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Abstract. This paper proposes a semi-supervised bibliographic element
segmentation. Our input data is a large scale set of bibliographic refer-
ences each given as an unsegmented sequence of word tokens. Our prob-
lem is to segment each reference into bibliographic elements, e.g. authors,
title, journal, pages, etc. We solve this problem with an LDA-like topic
model by assigning each word token to a topic so that the word tokens
assigned to the same topic refer to the same bibliographic element. Topic
assignments should satisfy contiguity constraint, i.e., the constraint that
the word tokens assigned to the same topic should be contiguous. There-
fore, we proposed a topic model in our preceding work [8] based on the
topic model devised by Chen et al. [3]. Our model extends LDA and
realizes unsupervised topic assignments satisfying contiguity constraint.
The main contribution of this paper is the proposal of a semi-supervised
learning for our proposed model. We assume that at most one third of
word tokens are already labeled. In addition, we assume that a few per-
cent of the labels may be incorrect. The experiment showed that our
semi-supervised learning improved the unsupervised learning by a large
margin and achieved an over 90% segmentation accuracy.

1 Introduction

Bibliographic element segmentation is an important problem when we build a
large publication database from “raw” references, i.e., the references that are not
segmented into bibliographic elements, e.g. author names, paper title, journal
name, pages, publication year, etc. By scanning reference sections of printed ar-
ticles or by crawling publication data from researchers’ Web sites, we can obtain
raw references as unlabeled word token sequences. Our problem is to segment
each raw reference into bibliographic elements. Once bibliographic elements are
identified, relevant tasks, e.g. reference alignment, reference deduplication, etc,
will become easy. Figure 1 shows a segmentation example our method provides.

In a preceding paper [8], we proposed a completely new approach for bibli-
ographic element segmentation. Existing works solve this problem by modeling
the appearance order of bibliographic elements as state transition [2, 7, 10, 11,
6, 5] with hidden Markov models or conditional random fields. In contrast, we



Fig. 1. A segmentation example of our method for M20 dataset (cf. Section 4), where
the bibliographic elements to be segmented are authors, year, title, journal, and
pages. Each line gives a different reference. The symbol “|” shows the segmentation.

proposed a Bayesian probabilistic model as an extension of latent Dirichlet al-
location (LDA) [1] and modeled the appearance order as topic permutation.

We regard each raw reference as a document and assign each word token to
a topic so that the word tokens assigned to the same topic refer to the same
bibliographic element. However, the topic assignments obtained by LDA fails to
solve our problem, because the assignments do not satisfy contiguity constraint,
i.e., the constraint that the same bibliographic element should be referred to by
contiguous word tokens. In the topic assignments given by LDA, the word tokens
assigned to the same topic are in general not contiguous.

Therefore, in [8], we borrowed a remarkable idea proposed by Chen et al. [3]
and modified LDA as follows: For each document, 1) draw as many topics as
word tokens; 2) draw a topic permutation from a probability distribution defined
by generalized Mallows model (GMM) [4] over all topic permutations; and 3)
sort the drawn topics according to the drawn permutation (cf. Figure 2). The
idea to use GMM in topic models was originally proposed in [3] to solve doc-
ument structure learning. However, this problem is widely different from ours.
Therefore, we modified their method and gave an unsupervised method for bib-
liographic element segmentation. In this paper, we give a fixed name PaiFen1 to
our segmentation method. The main contribution of this paper is to propose a
semi-supervised learning for PaiFen and to improve the segmentation accuracy
up to over 90%. We call the semi-supervised version of PaiFen BanPaiFen.2

BanPaiFen accepts an input set of references where some word tokens are
already labeled. In our experiment, at most one third of word tokens are labeled.
However, these supervised labels are allowed to be imperfect, because we assume

1 “Pai” is the pronunciation of the Greek character π often used to denote permuta-
tions, and “Fen” is the pronunciation of the Chinese character meaning segmentation.

2 “Ban” is the pronunciation of the Chinese character standing for “semi.”



Fig. 2. How to make topic assignments satisfy contiguity constraint.

that the labels are given not by careful hand-labeling but by automated labeling.
In our experiment, around 3% of the labels were incorrect. However, BanPaiFen
could achieve an over 90% segmentation accuracy.

The rest of the paper is organized as follows. Section 2 describes the model
PaiFen in a generative manner. Section 3 explains how we modify PaiFen for
semi-supervised learning. Section 4 includes the settings and the results of our
experiment. Section 5 concludes the paper with discussions and future work.

2 Topic Modeling for Segmentation

As is widely known, topic modeling trend in text mining was inaugurated by
LDA [1]. By regarding references as documents and bibliographic elements as
topics, we can interpret the topic assignments of LDA as bibliographic element
labelings. However, the topic assignments by LDA do not satisfy contiguity con-
straint, i.e., the constraint that the word tokens assigned to the same topic should
appear contiguously. This constraint is required for our problem, because each
bibliographic element should be referred to by contiguous word tokens. Here we
can borrow an intuition from the work of Chen et al. [3] and can use generalized
Mallows model (GMM) for meeting contiguity constraint. Since GMM defines
a probability distribution over topic permutations, we can model the topic ap-
pearance order in each document by a draw from this distribution.

However, the problem envisioned in [3] was document structure learning, a
problem widely different from ours. Therefore, in [8], we proposed a modified
version of their method. We call our method PaiFen in this paper. Chen et al. as-
sumed sparse topic distribution in [3]. That is, they assumed that only a small
number of topics appear in each document. This assumption is not appropriate
for our problem, because all topics, i.e., all bibliographic elements, are basically
expected to appear in every references. Therefore, while Chen et al. draw topic
multinomial distributions from the Dirichlet prior to achieve topic sparseness,
we replace all topic multinomials by the uniform distribution in PaiFen.

Due to space limitation, we skip the mathematical details of PaiFen and refer
the details to [8]. We only repeat the generative description of PaiFen as below:



1. Draw a word multinomial parameter ϕk = (ϕk1, . . . , ϕkW ), k = 1, . . . ,K,
from the symmetric Dirichlet prior Di(β) for each of the K latent topics.

2. Draw a parameter ρ = (ρ1, . . . , ρK−1) of generalized Mallows model GMM(ρ)
from the conjugate prior, which is defined by Equation (2) in [3].

3. Let nj be the number of word tokens contained in the jth reference dj . Draw
dj as an ordered word token sequence xj = (xj1, . . . , xjnj ) as follows:
(a) Draw nj topics tj = {tj1, . . . , tjnj} uniformly from the set of K topics.
(b) Draw a permutation πj of the K topics from GMM(ρ).
(c) Sort the drawn topics tj according to the drawn permutation πj and

obtain an ordered multiset of topics zj = (zj1, . . . , zjnj ) (cf. Figure 2).
(d) For xji, draw a word w from the multinomial Multi(ϕzji) and set xji = w.

3 Semi-supervised Inference

Basically, we adopt the MCMC inference described in [8]. However, we realize a
semi-supervised learning by modifying the conditional posteriors in a scheduled
manner. We need to generate MCMC samples for the following three types of
variables: GMM parameters ρ, inversion counts vj , and topic draws tj . GMM
parameters are sampled in the same manner as [8]. Therefore, we explain how
inversion counts and topic draws are sampled in our semi-supervised inference.

We present necessary notations. Inversion counts are introduced to specify
a topic permutation in a one-to-one manner. For each reference dj , a set of
K − 1 inversion counts vj = (vj1, . . . , vjK−1) are prepared as latent variables.
Each vjk is an integer satisfying 0 ≤ vjk ≤ K − 1. Let πj = (πj1, . . . , πjK)
be the topic permutation used for sorting the topic draws tj for reference dj .
We denote the position of the kth topic in πj by π−1

j (k). πj can be specified
by vj in a one-to-one manner via the following relationship: vjk ≡ |{k′ : k′ >
k and π−1

j (k′) < π−1
j (k)}|. That is, vjk is the number of topics whose indices

are larger than k and whose positions in πj are earlier than the kth topic. For
example, πj = (4, 3, 1, 5, 2) can be uniquely specified by vj = (2, 3, 1, 0).

In the unsupervised inference described in [8], we sample the inversion count
vjk for each j and k from the full conditional posterior P (vjk| · · · ). Further, we
sample the latent topic tji for each j and i from the full conditional posterior
P (tji| · · · ). The mathematical details of these posteriors are referred to [8]. In
BanPaiFen, these posteriors are modified by using the two types of penalties
calculated for each reference dj . The one is Rmis

j , the number of mismatches

between the supervised label and the inferred topic. The other is Rred
j , the num-

ber of redundant assignments that are explained as follows. When more than
one word tokens are assigned to the topics corresponding to the bibliographic
elements that should be referred to by one word token, we call such assignments
redundant. For example, when three word tokens are assigned to the topic corre-
sponding to publication year, we set Rred

j = 2, because publication year should
be referred to by one word token, and thus two among the three assignments are
redundant. Then, P (vjk| · · · ) and P (tji| · · · ) are modified by Rmis

j and Rred
j as

P (vjk| · · · )exp(R
mis
j I/M) and P (tji| · · · )exp{(R

mis
j +Rred

j )I/M}, (1)



Table 1. Specifications shared by the three DBLP datasets, i.e., D0, D20, and D50.

#references = 944,755, #different words = 685,799, #word tokens = 17,408,876

#labels
authors title journal year total
2,851,470 1,761,034 126,420 950,721 5,689,645

( / #word tokens) (16.4%) (10.1%) (0.73%) (5.5%) (32.7%)

#incorrect labels
authors title journal year total
7,549 160,325 1,218 5,966 175,058

( / total #labels) (0.13%) (2.8%) (0.02%) (0.10%) (3.1%)

respectively. In Eq. (1), I is the number of iterations, and M is the parameter
that controls how fast the effect of the supervised labels becomes strong as
iterations proceed. The modified probabilities are used after being normalized.
As Eq. (1) shows, when we sample inversion counts, we only consider Rmis

j . This

is because Rred
j does not change by any update of vj . While we tested various

ways to modify the posteriors, Eq. (1) gave the best result.
We can explain what Eq. (1) means as follows. Suppose that we terminate the

inference after 300 iterations. Further, suppose that we choose M as 100. Then,
for earlier iterations, Rmis

j I/M and (Rmis
j +Rred

j )I/M are nearly equal to zero,
because I ≪ M holds. Therefore, the penalty scores only have a small effect. This
means that we conduct an almost unsupervised inference. However, as iterations
proceed, Rmis

j I/M and (Rmis
j + Rred

j )I/M become larger, because I becomes
larger. Consequently, the posterior probabilities become closer to zero for the
sample values making penalties positive. The inference then comes to sharply
avoid such sample values. For example, if some sample value for tji increases the
number of the word tokens referring to publication year from one to two, the
inference after hundreds of iterations sharply avoids this sample value.

We can find a previous work [9] that utilizes supervised labels by introducing
response variables into topic models. However, we use the labels to directly
modify the “shape” of the posterior distributions. We think that our method is
more intuitive and efficient, though not mathematically elegant.

4 Evaluation Experiment

4.1 Dataset Composition

We composed the datasets by using DBLP database3 and MEDLINE/PUBMED
database4. With respect to DBLP database, we composed the three datasets D0,
D20, and D50 based on the file dblp.xml dated February 8, 2010 as follows:

– We collected the references having publication years ranging from 2000 to
2009 and extracted the bibliographic elements authors, title, booktitle,

3 http://dblp.uni-trier.de/xml/
4 MEDLINER⃝/PUBMEDR⃝, a database of the U.S. National Library of Medicine.



Table 2. Specifications shared by the MEDLINE datasets, i.e., M0, M20, and M50.

#references = 3,001,207, #different words = 2,168,061, #word tokens = 87,085,708

#labels
authors year title journal pages total
4,983,698 2,770,489 483,878 294,330 2,710,264 11,242,659

( / #word tokens) (5.7%) (3.2%) (0.56%) (0.34%) (3.1%) (12.9%)

#incorrect labels
authors year title journal pages total
60,536 13,951 179,958 4,570 8,198 267,213

( / total #labels) (0.54%) (0.12%) (1.6%) (0.04%) (0.07%) (2.4%)

journal, and year. We identified booktitle with journal, because these
two elements could be regarded as playing the same role for our problem.

– We defined the canonical order of bibliographic elements as authors< title

< journal < year and sorted the bibliographic elements in this order for
all references. The canonical order determines the correspondence between
the bibliographic elements and the latent topics. That is, any inferred seg-
mentation is expected to assign word tokens to topic 1 (resp. 2, 3, and 4)
when those tokens refer to authors (resp. title, journal, and year).

– We randomly selected Q% of the references and randomly shuffled the order
of the bibliographic elements. We did not change the word token order in each
bibliographic element. By forgetting bibliographic elements information, we
obtained each reference as a “raw” word token sequence. D0, D20, and D50
are the datasets obtained when Q = 0, 20, and 50, respectively.

We call D0, D20, and D50 DBLP datasets. Table 1 summarizes the specifications.
Note that these specifications are shared by D0, D20, and D50, because only the
order of the bibliographic elements is different among these datasets.

With respect to MEDLINE/PUBMED database, the 100 files whose names
ranged from medline09n0400.xml to medline09n0499.xml were used to com-
pose the three datasets M0, M20, and M50 by applying the same procedure with
D0, D20, and D50, respectively. We call the three datasets MEDLINE datasets,
whose specifications are shown in Table 2. For MEDLINE datasets, we extracted
the five bibliographic elements: authors, year, title, journal, and pages, and
regarded this order as the canonical order. Further, we eliminated the parenthe-
ses [ and ] at the head and the tail of every title, because they are artifacts.
Except this, we applied no preprocessing like stemming, punctuation removal,
and stop word elimination to MEDLINE datasets and also to DBLP datasets.

4.2 Automated Labeling

We applied the following automated procedures to obtain supervised labels:

1. We extracted the references having publication years earlier than 2000 from
DBLP database. When a word appeared as a part of some bibliographic
element and never appeared as a part of the other bibliographic elements



in the extracted references, we labeled all tokens of that word by the cor-
responding bibliographic element. The same procedure was applied also for
MEDLINE datasets by using the references contained in the 100 files from
medline09n0000.xml to medline09n0099.xml of MEDLINE database. This
automated labeling was applied only for authors, title, and journal.

2. We labeled all tokens of the words giving an integer in the interval [1900, 2012]
as year. Further, we labeled all tokens of the words matching the regular
expression [1-9][0-9]*\-[1-9][0-9]* as pages.

Since the first procedure gave many incorrect labels, we removed the labels of
authors and journal from all tokens of the words included in the SCOWL word
list5. Consequently, the tokens of the words included in the SCOWL list cannot
have any labels other than title. The label statistics are shown in Table 1 for
DBLP datasets and in Table 2 for MEDLINE datasets. For DBLP datasets,
32.7% of the word tokens are labeled, but 3.1% of them are incorrectly labeled.
For MEDLINE datasets, only 12.9% of the word tokens are labeled, and 2.4%
of them are incorrect.

4.3 Implementation

We refer the details of the inference implementation to [8]. The number of iter-
ations were 300 for every experiment setting. Therefore, I in Eq. (1) is at most
300. We ran the inference 10 times for every experiment setting by starting from
a random initialization. The segmentation quality was measured by the F-score
defined in [3], which can be roughly viewed as the proportion of the correctly
segmented word tokens. Based on the 10 runs, we calculated the mean and stan-
dard deviation of the corresponding 10 F-scores. However, we do not report the
standard deviation here, because it was always negligibly small.

4.4 Evaluation Results for DBLP Datasets

Figure 3 summarizes the evaluation results for DBLP datasets. We set M =
10000 in Eq. (1), because this setting gave fairly good results. The wall clock
time of 300 iterations was 4,400 seconds on a Fedora 14 PC equipped with Intel
Core i7 970 at 3.20GHz. Each bar in Figure 3 represents the mean F-score.

In Figure 3, the charts in the top left, top right, and bottom panels present
the mean F-scores for D0, D20, and D50, respectively. The bottom black bar in
each chart gives the baseline F-score, i.e., the F-score achieved by PaiFen. The
other bars give the F-scores achieved by BanPaiFen under various settings. The
tag of each bar shows the labels used in semi-supervised inference. A, T, J, and
Y mean authors, title, journal, and year, respectively. For example, the tag
ATY means that we used the supervised labels of authors, title, and year.

The best F-scores in each chart are underlined. We can observe that the
settings TJY and ATJY gave the best F-scores for all D0, D20, and D50. Inter-
estingly, we could achieve better F-scores for D50 than for D0 and D20. In D50,
5 http://wordlist.sourceforge.net/
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Fig. 3. Evaluation results for DBLP datasets. The charts in the top left, top right, and
bottom panels present the F-scores for D0, D20, and D50, respectively. Each F-score
is the mean calculated over 10 runs of the inference. The best F-scores are underlined.

50% of the references contain the bibliographic elements in a random order. It
seems that the existence of a wide variety of orderings of bibliographic elements
helped the inference to reach better local optima at least for DBLP datasets.
Obviously, Figure 3 shows that BanPaiFen improved PaiFen by a large margin.

4.5 Evaluation Results for MEDLINE Datasets

Figure 4 presents the evaluation for MEDLINE datasets. We set M = 100 in
Eq. (1), because this setting gave better results than M = 10000. 42,000 seconds
were required for 300 iterations on a Fedora 14 PC equipped with Intel Core
i7 970 at 3.20GHz. The tag characters A, T, J, Y, and P attached to each bar
mean authors, title, journal, year, and pages, respectively. We only show
the results for the baseline case tagged as ∅ and the following eight cases: A, T,
J, Y, P, YP, ATJ, and ATJYP, because other cases gave no better results.

Figure 4 shows that the combined use of the supervised labels of year and
pages achieved the best F-score for all of M0, M20, and M50. Especially, we can
observe that the supervised labels of year played an important role. With no
year labels, we could not improve PaiFen. This may be because year is placed
between authors and title in the canonical order of bibliographic elements
for MEDLINE datasets, and thus the correct segmentation of year drastically
contributed to the correct segmentation of both authors and title.

Further, we can observe that the segmentation quality was worse for M50
than for M0 and M20, though we obtained better F-scores for D50 than D0 and
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Fig. 4. F-scores for MEDLINE datasets. The charts in the top left, top right, and
bottom panels present the F-scores for M0, M20, and M50, respectively. Each F-score
is the mean calculated over 10 runs of the inference. The best scores are underlined.

D20 in case of DBLP datasets. While there are only 4! = 24 permutations of bib-
liographic elements in total for DBLP datasets, we have 5! = 120 permutations
for MEDLINE datasets. Therefore, the inference of the correct permutation for
each reference is far more difficult in case of MEDLINE datasets. This may be
the reason we obtained worse F-scores for M50 than M0 and M20. However,
BanPaiFen improved PaiFen by a large margin for all of M0, M20, and M50.

5 Conclusion

We proposed a semi-supervised bibliographic element segmentation called Ban-
PaiFen by modifying our unsupervised method PaiFen [8]. We modified posterior
probabilities in PaiFen so that the inference can avoid the sample values leading
to mismatches between supervised labels and inferred topics or leading to re-
dundant topic assignments, where the word “redundant” means that we assign
more than one word tokens to the topic corresponding to the bibliographic ele-
ment that should be referred to by one word token, e.g. publication year. Our
experiment showed that BanPaiFen could improve PaiFen by a large margin.

In a more realistic situation, OCR errors may be included in the references
obtained from the scanned articles, and crawled Web pages may include typos.
Therefore, it is an important future work to incorporate an error correction at
the word token level into our model, as a preceding work did for hidden Markov
models [10]. One promising research direction is to propose a modeling of each
word token as a character string for calculating the penalties used in Eq. (1).



We know that existing successful databases regard bibliographic element or-
der as state transition and use hidden Markov models or conditional random
fields. However, such approaches achieve their superiority not only with such
data modelings but also with practical tunings. While our approach also requires
additional practical tunings, we think that our approach can be an alternative
to existing approaches as a new style of segmentation based on permutation, not
on transition, because we have already achieved an over 90% accuracy without
getting into any details about how each word token is composed as a string.
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