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Abstract  Salinity is a significant factor to affect resting egg hatching in the euryhaline rotifers. In 23 

order to clarify the effects of salinity on resting egg hatchability, this study investigated gene 24 

expressions of resting eggs subjected two different incubation salinities (at 17 and 33 ppt) in the rotifer 25 

Brachionus manjavacas. The resting eggs formed at 17 ppt showed higher hatching rate at 17 ppt of 26 

incubation salinity, compared to those at 33 ppt. Related to these circumstances, the resting eggs 27 

incubated at 17 ppt expressed genes which have putative functions implying cellular differentiation and 28 

embryonic development: late embryogenesis abundant protein (LEAs-1), α-amylase, and deaminase. 29 

The resting eggs incubated at 33 ppt highly expressed the genes related to the environmental stresses: 30 

AP2 transcription factors (AP2TF), and ATP decomposition: ABC transporter permease (ABC-TP), 31 

NAD+ synthase, Copper-translocating P-type ATPase (CTP-ATPase). It is expected the resting eggs 32 

incubated at 33 ppt may need a greater energy (ATP) to endure saline stress during incubation. The 33 

obtained results indicated that the resting eggs regulate their hatching with the mechanisms of energy 34 

allocation between embryo development and self-defense against environmental conditions like salinity 35 

stresses.   36 

 37 
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Introduction 45 

 46 

Rotifer resting eggs are the final product of sexual reproduction, and can endure harsh environmental 47 

conditions during diapause period.  After a certain diapause period, the eggs hatch into amictic 48 

females. It is generally known that exogenous (e.g., temperature, salinity, food) and endogenous factors 49 

(e.g., hereditary, generation, aging) (Snell 1987; Hagiwara and Hino 1990; Gilbert 2003; Kim and 50 

Hagiwara 2011a) regulate the quality and quantity of resting eggs (John 2016). Among the several 51 

exogenous factors, salinity can modulate the mixis induction. Lubzens et al. (1980) found that mixis 52 

did not occur in 100% seawater (salinity ca. 38‰ at 30 °C) in the rotifer Brachionus plicatilis. 53 

However, when it was transferred to 50% or 25% seawater, mixis occurred with a high rate. Moreover, 54 

salinity also affects the resting egg hatching. The hatchability of resting eggs can be modified with 55 

saline conditions during formation and hatching. Resting eggs showed higher hatchability when the 56 

eggs were incubated at the same salinity as during formation (Kim and Hagiwara 2011b), and the 57 

resting eggs formed at lower salinity showed low hatchability with incubation at higher salinity 58 

(Pourriot and Snell 1983).  59 

Rotifers have sensitive molecular systems that trigger the expression of cellular defense and 60 

homeostasis genes in response to environmental stressors (e.g., temperature, salinity, UV radiation) 61 

(Kim et al. 2011, 2013; Kim et al. 2014a, b; Rhee et al. 2011; Wheelock et al. 1999). The unsuitable 62 

salinity conditions affect the reproduction and distribution of hydrosphere organisms like rotifers 63 

(Chinnery and Williams 2004), and stressful conditions increase energy demand required for 64 

osmoregulation (Devreker et al. 2009). Hence, this process may decrease energy allocated to other 65 

biological processes in a limited energy pool (Michalec et al. 2010). On the other hand, the molecular 66 
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correlation between salinity-induced stress and defense/tolerance mechanism in rotifer resting eggs 67 

have not been elucidated so far.  68 

The resting eggs under different salinity conditions have possibility to show different gene 69 

expression related to energy allocation between osmoregulation and embryo development of rotifer 70 

resting eggs in the euryhaline rotifer B. manjavacas. This study firstly observed the resting egg 71 

hatchability under different incubation salinity conditions (17 and 33 ppt). Secondly, the gene 72 

expression was analyzed in relation to the observed phenomena.  73 

 74 

 75 

Materials and methods  76 

 77 

Resting egg production and hatching  78 

 79 

This study employed the L-type rotifer Brachionus manjavacas (Australian strain) which maintained in 80 

Aquaculture biology laboratory (Nagasaki University, Japan) over a decade at 22 ppt (part per thousand) 81 

under room temperature. The experimental scheme is described in Figure 1. For the mass production of 82 

resting eggs, the rotifers were cultured in 30 l of 17 ppt artificial seawater with gentle aeration at 25 °C 83 

with daily feeding of the commercial Chlorella vulgaris (Super Fresh Chlorella V-12, Chlorella 84 

Industry Co., LTD, Fukuoka, Japan) for 12 days. Resting eggs were harvested on the last day of culture 85 

and then preserved at 4 °C in total darkness for two weeks. After diapause period, the hatching rate of 86 

the preserved resting eggs was confirmed with the following methods. Twenty resting eggs were 87 

randomly selected and transferred into a well of 6-well microplate, and incubated at 25 °C under two 88 
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different photoperiods i.e., 4 and 24 h using 3000-lux fluorescent light. The incubation salinity was 89 

adjusted to 17 ppt for control and to 33 ppt for experimental groups. To compare their hatchability, a 90 

mean of five replicates (n = 5) was calculated under each salinity and photoperiod.  91 

 92 

RNA extraction and cDNA synthesis  93 

 94 

The preserved resting eggs (about 20,000 eggs) were transferred into 500 ml glass beakers containing 95 

200 ml of either 17 or 33 ppt of sterilized seawater. These eggs were incubated at 25 °C under two 96 

different photoperiods (4 and 24 h). The total RNA was extracted with ISOGEN (Nippon gene, Tokyo, 97 

Japan) according to the manufacturer’s protocol. Subsequently, genomic DNA was removed using 98 

TURBO DNA-free™ (Ambion®, Carlsbad, CA, USA) and then cDNA was synthesized using 99 

Advantage® RT-for PCR kit (Clontech, Tokyo, Japan). The composed cDNA was preserved at -20 °C 100 

until use. 101 

 102 

Differential display reverse transcription-PCR (DDRT-PCR) 103 

 104 

DDRT-PCR was performed using the Delta™ Differential Display Kit (Clontech, Tokyo, Japan) 105 

according to the supplied protocol. The PCR cycle included one cycle at 94 °C for 5 min, 40 °C for 5 106 

min, 68 °C for 5 min; two cycles at 94 °C for 30 s, 40 °C for 30 s, and 68 °C for 5 min; 30 cycles at 107 

94 °C for 20 s, 60 °C for 30 s, 68 °C for 2 min; and one cycle at 68 °C for 7 min. The 30 cycles of 108 

synthesis were carried out with an annealing temperature of 60 °C. With the PCR products, 109 

electrophoresis was performed using the high resolution agarose gel (1.2%, Metaphor® Agarose, 110 
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Cambrex, Rockland, USA) followed by staining with SYBR Green (Molecular Probes Inc., Invitrogen, 111 

Carlsbad, CA, USA) for 30 min. Using the photographic data, the gene expressions with salinity 112 

treatments were compared, and differentially expressed gene fragments were excised from the gels and 113 

preserved at -20 °C. The selected gene fragments were purified and re-amplified with the same 114 

methods as the prior amplification. The statement of PCR products was confirmed with electrophoresis 115 

using 1.8% of agarose gel (Agarose-LE, Classic type, nacalai tesque, Kyoto, Japan) and staining with 116 

ethidium bromide (0.5 μg/ml). The target fragments were excised from the gels and purified again 117 

using Wizard® SV Gel and the PCR Clean-Up System (Promega, Tokyo, Japan) according to the 118 

technical manual. The extracts of purified cDNA fragments were kept at -20 °C. 119 

 120 

TA-cloning and sequencing 121 

 122 

Purified cDNA fragments were cloned using pGEM®-T and pGEM®-T Easy Vector Systems (Promega, 123 

Medison, WI, USA). Blue/white selection were used for screening the recombinant. Eight white 124 

colonies were selected per a cDNA fragment. Colony direct PCR was performed as follow conditions: 125 

1 μl of template, 0.5 ul of M13 forward and reverse primer (10 pmol/μl), 0.5 ul of dNTP, 0.2 ul of 126 

Ex-Taq (Takara Bio, Japan), 2 ul of Ex-Taq buffer (10×), in a total volume of 20 μl. PCR cycling: 127 

95 °C for 5 min; 35 cycles of 95 °C for 10 s, 58 °C for 10 s, 72 °C for 30 s; and 72 °C for 7 min. The 128 

sequencing of target fragments was handled by biology company (MAP BIOTHCH, Shanghai). 129 

 130 

Gene annotation  131 

 132 
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The sequences were compared with other sequences in National Center for Biotechnology Information 133 

(NCBI) Gene Bank database using BLASTX at NCBI server (http://blast.st-va.Ncbi. nlm.nih.gov / 134 

Blast.cgi?PROGRAM=blastx&PAGE_TYPE = BlastSearch & LINK_ LOC = blastblas) (Table 1). 135 

Using the highest score (>50) and E value (<1.0×e-18), it was inferred that the relevant gene function 136 

associated with experiment conditions. 137 

 138 

Real-Time PCR 139 

 140 

The real-time PCR was used to validate the mRNA levels of certain genes from DD-PCR. Reaction 141 

conditions as follows: 1 μl of cDNA template, 0.5 μl of forward and reverse primer (10 pmol/μl) for 142 

each gene, 10 μl of SYBR Premix Ex Taq (2×) (Takara Bio, Japan), 0.4 μl of Rox Reference Dye II 143 

(50×), in a total volume of 20 μl. Thermal cycling: 94 °C for 4 min; 39 cycles of 94 °C for 30 s, 55 °C 144 

for 30 s, 72 °C for 30 s; and 72 °C for 10 min. With the CFX96 real-time PCR System (Bio-Rad, USA).  145 

The 18S rRNA gene which is a stable housekeeping gene (Kim et al. 2015) was used for a reference 146 

gene to normalize the transcript level. The 2-ΔΔCt method was applied to calculate each transcriptional 147 

level (Livak and Schmittgen 2001).  148 

 149 

Statistical analysis 150 

 151 

The effects of salinity and photoperiod on resting egg hatching rate were analyzed by two-way ANOVA 152 

followed by Tukey HSD test. Significant differences in the gene expression levels with different 153 

salinities and photoperiods were analyzed with one-way ANOVA followed by Tukey HSD. These 154 
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statistical analyses were conducted with SPSS version 17.0 (SPSS Inc, IL, USA). 155 

 156 

 157 

Results  158 

 159 

Hatching rate of resting eggs under the different salinities  160 

 161 

The hatching rates of resting eggs were affected by salinity (two-way ANOVA, P < 0.001) and 162 

photoperiod (P < 0.001). With the 4 h illumination, the resting eggs incubated at 17 ppt (control) 163 

showed higher hatching rate (44.0±14.7%) than those at 33 ppt (7.0±5.7%). The same pattern was 164 

observed with 24 h illumination: the higher hatching rate at 17 ppt (60.0±6.1%) compared to at 33 ppt 165 

(34.0±5.5%) (Fig. 2). 166 

 167 

Transcriptional expression analysis of DDRT-PCR 168 

 169 

We detected 42 differentially expressed gene fragments associated with the incubation conditions, 170 

although, the BLASTX results only include 15 putative functional genes (Table1). The resting eggs at 171 

17 ppt under 4-h photoperiod expressed late embryogenesis abundant protein 1 (LEAs-1), 172 

alpha-amylase (α-amylase) and deaminase. The transcripts for regulatory proteins (Histidine kinase, 173 

HK/Histidine kinase regulator, HHKR) and cellular component proteins (TSP1 and CBM14 domain 174 

containing protein, TCcP; SRY-related HMG box C protein, SRY-HCP) were observed in the resting 175 

eggs incubated at 17 ppt with 24-h continuous light. These proteins have functions such as signal 176 
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transduction (Wolanin et al. 2002), cellular differentiation and metabolic processes including anabolism 177 

and catabolism for the embryonic development. The resting eggs incubated at 33 ppt showed gene 178 

expressions related to energy metabolism regardless of photoperiod; i.e., ABC transporter permease 179 

(ABC-TP), NAD+ synthase, Copper-translocating P-type ATPase (CTP-ATPase), 3-oxoacid 180 

CoA-transferase subunit B (3-OCoAT) and NADH dehydrogenase subunit 5 (NADHDnase), 181 

Transcription factor with AP2 domains (AP2TF).  182 

 183 

Transcriptional validation by real-time PCR 184 

 185 

Using the real-time PCR, we tested expression dynamics of 15 target genes. These target genes showed 186 

significant differences associated with the incubation salinities and photoperiods. The resting eggs at 17 187 

ppt up-regulated genes related to embryo development and biological metabolism, such as LEAs-1, 188 

α-amylase, deaminase, HK and SRY-HCP expressed (Fig. 3a). However, the higher salinity 33 ppt 189 

induced up-regulation of ATPOE, ABC-TP, ECoAH, NAD+ synthase, CTP-ATPase, 3-OCoAT and 190 

AP2TF which involved in the process of energy transportation and environmental stresses (Fig. 3b).  191 

 192 

 193 

Discussion 194 

 195 

Rotifers and its resting eggs have sensitive molecular systems of cellular defense and homeostasis 196 

related to environmental stressors e.g., temperature, UV radiation, salinity, toxicants (Kim et al. 2013; 197 

Kim et al. 2014a, b; Rhee et al. 2011; Wheelock et al. 1999; Clark et al. 2012). On the other hand, the 198 
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molecular defense to environmental stress has not been clarified so far. Recently, euryhaline rotifer 199 

Brachionus plicatilis is justified as an osmoregulator and their stress level increased at high salinities 200 

with the activity of Na+/K+ ATPase (Lowe et al. 2005). In this study, we observed different hatching 201 

rate of resting eggs related to incubation salinity (Fig. 2). Even under the same photoperiod, the 202 

employed resting eggs showed the different hatching rate related to the incubation salinity. The higher 203 

incubation salinity (33 ppt) induced the lower hatching rates. This circumstance proposed that the 204 

resting eggs may have the same molecular system as the rotifer individuals own. 205 

The resting eggs incubated at 17 ppt for 4 h lighting showed the active embryonic development 206 

which can be explained by the following gene expressions (Table 1, Fig 3a). Highly-expressed genes at 207 

17 ppt LEAs-1, α-amylase and deaminase are discovered in the late stages of plant seed embryonic 208 

development (Galau et al. 1986), and have a function like desiccation tolerance, nutritional synthesis 209 

and decomposition (Berjak et al. 2007). According to the former research, the LEAs are the only 210 

desiccation tolerant proteins identified in B. plicatilis (Kim et al. 2011). LEAs are a member of highly 211 

hydrophilic proteins which act as a “molecular shield” playing a role in anti-aggregation and protein 212 

stabilization (Tunnacliffe et al. 2010). The α-amylase is a protein enzyme that hydrolyses 213 

polysaccharides, such as starch and glycogen, yielding glucose and maltose (Stedman’s 2000). These 214 

sugars could be used as a primary energy source for the embryonic development, prior to lipid 215 

utilization from the lipid bodies. Deaminase is an enzyme encoded by the CDA gene in humans (Kuhn 216 

et al. 1993; Demontis et al. 1999) and involved in the regulation of 5-FU metabolism, which is related 217 

to the DNA repair. In the initial period of incubation with light, resting eggs expressed environmental 218 

tolerance genes to prepare sudden changes of environment. The previous study (Kim et al. 2015) 219 

showed that during 4 h of illumination, a lot of genes associated with light stimulation and embryonic 220 
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development were expressed, and the similar expression pattern was observed at 17 ppt of incubation 221 

salinity in this study. On the other hand, the resting eggs at 33 ppt showed significantly low expression 222 

level of those genes (Fig. 3a). It is possible that the high salinity repressed expression of the indicated 223 

genes, resulting in delayed development. On the other hand, the salinity may cause the delayed 224 

development, and the changed gene expression patterns may be the result of the delay. These 225 

circumstances exhibit possibility that higher salinity also plays as an inhibitor of resting egg hatching.  226 

The delayed embryonic development related to environmental stresses were observed with the 227 

resting eggs incubated at 33 ppt under 24 h of illumination (Table 1, Fig. 3b). Enoyl-CoA hydratase 228 

(ECoAH) and 3-oxoacid CoA-transferase subunit B (3-OCoAT) are important for fatty acid 229 

metabolism (Bahnson et al. 2002; Gautam and Liu 2003). Acyl-CoA dehydrogenase (ACAD) can 230 

destroy the long fatty acid chains into acetyl CoA through catalyzes the fatty acid β-oxidation (Thorpe 231 

and Kim 1995). Fatty acid oxidation was suggested to be involved in the resting egg hatching progress 232 

(Hagiwara et al. 1995). The previous study (Kim et al. 2015) elucidated that the genes related to 233 

hatching procedure are highly expressed with 30 min photoperiod. Therefore, these phenomena also 234 

exhibit embryonic development delayed with the incubation at higher salinity (33 ppt). ABC 235 

transporter permease (ABC-TP), NAD+ synthase, and Copper-translocating P-type ATPase 236 

(CTP-ATPase) are expressed in the process of ATP decomposition (Inesi et al. 2014). The mitochondria 237 

can produce cellular energy (ATP) for cellular metabolism, signaling transduction, and growth (Henze 238 

and Martin 2003; McBride et al. 2006). Moreover, AP2 transcription factors (AP2TF) which showed 239 

significantly higher expression level at 33 ppt in the 24 h incubation are activated in response to 240 

environmental stresses such as high salinity (Abogadallah et al. 2011), heat (Sakuma et al. 2006), 241 

freezing (Yang et al. 2005), osmotic stress (Zhu et al. 2010). This suggests that resting eggs under 33 242 
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ppt need a greater amount of energy to endure salinity stress because of the function of intracellular 243 

lipid chaperone, AP2 involved in the energy metabolism (Cao et al. 2013). For the osmotic homeostasis, 244 

there are a lesser amount of available energy to be used for cellular and embryonic development which 245 

is the reason for lower hatchability of these resting eggs.  246 

These expressed genes related to incubation salinity and photoperiod elucidate that the homeostatic 247 

mechanism under saline stress. At the higher salinity, resting eggs allocate more energy for homeostasis 248 

than for embryonic development. While resting eggs are incubated at the optimal salinity for hatching, 249 

the eggs concentrate on the embryonic development. The obtained results figured out that rotifer 250 

resting eggs have an inducible defense system responding to external abiotic stress.  251 

 252 
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Table 
 

Table 1 Putative functions of differentially expressed genes related to incubation salinities (17 and 33 ppt) and photoperiods (4 and 24 h) in the resting 

eggs of euryhaline rotifer Brachionus manjavacas. The score and E-value are the results of BLASTX based on the NCBI database. 

Photoperiod Salinity Accession number 
Clone 

size (bp)
Gene product name or probable function Score E-value 

 

4 h 17 ppt 

ADE05593.1 691 Late embryogenesis abundant-like protein 1 (LEAs-1) 79.3 2e-13 

WP_055756038.1 228 Alpha-amylase (α-amylase) 119.0 1e-29 

OGA61391.1 408 Deaminase 108.0 5e-27 

24 h 

17 ppt 

WP_084601170.1 337 Hybrid sensor histidine kinase/response regulator (HHKR) 178.0 1e-49 

SDQ82225.1 604 Histidine kinase (HK) 239.0 3e-75 

CDW55082.1 543 TSP 1 and CBM 14 domain containing protein (TCcP) 56.6 4e-06 

CAY12635.1 563 SRY-related HMG box C protein (SRY-HCP) 133.0 2e-35 

33 ppt 

WP_044750164.1 276 ATP-dependent OLD family endonuclease (ATPOE)  150.0 5e-41 

WP_034331136.1 176 MULTISPECIES: ABC transporter permease (ABC-TP) 74.7 5e-15 

WP_058951874.1 265 MULTISPECIES: enoyl-CoA hydratase (ECoAH)  162.0 7e-47 

WP_055399314.1 199 NAD+ synthase  77.8 3e-15 

WP_057267502.1 772 Copper-translocating P-type ATPase (CTP-ATPase) 414.0 3e-137 

SDQ37588.1 416 3-oxoacid CoA-transferase subunit B (3-OCoAT) 240.0 8e-79 

AQM37716.1 230 NADH dehydrogenase subunit 5 (NADHDnase)  52.8 4e-06 

XP_966125.2 638 Transcription factor with AP2 domain(s) (AP2TF) 94.4 1e-18 
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Figure legends 
 
 
Fig. 1 Experimental scheme for the comparison of different gene expression related to the incubation 
salinity (ppt) and photoperiod (h). 

 

 

Fig. 2 Hatching rates of resting eggs incubated at different salinities 17 (for control) and 33 ppt for two 

photoperiods 4 and 24 h. Each column and error bar indicates mean and standard deviation, 

respectively. The alphabets denote significant differences among treatments (a > b > c, Tukey HSD, P 

< 0.05, n = 5). 

 

 

Fig. 3 mRNA levels of functional genes involved in (a) embryonic development, and (b) energy 

metabolism, which were detected from the resting eggs incubated under different photoperiods (h) and 

salinities (ppt). Each column and error bar indicates mean and standard variation of three replicates. 

The 18S rRNA gene was used as a reference gene to normalize the transcript level. The alphabets 

denote significant differences among the treatments (a > b > c, Tukey HSD, P < 0.05, n = 3).  
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Fig 3 


