
PATTERN COMPRESSION OF FAST CORNER DETECTION
FOR EFFICIENT HARDWARE IMPLEMENTATION

Keisuke Dohi, Yuji Yorita, Yuichiro Shibata, Kiyoshi Oguri

Graduate School of Engineering, Nagasaki University
1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

email: {dohi,yrtyj}@pca.cis.nagasaki-u.ac.jp,{shibata,oguri}@cis.nagasaki-u.ac.jp

ABSTRACT
This paper shows stream-oriented FPGA implementation of
the machine-learned Features from Accelerated Segment Test
(FAST) corner detection, which is used in the parallel track-
ing and mapping (PTAM) for augmented reality (AR). One
of the difficulties of compact hardware implementation of
the FAST corner detection is a matching process with a large
number of corner patterns. We propose corner pattern com-
pression methods focusing on discriminant division and pat-
tern symmetry for rotation and inversion. This pattern com-
pression enables implementation of the corner pattern match-
ing with a combinational circuit. Our prototype implemen-
tation achieves real-time execution performance with 7∼9%
of available slices of a Virtex-5 FPGA.

1. INTRODUCTION

Recently, Augmented Reality (AR) technology, which ap-
pends additional information to a view of a real-world en-
vironment such as image data input by a video camera, is
getting a lot of attention. Obviously, fast and correct un-
derstanding of reality is a key for augmentation of a view
of the reality. The basis of this technology is detection of
points of interest or feature points. While special markers
are employed to track feature points in some AR implemen-
tation [1], the Parallel Tracking and Mapping (PTAM) sys-
tem enables marker-less detection using a corner detection
algorithm executed on a multi-core CPU [2]. Among vari-
ous corner detection algorithms proposed so far [3] [4], the
PTAM system employs the Features from Accelerated Seg-
ment Test (FAST) corner detection algorithm [5].

The PTAM system, however, requires a desk-top multi-
core CPU for real-time execution, and thus is not suited for
direct implementation on embedded hardware. In this pa-
per, we show highly-efficient FPGA implementation of the
FAST corner detection algorithm used in the PTAM system,
focusing on the fact that algorithm can be considered as a
kind of a huge table look-up of corner patterns. Although
the table is too large to be straightforwardly implemented
on an FPGA, we propose logic compression approaches to

enable the FPGA implementation. While FPGA implemen-
tation of other corner detection algorithms has been widely
investigated [6, 7, 8], work on the FAST corner detection al-
gorithm is relatively few [9]. As far as our knowledge goes,
our work is the first attempt of FPGA implementation of
the machine-learned FAST algorithm utilized in the PTAM,
with was tailored for AR systems.

2. FAST CORNER DETECTION

The FAST corner detection algorithm was proposed to quickly
detect corners appeared in given image data [10]. The orig-
inal FAST-N algorithm compares the intensity of a corner
candidate p with each point on a 16-point ring that surrounds
p as Fig.1 shows. The candidate point is detected as a cor-
ner, if N contiguous points on the ring are all brighter or all
darker than p.

In addition, in order to enable efficient corner detection
especially for N < 12, use of corner patterns organized
by machine learning rather than mere contiguous points has
been proposed [5]. The machine-learned FAST corner de-
tection gives a state for each point on the ring x ∈ {0, 1, . . . 15}
that surrounds the corner candidate point p. The state of the
point x relative to p takes one of three states according to
the following manner:

Sp→x =

 d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x < Ip + t (similar)
b, Ip + t ≤ Ip→x (brighter)

(1)

where Ip shows the intensity of p, Ip→x shows the inten-
sity of the point x, and t denotes a threshold for intensity.
Patterns consisting of 16 state variables {Sp→15, ..., Sp→0}
were classified into the corner patterns and the others, using
the ID3 algorithm [11]. A decision tree which detects cor-
ners based on these patterns was also generated in C source
code and released in public [5].

Hence, the machine-learned FAST corner detection can
be considered as a binary table look-up whose domain is all
combinations of the states for 16 pixels of Sp→x. In this
paper, we generated the same pattern tables in HDL code.



Fig. 1. Relations of center pixel p and surrounding pixels.

(a) (b)

Fig. 2. The results of FAST corner detection with (a) libcvd
and (b) considering rotation and inversion.

The number of whole table entries is 316 = 43, 046, 721,
while the numbers of valid corner patterns are 52,494 for
FAST-9 and 15,554 for FAST-10.

3. CORNER PATTERN COMPRESSION

The corner pattern table is indexed by {Sp→15, ..., Sp→0}.
According to Equation (1), each state can have one of the
three states, thus the bit width required for a table index (ad-
dress) is at least: dlog2 316e = 26.

If we take this 26-bit approach, we firstly need to con-
vert 16 state variables into a 26-bit pattern and also need
226 = 64-Mbit memory to store the patterns. Common FP-
GAs are not able to accommodate this memory size with on-
chip RAMs. An alternative way is to implement this map-
ping as combinational circuits on an FPGA instead of the on-
chip RAM table. However, direct implementation attempt of
the combinational circuits on a Virtex-5 XC5LVX50 with
the ISE 12.2 tool resulted in failure due to an explosive
growth in logic complexity.

To cope with this problem, we propose techniques to
compress the corner patterns so as to make it possible to
implement the FAST corner detector as combinational logic
circuits on an FPGA. In this paper, we propose and evaluate
two approaches. The first approach splits Equation (1) into
two pattern tables and carries out matching processes twice.
This approach is able to detect exactly the same points with
the original machine-learned FAST corner detector for any
given image data, thus this method corresponds to loss-less

compression. The second compression approach is based
on the potential symmetry of the corner patterns for rotation
and inversion. However, this approach may correspond to a
lossy compression method. Note that these two methods can
be used at the same time.

3.1. Equation splitting

This method was originally based on our assumption that
only either pixel x that has Sp→x = d or Sp→x = b is
important in the corner decision process with Equation (1).
Thus we split the equation into two patterns as follows:

SDp→x =
{

darker, Ip→x ≤ Ip − t
other, else (2)

SBp→x =
{

brighter, Ip + t ≤ Ip→x

other, else . (3)

The corner pattern matching is executed twice; one for each
equation. The focused pixel p is classified as a corner, if the
pixel is detected as a corner with one of the two matching
processes.

In order to verify the assumption behind this method,
we exhaustively compared the table of this method with the
original methods, the fast corner detect 9 function and the
fast corner detect 10 function implemented in the libcvd li-
brary [12] used in the PTAM system. As a result, it was
shown that the proposed and the original method were com-
pletely consistent, which means that the proposed FAST cor-
ner detection consisting of twice matching for 16-bit pat-
terns {SDp→15, ..., SDp→0} and {SBp→15, ..., SBp→0} is
equivalent to the original detection presented in [5].

Although this method effectively reduced the number of
the corner patterns, the number of matching procedures was
doubled in compensation for the patten reduction. Fortu-
nately, however, our observations revealed there was room
for further optimization. First, we have found the contents
of the two corner pattern tables for SD and SB are com-
pletely the same. Therefore, we need only one table for each
matching process. Second, we have found that the two pat-
tern tables for SD and SB never detect the corner for the
same candidate point, and that it is enough to perform the ta-
ble look-up only for either SD or SB which contains more
“1” bits for N ≥ 9. By making the best use of these obser-
vations, both of the size of the pattern table and the number
of matching processes can be halved.

3.2. Introduction of rotation and inversion

The second compression approach is based on another in-
tuitive assumption that if a pixel p is a corner in a given
image data, it should remain a corner even when the image
is rotated or inverted (flipped). According to the way of ex-
pression of patterns described in the previous section, a 90-
degree left rotated pattern can be written as: {Sp→3, ..., Sp→0, Sp→15, ...,



Fig. 3. The system diagram.

Sp→4}. In the same manner, the 180-degree rotated pattern
and 270-degree rotated pattern can also be described by ro-
tating the state variables in the original pattern. Also, the
inverted pattern can be written as: {Sp→1, Sp→2, ..., Sp→14,
Sp→15, Sp→0}. Thus, we have a total of eight pattern ex-
pressions with rotation and inversion for each corner candi-
date pixel p. Admitting our assumption, the same detection
result should be obtained for these eight patterns.

Using this method and the previously mentioned method
at the same time, every pattern can be described as binary
data, and thus we can chose the pattern which has the small-
est binary as a representative pattern of corresponding eight
isomorphic patterns. While the number of corner patterns is
reduced, this compression method needs to convert a given
state pattern into a corresponding representative isomorphic
pattern, which will require additional logic resources.

Unfortunately, our verification experiments revealed that
this compression method does not retain the original cor-
ner detection functionality. Therefore, we evaluated how
the quality of results was affected. We used the standard
test image the “Lenna” as a benchmark, and set the inten-
sity threshold t to 50. For the benchmark image, the FAST-
10 algorithm produced the same detection results even after
this compression, but some differences were observed for
the FAST-9. Fig.2(a) and Fig.2(b) show corner detection
results produced with the original fast corner detect 9 func-
tion and this method, respectively. The true positive rate, the
false positive rate, and the false negative rate were 100 %,
0.26 %, and 0 %, respectively. Although our second com-
pression method was not equivalent to the original detection
algorithm shown in [5] since the assumption on corner sym-
metry was not the case for the FAST-9, the difference of
results was relatively small.

4. IMPLEMENTATION

To evaluate the proposed compression methods, we imple-
mented an FPGA-based real-time FAST corner detection sys-
tem. The data-flow of the system is fully pipelined and thus
the input image data are processed at the same through-
put with the frame rate of the camera. All Block RAMs
(BRAMs) are used as FIFO modules; no random accesses

Table 1. Table size and # of corner patterns.
Size FAST-9 FAST-10

basic 226bits 52,494 15,554
split 216bits 1,026 513
symmetry 216bits 466 117

are performed on these memory modules. The system needs
intensity data for the focused pixel and surrounding 16 pix-
els at the same time. Therefore, we employed a streamed
architecture consisting of shift registers made of flip-flops
and line buffers using BRAM FIFOs as shown in Fig.3.

Since the shift registers illustrated in the region covered
with a gray hatching consist of flip-flops, all of the data in
this region can be accessed in parallel. The size of the region
is set to seven-by-seven so that the intensity data for the fo-
cused pixel p and the 16-pixel ring can be kept. The focused
pixel and the corresponding ring are moved on to the next
on every clock cycle synchronized with the camera device
and the DVI output. The corner pattern table compressed
with aforementioned methods is implemented as computa-
tional logic circuits and indexed by the state pattern calcu-
lated from intensity data on the shift registers.

5. EVALUATION

The evaluation system was implemented on a ML501 pro-
totype board equipped with a Xilinx Virtex-5 XC5VLX50
and a OmniVison OV9620 CMOS camera device. We used
ISE 12.2 as development environment. Since the evaluated
system employs the fully pipelined, it achieves the perfor-
mance of 62.5 fps, provided that the maximum frequency of
the circuits configured on the FPGA exceeds 25 MHz.

5.1. Number of corner patterns

At first, we evaluated how the number of corner patterns was
reduced by the proposed compression methods. The size of
the corner pattern table and the numbers of corner patterns
for the FAST-9 and FAST-10 are summarized in Table 1.

The “basic” method shows the original corner patten ta-
ble generated from the PTAM libcvd functions. The “split”
corresponds to the method described in Section 3.1 in which
patten equations are split. The “symmetry” method takes
into account the pattern symmetry for rotation and inversion
in addition to the “split” method. The “split” method sig-
nificantly reduced the size of the corner pattern table from
64 Mbits to 64 Kbits. Meanwhile, the “symmetry” method
reduced the number of the corner patterns not the table size.

Both “split” and “symmetry” methods produced positive
results in terms of reduction in the corner patterns. While
the “split” method is loss-less and is completely equivalent
to the “base” method, it effectively eliminated 98% and 97%



Fig. 4. Slice usage for each method.

Table 2. Maximum frequency.
FAST-9 FAST-10

split symmetry split symmetry
81.6 MHz 57.3 MHz 83.1 MHz 59.3 MHz

of the original corner patterns for FAST-9 and FAST-10, re-
spectively. Additionally, the “symmetry” method reduced
approximately the half of the corner patterns for FAST-9,
while it reduced approximately three quarters for FAST-10.
The difference in effectiveness is attributed the robustness of
the “basic” method for rotation and inversion. The evalua-
tion results suggest that the table of the original FAST-10 has
more isomorphic patterns compared to the original FAST-9
and thus is more robust for rotation and inversion.

5.2. Hardware resource usage

Next, we evaluated the hardware amount utilized for FPGA
implementation. Fig.4 shows the hardware resource usage
and their breakdowns; “basic”, “converter”, and “table” cor-
respond to areas for image pipelines, hardware that convert-
ers intensity data to a table index, and the corner pattern
table implemented as combinational circuits.

The “split” was better than “symmetry” for both of the
FAST-9 and FAST-10, since the converter to select a rep-
resentative isomorphic state pattern required in the “sym-
metry” method occupied a large amount of hardware, while
the hardware resources for the reduced pattern table did not
make much difference. As a result, the compression method
based on the pattern symmetry for rotation and inversion de-
scribed in Section 3.2 was not effective for the FAST-9 and
FAST-10. On the other hand, the “split” method was signifi-
cantly effective, making it possible to directly implement the
FAST corner detector on an FPGA, which was not feasible
with the “basic” method.

5.3. Frequency

Table 2 shows the maximum frequencies of the circuits for
each method. The “symmetry” was slower than the “split”,
since the logic that compares rotated and inverted patterns

dominated the critical path. The performance of the “split”
circuits corresponds to more than 200 fps, assuming the cam-
era device can input image at that rate.

6. CONCLUSION

This paper presented FPGA implementation of the machine-
learned FAST corner detection used in the PTAM system.
Although the corner detection was considered as a kind of
a table look-up, its corner detection table was too huge to
directly implement with an FPGA. To cope with this prob-
lem, we proposed two table compression approaches; one
for loss-less compression and the other for lossy compres-
sion. As a result, the number of corner pattern entries in
the original FAST-10 table was reduced from 15,554 to 513
when hardware usage was minimum, consuming only ap-
proximately 9% of slices (529 slices) in Virtex-5 XC5LVX50.
The FPGA implementation of the FAST corner detection
achieved real-time throughput, showing effectiveness of our
design approach with table compression. Our future work
includes the FPGA implementation of a whole functionality
of the PTAM as an embedded marker-less AR system.

7. REFERENCES

[1] “ARToolKit,” http://www.hitl.washington.edu/artoolkit/.
[2] G. Klein and D. Murray, “Parallel tracking and mapping for

small AR workspaces,” in Proc. ISMAR, 2007.
[3] S. Smith and J. Brady, “SUSAN - A new approach to low

level image processing,” International journal of computer
vision, vol. 23, no. 1, pp. 45–78, 1997.

[4] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Alvey vision conference, vol. 15, 1988, p. 50.

[5] E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” in Proc. ECCV (1), 2006, pp. 430–
443.

[6] C. Torres-Huitzil and M. Arias-Estrada, “An FPGA archi-
tecture for high speed edge and corner detection,” 2000, pp.
112–116.

[7] C. Cabani and W. J. MacLean, “A proposed pipelined-
architecture for fpga-based affine-invariant feature detectors,”
in Proc. CVPRW, 2006, p. 121.

[8] C. Claus, R. Huitl, J. Rausch, and W. Stechele, “Optimizing
the susan corner detection algorithm for a high speed fpga
implementation,” in Proc. FPL, 2009, pp. 138–145.

[9] M. Kraft, A. Schmidt, and A. J. Kasinski, “High-speed im-
age feature detection using fpga implementation of fast algo-
rithm,” in Proc. VISAPP (1), 2008, pp. 174–179.

[10] E. Rosten and T. Drummond, “Fusing points and lines for
high performance tracking.” in Proc. ICCV (2), 2005, pp.
1508–1511.

[11] J. Quinlan, “Induction of decision trees,” Machine learning,
vol. 1, no. 1, pp. 81–106, 1986.

[12] “CVD Projects,” http://mi.eng.cam.ac.uk/∼er258/cvd/.


