c 1.0, EtOH, 41% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.42-4.01 (m, 6H), 3.82-3.62 (m, 3H), 2.49-1.70 (m, 4H), 1.66-1.01 (m, 15H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 172.3,153.8,61.8,51.8,48.4,29.5,28.0,16.3,6.4$; IR (neat) 1698 , 1445, 1395, 1063, $793 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}]^{+}: 365.1607$, found: 365.1613; HPLC chiracel OD-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane :

Isopropanol = $500: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: 7.37 $\min (c i s), 8.62 \min ($ trans $)$.

4.3.13. Diethyl [N-acetyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5ep)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-21.1$ (c 1.1, EtOH, 15% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.76-4.08 (m, 6H), 3.81-3.68 (m, 3H), 2.84-1.90 (m, 7H), 1.39-1.24 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta 171.4,170.6,59.4,56.6,55.0,52.0,27.7,22.2,16.3$; IR (neat) $1755,1665,1406,1244,1063,799 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}$: 307.1185, found: 307.1191; HPLC chiracel OD-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $500: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $6.9 \mathrm{~min}(c i s), 8.0 \mathrm{~min}($ trans $)$.
4.3.14. Diethyl [(2S)-methoxycarbonyl-N-p-toluenesulfonylpyrrolidin-5-yl]phosphonate

(5fp)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-21.1$ (c 1.1, EtOH, 29\% de); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80$ (q, $J=12.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 and 7.29 ($2 \mathrm{~d}, J=8.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.42-3.76 (m, 6H), 3.75 (d, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}) 2.65-1.93(\mathrm{~m}, 7 \mathrm{H})$ 1.37-1.15 (m, 6 H$) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.4, 170.6, 59.4, 56.6, 55.0, 52.0, 27.7, 22.2, 16.3; IR (neat) 1755, 1665, 1406, 1244, 1063, $799 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}: 307.1185$, found: 307.1191; HPLC chiracel AD column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane $:$ Isopropanol $=$ 10 : 1, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time : 31.0 min (trans), $35.2 \min (c i s)$.

4.4. Decarboxylation of $5 \mathbf{b p}$

To a solution of $\mathbf{5 b p}(1.945 \mathrm{~g}, 5.27 \mathrm{mmol}, 78 \% \mathrm{de})$ in a mixture of THF and water (1 : $1,50 \mathrm{~mL}$) was added $\mathrm{NaOH}(0.422 \mathrm{~g}, 10.54 \mathrm{mmol})$. After stirred for 12 h at room temperature, to the resulting mixture was acidified by conc. HCl . Organic portion was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). Combined organic layer was dried over MgSO_{4} and then the solvent was removed under reduced pressure to give the corresponding acid 7bp.

The $\mathbf{7 b p}$ and 2,6 -lutidine $(0.798 \mathrm{~mL}, 6.85 \mathrm{mmol})$ were placed in a beaker type cell containing a stirring bar. Methanol $(50 \mathrm{~mL})$ was added and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$. Graphite anode $(10 \mathrm{~cm} \times 5 \mathrm{~cm})$ and platinum cathode $(10 \mathrm{~cm} \times 5 \mathrm{~cm})$ were fitted and a $3 \mathrm{~F} / \mathrm{mol}$ of electricity was passed through. The solvent was evaporated and to the residue was added saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organic layer was dried using anhydrous MgSO4 and filtered. The solvent was removed under vacuo to give the corresponding methoxylated compound 8bp.

To a stirred solution of $\mathbf{8 b p}(0.731 \mathrm{~g}, 2.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{SiH}(0.410 \mathrm{~mL}, 2.57 \mathrm{mmol})$ and $\mathrm{MeSO}_{3} \mathrm{H}(0.208 \mathrm{~mL}, 3,21 \mathrm{mmol})$ under nitrogen. After stirring for 4 h at room temperature, to the resulting mixture was added saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organic layer was dried using anhydrous MgSO_{4} and filtered. The solvent was removed under vacuo and the residue was purified using a silica gel column chromatography to give diethyl N -benzoylpyrrolidine-(2R)-phosphonate (6bp) in 50% yield from 5bp.
4.4.1. Diethyl (2S)-(N-benzyloxycarbonylpyrrolidin-2-yl)phosphonate (6bp)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+25.3$ (c 2.3, EtOH, 79% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.10 (m, 5H), 5.23-5.01 (m, 2H), 4.38-3.83 (m, 5H), 3.65-3.33 (m, 2H), 2.31-1.62 ($\mathrm{m}, 4 \mathrm{H}$), 1.38-1.11 (m, 6H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.7, 136.4, 128.1, 127.7, 127.6, 66.8, 61.9, 53.3, 46.4, 25.2, 16.1, 6.2; IR (neat) 1717, 1699, 1362, 1244, 1058, $768 \mathrm{~cm}^{-1}$; MS [EI (+)]: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}]^{+}: 341.1392$, found : 341.1390; HPLC chiralcel OJ-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol = $10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $14.2 \mathrm{~min}(S), 19.7 \mathrm{~min}(R)$.

4.5. Deprotection of 6bp

Under a hydrogen atmosphere, to a solution of $\mathbf{6 b p}(2.148 \mathrm{~g}, 6.29 \mathrm{mmol})$ and triethylamine $(0.877 \mathrm{~mL}, 6.29 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added 10% palladium-carbon $(0.107 \mathrm{~g})$. After stirring at room temperature for 12 h , the resulting mixture was filtered by celite. The filtrate was concentrated under reduced pressure to give diethyl (2S)-(pyrrolidin-2-yl)phosphonate ($\mathbf{9 p})^{3 \mathrm{c}}$ in 66% yield.

4.5.1. Diethyl (2S)-(pyrrolidin-2-yl)phosphonate (9p)

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+6.82$ (c 1.45, EtOH, 78% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.25-4.08 (m, 4H), 3.40-3.27(m, 1H), 3.11-3.00 (m, 1H), 3.00-2.89 (m, 1H), 2.50-2.30 (s, 1H), 2.12-1.70 (m, 4H), $1.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$; MS [EI (+)]: m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}]^{+}: 207.1025$, found : 207.1012; HPLC chiralcel AY-H column (4.6 mm ϕ, 250 mm), n-Hexane : $\mathrm{EtOH}=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $27.1 \min (R), 46.9 \min (S)$.

4.6. Preparation of diisopropyl (2R)-(N-benzoylpyrrolidin-2-yl)phosphonate [(R)-6at]

In a similar manner to preparation of $\mathbf{6 b} \mathbf{p}$ from $\mathbf{5 b} \mathbf{p}$, diisopropyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-2-yl]phosphonate (5at) was transformed into diisopropyl (2R)-(N-benzyolpyrrolidin-2-yl)phosphonate [(R)-6at] in 32% yield.
4.6.1. Diisopropyl (2R)-(N-benzoylpyrrolidin-2-yl)phosphonate [(R)-6at]

Colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-49.4$ (c 1.2, EtOH, 83% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ 7.82-7.31 (m, 5H), 4.91 and 4.29-4.05 (s and $\mathrm{m}, 4 \mathrm{H}$), 3.83-3.31 (m, 3H), 2.38-1.65 (m, 4H), 1.45-1.12 (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,130.3,128.5,128.2$, $127.5,62.2,52.5,50.3,25.6,25.1,16.3$; IR (neat) $1640,1397,1246,1028,968,791$ cm^{-1}; MS [EI (+)]: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+}: 311.1287$, found : 311.1312; HPLC chiralcel OJ-H column (4.6 mm $\phi, 250 \mathrm{~mm}$), n-Hexane : Isopropanol $=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $17.0 \mathrm{~min}(R), 28.9 \mathrm{~min}(S)$.

4.7. Preparation of C_{2}-symmetrical (N-benzoylpyrrolidin-2,5-diyl)phosphonate

In a similar manner to preparation of $\mathbf{8 b} \mathbf{p}$ from $\mathbf{5 b} \mathbf{b}$, diethyl (5R)-[N-benzoyl-(2S)-methoxycarbonylpyrrolidin-5-yl]phosphonate (5ap) was transformed into diethyl (2R)-[N-benzoyl-5-methoxypyrrolidin-2-yl]phosphonate (8ap). Under an argon atmosphere, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.246 \mathrm{~mL}, 2 \mathrm{mmol})$ was added dropwise to the solution of 8ap ($341 \mathrm{mg}, 1 \mathrm{mmol}$) and triethyl phosphite $\mathbf{4 p}(332 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature. After stirred for 12 h , the solution was poured in saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over MgSO_{4} and the solvent removed under reduced pressure.

The residue was purified by silica gel column chromatography (AcOEt : methanol $=$ $10: 1)$ to afford 11ap as a colorless oil ($259 \mathrm{mg}, 35 \%$ yield from 5ap).

4.7.1. Tetraethyl (2R,5R)-[N-benzoylpyrrolidin-2,5-diyl]phosphonate [(R,R)-11ap]

 yellow oil; $[\alpha]^{20}{ }_{\mathrm{D}}-25.5$ (c 1.4, EtOH, (S, S) : (R, R) : meso $=26: 68: 6$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.75-7.33 (m, 5H), 4.78-3.52 (m, 10H), 2.81-2.00 (m, 4H), 1.45-0.88 (m, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,136.7,130.4,128.1,128.1,62.2,52.2,26.9$, 16.4; IR (neat) 1651, 1362, 1240, 1019, $963 \mathrm{~cm}^{-1}$; $\mathrm{MS}[\mathrm{EI}(+)]: m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{P}_{2}[\mathrm{M}]^{+}: 447.1576$, found : 447.1573; HPLC AS coating type column (4.6 $\mathrm{mm} \phi, 500 \mathrm{~mm}$), n-Hexane : $\mathrm{EtOH}=10: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $30.5 \mathrm{~min}(S, S), 33.4 \mathrm{~min}(R, R), 50.9 \mathrm{~min}($ meso $)$.
Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis", and a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Science, Sports and Culture, Japan.

References and notes

1. (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassal, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature 1978, 272, 56-58. (b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29-40. (c) Hirschmann, R.; Smith, A. B., III; Taylor, C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengeler, P. A.; Benkovic, S. J. Science 1994, 265, 234-237. (d) Smith, A. B.; Yager, K. M.; Taylor, C. M. J. Am. Chem. Soc. 1995, 117, 10879-10888. (e) Alonso, E.; Alonso, E.; Solís, A.; del Pozo, C. Synlett 2000, 698-700.
2. Representative reviews, see: (a) Yokomatsu, T.; Yamaguchi T.; Shibuya, S. Yuki Gosei Kagaku Kyokaishi 1995, 53, 881-892. (b) Shibuya, S. Yakugaku Zasshi 2004, 124, 725-749. (c) Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009, 65, 17-49.
3. A representative recent review, see: (a) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104, 6177-6215. Representative literatures, see: (b) Jacquier, R.; Ouazzani, F.; Roumestant, M.-J.; Viallefont, P. Phosphorus and Sulfur 1988, 36, 73-77. (c) Groth, U.; Richter, L.; Schöllkopf, U. Tetrahedron 1992, 48, 117-122. (d) Katritzky, A. R.; Cui, X.-L.; Yang, B.; Steel, P. J. J. Org. Chem. 1999, 64, 1979-1985. (e) Amedjkouh, M.; Westerlund, K. Tetrahedron Lett. 2004, 45, 5175-5177. (f) Kaname, M.; Arakawa, Y.; Yoshifuji, S. Tetrahedron Lett. 2001, 42, 2713-2716. (g) Davis, F. A.; lee, S. H.; Xu, H. J. Org. Chem. 2004, 69, 3774-3781. (h) Wuggenig, F.; Schweifer, A.; Mereiter, K.; Hammerschmidt, F. Eur. J. Org. Chem. 2011, 1870-1879.
4. Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S. Tetrahedron 2008, 64, 7498-7503.
5. Arbusov reaction of electrochemically prepared N, O-acetal with phosphites: (a) Shono, T.; Matsumura, Y.; Tsubata, K. Tetrahedron Lett. 1981, 22, 3249-3252. (b) Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K.; Kanazawa, T.; Tsuda, K. J. Org. Chem. 1984, 49, 3711-3716. (c) Renaud, P.; Seebach, D. Helv. Chim. Acta 1986, 69, 1704-1710.
6. (a) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.-I.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697-6703. (b) Shono, T.; Matsumura, Y.; Kanazawa, T.; Habuka, M.; Uchida, K.; Toyoda, K. J. Chem. Res. (S). 1984, 320-321; J. Chem. Res. (M). 1984, 2873-2889. (c) Asada, S.; Kato, M.; Asai, K.; Ineyama, T.; Nishi, S.; Izawa, K.; Shono, T. J. Chem. Soc., Chem. Commun. 1989, 486-488. (d) Wong, P. L.; Moeller, K. D. J. Am. Chem. Soc. 1993, 115, 11434-11435. (e) Célimène, C.; Dhimane, H.; Lhommet, G. Tetrahedron 1998, 54, 10457-10468.
7. Recoveries of starting methoxylated compounds caused low yields.
8. In case of N - t-butoxycarbonylated proline 2d, deprotection of the t-butoxycarbonyl group occurred.
9. (a) Iwasaki, T.; Horikawa, H.; Matsumoto, K.; Miyoshi, M. J. Org. Chem. 1979, 44, 1552-1554. (b) Shono, T.; Matsumura, Y.; Onomura, O.; Sato, M. J. Org. Chem. 1988, 53, 4118-4121. (c) Matsumura, Y.; Wanyoike, G. N.; Onomura, O.; Maki, T. Electrochim. Acta 2003, 48, 2957-2966. (d) Minato, D.; Mizuta, S.; Kuriyama, M.; Matsumura, Y.; Onomura, O. Tetrahedron 2009, 65, 9742-9748.
10. Diastereoselectivity in these decarboxylative methoxylation was not clear.
11. Hydrolysis of enantiomerically enriched (S)-9p and successive recrystallization of the obtained acid might afford enantiomerically pure
(S)-(pyrrolidine-2-yl)phosphonic acid. ${ }^{\text {3f,h }}$
12. Although similarly 8at was transformed into the corresponding tetraisopropyl ester, its stereochemistry could not be determined.

[^0]: *Corresponding author, Tel +81-95-819-2429, Fax +81-95-819-2476, E-mail: onomura@nagasaki-u.ac.jp

[^1]: ${ }^{\text {a }}$ Yield of isolated product as a mixture of diastereomers after purification by column chromatography.
 ${ }^{\mathrm{b}}$ The diastereomer excess was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy after purification. ${ }^{\text {c }}$ Reaction temperature: $-78^{\circ} \mathrm{C}$ to rt .

