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Abstract. We present a supervised multi-label classification method for
automatic image annotation. Our method estimates the annotation la-
bels for a test image by accumulating similarities between the test image
and labeled training images. The similarities are measured on the ba-
sis of sparse representation of the test image by the training images,
which avoids similarity votes for irrelevant classes. Besides, our sparse
representation-based multi-label classification can estimate a suitable
combination of labels even if the combination is unlearned. Experimen-
tal results using the PASCAL dataset suggest effectiveness for image an-
notation compared to the existing SVM-based multi-labeling methods.
Nonlinear mapping of the image representation using the kernel trick is
also shown to enhance the annotation performance.

1 Introduction

This paper addresses multi-label classification for annotating images of multiple
objects. Multi-labeling is a fundamental functionality of a multi-class classifier
for the automatic image annotation. The classifier is required to assign multiple
labels of objects to an image of those objects.

Prior Work on Multi-class Classification and Multi-Labeling A popular approach
to the image-based object recognition and annotation is to employ a discrimina-
tive model using bag-of-features image representation [1] in learning and labeling
phases. One-vs-rest SVM [2, 3] and one-vs-one SVM [4] consist of two-class SVM
classifiers, each of which learns a margin between object classes. A test image
to be annotated, however, has mixture of features of multiple objects in it. The
two-class classifiers have to be able to discriminate the individual objects by the
mixture. Multi-label ranking (MLR) [5] fixes this problem by simultaneously
learning from multi-label data so as to minimize the classification error for all
classes in total. MLR is shown to outperform the state-of-the-art multi-labeling
SVM algorithms in the bag-of-features image classification task, but its perfor-
mance for test images with unlearned combinations of labels is not guaranteed.
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The image annotation based on multi-label classification is essentially a prob-
lem of finding a combination of learned objects whose features can synthesize
the mixture of features of a test image. An important fact is that among the
learned classes a few of them are relevant to a test image. Sparse representation-
based classification (SRC) [6] takes advantage of this fact by representing a test
image as a sparse linear combination of training images. The SRC achieves ro-
bust single-labeling for face recognition. For the image annotation task, Wang
et al. [7] proposed multi-label sparse coding (MSC) in the same manner as the
SRC together with linear embedding into a discriminative space learned from the
training images and their sparse labels. Hsu et al. [8] have exploited the sparsity
of the classifier output by the compressed sensing technique [9–13] for reducing
computational expense of multi-label classification with linear regression.

Our Method In this paper, we propose a substantial method of multi-labeling
on the basis of the sparse representation and accumulation of similarities. Our
method consists of the following steps:

Sparse representation: explain concisely the test image by the training im-
ages, i.e., find sparse coefficients α̂j such that

φ(test image) ≈
∑

j α̂jφ(j-th training image)

where φ indicates a high dimensional representation of the input image, e.g.,
a histogram of visual words.

Similarity measurement: compute similarities

wj ∼ α̂j κ (j-th training image, test image)

where κ calculates an inner product.
Voting: classes indicated by the labels of the j-th training image receive the

votes of wj .

Preliminary details of the sparse representation are provided in Section 2. Differ-
ing from the existing multi-label methods exploiting sparsity, our method does
not use the labels of training images for the computation of the sparse coefficients
α̂j . While the use of the labels in the training phase would refine the classifica-
tion performance for a test image to give a learned combination of labels, it could
degrade the generalization capabilities of the sparse representation for most of
the label combinations unlearned in practice. After the sparse representation,
our method measures the similarities because we must not assemble the output
labels by directly using the coefficients α̂j as done in the MSC. We also intro-
duce the kernel trick to improve the classification performance. Our algorithms
and the kernelization are described in Section 3. We experimentally show the
ability to find unlearned label combinations as well as the outperformance of our
method in Section 4.
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2 Sparse Representation for Multi-Labeling

2.1 Multi-Class Classification and Multi-Labeling

Multi-label classification is a task of assigning a suitable number of class labels
to unlabeled test data. A training dataset S ⊂ Rd with a collection of labels
Y ⊂ {0, 1}l is available for the classification. The labels of a training data sj ∈ S
are represented as a binary vector yj = [y1, . . . , yl]> where yi ∈ {0, 1}.

The binary classification is the case of l = 1, and the case of l > 1 is known as
the multi-class classification. In the prediction of a label ŷ ∈ {0, 1}l for a given
test data x ∈ Rd, the multi-class classification under the constraint ||ŷ||0 ≤ 1
is called the single-labeling. Here, || · ||0 denotes the l0 norm, which counts the
nonzero components. The multi-class classification without the constraint is the
multi-labeling. There are possibly 2l combinations of labels.

2.2 Sparse Representation of Test Data

Let S ∈ Rd×n be a matrix of d-dimensional n column vectors of training data sj ,
and let Y ∈ {0, 1}l×n be the matrix with corresponding label vectors yj in its
columns. Supposing the linear vector space model and given an enough number
of training data, one can represent a test data x ∈ Rd as a linear combination
of the vectors of training data.

x =
n∑

j=1

αjsj = Sα (1)

Here, α ∈ Rn is the vector of n combination coefficients αj to be estimated.
The solution α to Equ. (1) exists if the test data x lies in span S, i.e., the

subspace spanned by the training data. We would like to assign labels to the
test data according to the solution to Equ. (1). If no solution exists, one should
not assign any label, i.e., ŷ = 0. This is the case where the training dataset is
insufficient for representing the test data. If a sufficient number of training data
are given, Equation (1) has non-unique solutions. We require regularization to
select a unique solution. From the viewpoint of classification, a test data should
be concisely explained by relevant training data. A sparse solution whose nonzero
components indicate a few relevant classes to the test data would be preferable.

Finding a sparse solution is formulated as a l0-minimization problem:

min ||α||0 subject to x = Sα. (2)

The l0-minimization is a NP-hard problem, which is often relaxed to a convex
problem:

min ||α||1 subject to x = Sα. (3)

One can find literature on the uniqueness of the sparse solution and on the equiv-
alence between the l0- and l1-minimization problems [12, 14, 15]. The uniqueness
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of the solution, for example, is guaranteed under the condition called the re-
stricted isometry property (RIP). The RIP condition with parameters (m, δ) for
a matrix Θ is described as

(1− δ)||β||2 ≤ ||Θβ||2 ≤ (1 + δ)||β||2 ∀β ∈
{
b
∣∣ ||b||0 ≤ m} .

A vector b is called m-sparse if ||b||0 ≤ m. It is known that the l0-minimization
problem (2) has a unique m-sparse solution if the matrix S satisfies the RIP con-
dition with (2m, δ < 1). The m-sparse solution is equivalent to the l1-minimizer
for (3) if S satisfies the RIP condition with (2m, δ <

√
2− 1) [12].

2.3 Dimensionality Reduction

One can reduce the computational cost of dealing with high-dimensional training
and test data by linear projection. The compressed sensing methodology shows
that a small number of projections of a high-dimensional vector can contain
salient information about its sparse representation enough to recover it with
regularization that promotes sparsity [9, 11, 16]. Random projection is known to
be a universal way of dimensionality reduction.

Let R be a dc × d random matrix. A training dataset S and a test data x
are compressed by random projection as xc = Rx ∈ Rdc and Sc = RS ∈ Rdc×n.
Equation (1) is rewritten as xc = Scα. It is known that the m-sparse vector
α can be reconstructed from xc with probability 1 − e−O(dc) by the sparse
regularization if dc ≥ d0 = O(m log(d/m)) [17, 18].

2.4 Multi-Label Estimation by Similarity Voting

We describe how to assign labels to a test data via sparse representation. Let
x̂ be a reconstructed test data using the training data matrix S and a sparse
solution α = α̂.

x̂ = Sα̂

We measure the similarity between the test data x and its reconstruction x̂ as

cos θ =
x>x̂

||x||2||x̂||2
=

x>Sα̂
||x||2||x̂||2

=
n∑

j=1

wj .

Here,

wj =
α̂js
>
j x

||x||2||x̂||2
(4)

is the similarity between the test data and the j-th component of the recon-
structed test data on the basis of training data. Note that w = [w1, . . . , wn]>

is as sparse as α̂. Regarding wj as the partial membership value for a combina-
tion of classes labeled as yj , we estimate the multi-label ŷ for the test data by
accumulating the labels as

ŷ =
n∑

j=1

wjyj = Yw.
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This accumulation is interpreted as label voting with the weight wj . One can
determine the labels for the test data by thresholding or ranking the magnitudes
of the vector components of ŷ.

3 Algorithms

3.1 Multi-Label Classification

Our multi-labeling algorithm is summarized in Algorithm 1.

Algorithm 1 Multi-label classification (main algorithm in linear case)
Input: x ∈ Rd: test data, S ∈ Rd×n: matrix of training data, Y ∈ {0, 1}l×n: matrix

of labels;
1 normalize the columns of S to have unit l2 norm;
2 perform dimensionality reduction of S and x if the dimensionality d is intractably

high;
3 decompose x with respect to S under sparse regularization to obtain the sparse

solution ˆ̧ ;
4 compute the similarities w = [w1, . . . , wn]>;
Output: ŷ ← Yw: label estimates.

The classification does not involve any expensive computation for training.
We do not have to solve a quadratic programming problem like support vector
machines or an eigenvalue problem for subspace methods. Algorithm 1 can start
testing soon after loading the training data. It is therefore easy to append and
remove the data before testing if necessary. We would also remark that Algorithm
1 can answer unlearned combinations of labels when the relevant training data
can sparsely represent the test data.

3.2 Sparse Decomposition

There are basically two types of algorithms for solving the minimization problem
(2). One is called the basis pursuit (BP) [19], which relaxes the l0 to l1 mini-
mization problem. Linear programming can solve the l1 minimization problem
in (3). One can find some algorithms [20–23] for the related convex problems

min ||x− Sα||2 subject to ||x||1 ≤ τ (5)
min ||α||1 subject to ||x− Sα||2 ≤ ε (6)

to obtain robust solution against noise.
The other type is the greedy algorithms [24–27], which greedily seek for

the nonzero components. Matching pursuit (MP) [28] selects a column vector
sj in S which is most coherent to the residual of x, and removes from the
residual the component in the direction of sj , iteratively. Orthogonal matching
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pursuit (OMP) [24] instead removes the component in the subspace spanned
by previously selected column vectors. Regularized orthogonal matching pursuit
(ROMP) [26] is guaranteed to recover any m-sparse solution for a matrix sat-
isfying the RIP condition with (2m, 0.03/

√
logm). The greedy algorithms are

very simple to implement and faster than BP. In this paper, we employ ROMP.

3.3 Kernelization

The above formulation assumes the linear relationship as in Equ. (1). Although
Algorithm 1 can benefit from the sparsity of the linear representation, we would
like to translate our framework into a nonlinear version hoping to improve the
classification performance. We map the data in the nonlinear input space Rd to
an Affine space using a nonlinear function φ, assuming the linear relationship
between training data and test data as

φ(x) =
n∑

j=1

αjφ(sj). (7)

We apply the kernel trick using a kernel function κ(x,y) = φ(x)>φ(y) and
kernel matrix K(X1,X2) ∈ Rn1×n2 whose ij-th entry is the inner product of
the i-th and j-th column vectors of the matrices X1 ∈ Rd×n1 and X2 ∈ Rd×n2 ,
respectively.

Algorithm 2 Kernelized ROMP
Input: x ∈ Rd: test data, S ∈ Rd×n: matrix of training data, m0: sparsity level, ε0:

tolerance;
1 initialize I ← ∅ and ˆ̧ ← 0;
2 repeat
3 u← K(S,x)−K(S,SI) ˆ̧I ;
4 ‚ ← [|u1|, . . . , |un|]>;
5 let J be a set of indices of the m0 biggest components of ‚, or all of its nonzero

components, whichever set is smaller;
6 sort J in descending order of the components ‚;
7 among all subsets J0 ⊂ J such that γi ≤ 2γj for all i < j ∈ J0, choose J0 with

the maximal energy ||γJ0 ||22 =
X

k∈J0

γ2
k;

8 I ← I ∪ J0;
9 ˆ̧I ← arg min

¸I
||r(¸I)||22;

10 until ||r( ˆ̧I)||2/||x||2 ≤ ε0 or card I ≥ 2m0;
Output: ˆ̧ : sparse solution.

We present a kernelized version of ROMP for nonlinear structure of the
input space. The kernelized ROMP is described as Algorithm 2. The vector αI
indicates a vector with the components of α specified by I. At Step 9, one can
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easily obtain α̂I by solving least squares problem without explicitly computing
the residual vector r, since the squared norm is a quadratic form

||r(αI)||22 = κ(x,x)− 2α>IK(SI ,x) +α>IK(SI ,SI)αI . (8)

As the ROMP works in linear time with respect to n and d [26], our kernelized
ROMP also works in linear time.

After running the kernelized ROMP, the similarities are measured as

wj =
α̂jκ(sj ,x)√

κ(x,x)α̂>IK(SI ,SI)α̂I
. (9)

Equation (9) coincides with Equ. (4) if one utilizes the linear kernel κ(x,x) =
x>x and K(X1,X2) = X>1 X2. Algorithm 2 with the linear kernel is also equiv-
alent to the original ROMP.

4 Experiment

Data We apply our multi-label method to image annotation. We used PASCAL
VOC 2009 dataset [29]. The VOC 2009 dataset has 3,473 training images and
3,581 validation images of twenty object classes. Each image is annotated by one
or more object class labels. We chose the 2,236 training images with single labels
as the training data in order to assess the ability to find suitable combinations
of labels without using multi-label training data. We randomly selected half of
the validation images for tuning the classifier parameters and the other half for
testing. A standard bag-of-features model [1] was used to represent the images in
this experiment. We extracted SIFT descriptors [30] from every training image
in grayscale, and clustered these features into 1,000 clusters by the k-means
clustering. Each image was represented as a tf-idf vector.

Evaluation and Procedure We characterize the performance of multi-label clas-
sification as receiver operating characteristic (ROC) curve and the area under
the curve (AUC). Our ROC evaluates the ranking performance: how high the
correct labels are ranked. We calculate the true positive ratio (TPR) and false
positive ratio (FPR) by changing the number of top labels indicated by the label
estimates ŷ. The same evaluation metric is used for MLR [5]. We did not invoke
the dimensionality reduction in Algorithm 1. The input parameters of Algorithm
2 were tuned and set as m0 = 35 and ε0 = 10−2.

Results Table 1 shows the AUC of rank ROC. Our method provides a com-
parative AUC to MLR with the linear kernel. The AUC is improved by the
kernelization in both methods. Our method with a Gaussian kernel achieves
slightly better performance than MLR. MLR has been shown to outperform the
existing multi-label SVMs [5]. We deduce from these results that our method is
highly effective for the image annotation tasks.
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Figure 1 shows some examples of multiply annotated images and annotations
by our method with the Gaussian kernel. Note that we used only single-label
images for training. We could observe that the relevant object labels are ranked
high. Algorithm 1 with MATLAB implementation took about 0.1 (linear) and
0.5 (kernelized) seconds per test image using a CPU single core.

Table 1. AUC of rank ROC for PASCAL VOC 2009.

Kernel Proposed MLR

Linear 74.0% 74.1%
Nonlinear 78.1% 76.3%

aeroplane, car bird, boat dog, person, sofa bus, car, person
chair, person,

sofa, tvmonitor

aeroplane, car bird, boat person, cat, sofa
bus, car,

train, person

person,

tvmonitor, chair

Fig. 1. Multi-labeling results. First row: test images, second row: ground-truth labels,
third row: labels by our method. The true positive labels are in bold.

5 Concluding Remarks

Assigning multiple labels of objects to an unlabeled test image is a problem
of finding a combination of learned objects which can synthesize the mixture
of features of objects in the test image. We casted this problem as a sparse
decomposition of image representation. Our method decomposes the bag-of-
features representation of a test image into those of labeled training images
as concisely as possible via sparse regularization. This enables us to detect the
relevant training images even if all the combinations of objects are not learned
from the training images. As suggested in Section 3.1, our method does not
have any intensive computation in training. Of course the sparse decomposition
for testing requires considerable time, but we have many advantages: easy up-
date of training data, capability to answer unlearned label combinations, and
robustness against noise or clutter. We should investigate the performance of
our method on large-scale dataset. The performance would be further improved
by incorporating co-occurrence statistics of objects and features.
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