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The structural anisotropy of Fe–Si–B–Nb–Cu nanocrystalline alloys annealed under tensile stress
was studied by x-ray diffraction techniques with transmission geometry. A clear difference was
observed in the peak positions of the Fe–Si crystals under two different conditions: with the
diffraction vector parallel or perpendicular to the applied stress. The strains calculated from the
anisotropy of the peak positions show a linear response to the applied stress, independent of Si
content, indicating that the observed structural anisotropy is due to a quenching of the elastic strain,
not in the directional ordering of the Fe–Si pair. The induced magnetic anisotropy energy is well
explained by the residual strains and their magnetostrictions. © 2010 American Institute of Physics.
�doi:10.1063/1.3506538�

I. INTRODUCTION

Fe-based nanocrystalline alloys prepared from amor-
phous precursors were introduced in 1988.1 Since then, they
have been widely used as excellent soft magnetic materials.2

In these alloys, Fe crystals approximately 10 nm in size are
formed by the annealing of amorphous ribbons. The origin of
the extremely low coercivity is explained by the “random
anisotropy model” in which the magnetocrystalline aniso-
tropy is averaged out due to the small grain size relative to
the exchange coupling length.3 Some applications, such as a
choke coil or transformer,4 require a large magnetic aniso-
tropy transverse to the magnetic path. For such applications,
annealing in a magnetic field5,6 and/or under tensile stress7,8

is often applied. Annealing under stress is especially attrac-
tive due to the wide range of magnetic anisotropy which can
be introduced by varying the amount of applied stress.7–10

The result is that the magnetic permeability can be tailored to
a required value which is convenient for a particular indus-
trial application. Therefore, since the 1970s, when amor-
phous and nanocrystalline ferromagnetic ribbons were pro-
duced by the rapid quench method, there have been a series
of studies concerned with stress-induced anisotropy.7–10 In
contrast, the structural origin of the magnetic anisotropy was
unclear for about three decades until the anisotropy in the
lattice plane was actually observed by transmission x-ray dif-
fraction �t-XRD� techniques.11,12 This lattice plane aniso-
tropy shows a linear response to the applied stress, which
indicates that the anisotropy originates from residual elastic
strain. However, the observed lattice spacing anisotropy may
include some contribution from the directional ordering of
Fe–Si atomic pair effects introduced by stress annealing. In
the present work we have investigated an alloy series with
varying silicon content in order to study the magnitude of

pair ordering effects via t-XRD. Differences in the aniso-
tropy of different atomic planes are also discussed in order to
understand the relationship between the bulk behavior and
the observed changes in lattice planes of the ribbons.

II. EXPERIMENTAL

Amorphous ribbons of Fe73.5SiXB22.5−XNb3Cu1 �X
=9,15.5� and Fe77.5B15.5Nb3Cu1 5 mm wide were prepared
by the rapid quench method.1,5,10 The
Fe73.5SiXB22.5−XNb3Cu1 ribbons were heated to 550 °C and
kept at that temperature for 20 min while applying different
tensile stresses, and the annealing temperature was 450 °C
for Fe77.5B15.5Nb3Cu1. The details of the annealing settings
have been described elsewhere.10 The t-XRD was measured
using a conventional XRD system with Mo-K� radiation, an
incident monochromator, and a solid state detector to cut the
fluorescence effect.12 The incident x-ray beam was aligned �
from the normal vector of the ribbons, and the diffracted
beam was also aligned � from the normal vector of the op-
posite side of the ribbons. Consequently, the diffraction vec-
tor q was fixed in the ribbon plane as schematically shown in
Fig. 1. Two measurements were conducted for each sample:
one for the measurement in which the diffraction vector is
parallel to the ribbon direction �the same direction as the
applied tensile stress�, and the other for the diffraction vector
parallel to the ribbon width direction, i.e., perpendicular to
the stress direction. All of the t-XRD measurements were
performed at room temperature after releasing the stress. The
uniaxial magnetic anisotropy energy, Ku, was calculated
from the anisotropy field, Hk, and the saturation magnetiza-
tion, Bs, was measured at room temperature after releasing
the stress �not reported in this paper�.a�Electronic mail: ohnuma.masato@nims.go.jp.
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III. RESULTS AND DISCUSSIONS

Figure 2 shows the t-XRD profiles for the
Fe77.5B15.5Nb3Cu1 and Fe73.5Si9B13.5Nb3Cu1 alloys annealed
under different tensile stresses. A clear change of the peak
position is observed even in the alloy without Si, which
indicates that the observed structural anisotropy is not related
to Fe–Si pair ordering. The measured values of the lattice
spacing of the alloys annealed under different stresses
are plotted together with previous results for
Fe73.5Si15.5B7Nb3Cu1 in Fig. 3. All of the data show a linear
relationship, and their gradients are about the same for all of
the alloys, almost independent of Si concentration. There-
fore, it is concluded that the structural anisotropies observed
in the lattice spacing of the alloys with and without Si are
predominantly due to elastic residual strain, and the contri-
bution of Fe–Si pair ordering is negligible.

When the elastic strain exists in ferromagnetic materials,
uniaxial magnetic anisotropy is induced due to the magneto-
elastic effect. In the present experimental situation, we basi-
cally deal with a simple, uniaxial stress strain experiment for

an isotropic material. Furthermore, the structural correlation
lengths for both the amorphous matrix and the randomly
oriented crystallites are smaller than the ferromagnetic ex-
change length.15 Thus, exchange interaction effectively re-
duces the magnetostriction tensor to an isotropic fourth rank
tensor15 characterized by a single magnetostriction coeffi-
cient, the saturation magnetostriction constant �s. Accord-
ingly, the theoretical description of the average magnetoelas-
tic interaction can be simplified drastically. As a result the
induced magnetic anisotropy energy constant, Ku, can be re-
lated to the strain as follows:

Ku = − 3
2Ee��s, �1�

where E, e�, and �s are the elastic modulus, elastic strain
parallel to the stress, and saturation magnetostriction, respec-
tively. By convention, Ku�0 hereby refers to a magnetic
easy perpendicular to the strain axis. As described above, the
observed anisotropy corresponds directly to residual elastic
strain. Therefore, strain parallel to the applied stress for the
sample annealed under x MPa, e�

xMPa can be defined by the
following equation:

e�
xMPa =

d�
xMPa − d�

0 MPa

d�
0 MPa , �2�

where, d�
xMPa and d�

0 MPa is the lattice spacing of the samples
annealed under x MPa and 0 MPa obtained from t-XRD peak
positions, respectively. Due to the annealing facility used, the
value of d�

10 MPa annealed under 10 MPa instead of 0 MPa is
used here-for the minimum stress value, which yields the
isotropic peak positions shown in Fig. 2.

The relationship between Ku and e� is again linear, as
shown in Fig. 4. This means that Eq. �1� is applicable, and
therefore, the induced magnetic anisotropy is magnetoelastic
in origin. Taking the small effect of Si content on the elastic

FIG. 1. �Color online� Schematic drawing of t-XRD geometry.

FIG. 2. �Color online� t-XRD profiles for �a� �620� plane of Fe3Si phase in
Fe73.5Si9B13.5Nb3Cu1 and �b� �310� plane of bcc-Fe phase in
Fe77.5B15.5Nb3Cu1 alloys annealed under different tensile stress. Circles and
curves indicate t-XRD profiles with diffraction vector parallel and perpen-
dicular to the applied stress, respectively. The applied stress is �a� 10, 102,
212, 332, and 469 MPa, �b� 10, 102, 207, 313, and 433 MPa, from bottom
to top.

FIG. 3. �Color online� Lattice spacing of Fe73.5SiXB22.5−XNb3Cu1 �X
=9,15.5� and Fe77.5B15.5Nb3Cu1 alloys annealed under different stresses.
Circles: lattice spacing, d, parallel to the applied stress. Triangles: d perpen-
dicular to the applied stress.
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modulus into account, the difference of the gradient is
mainly attributable to the �s, which is the largest for the
Fe73.5Si15.5B7Nb3Cu1 alloy.

To evaluate the value of �s, an evaluation of the Young’s
modulus is necessary. The simplest model of stress-strain
distribution in the polycrystalline system can be either uni-
form strain or uniform stress distributions. In the former
model, each grain shows same elongation, while the each
grain elongate under the uniform stress. Usually most of the
polycrystalline system is in between two models. To clarify
our case, we measure different lattice strains parallel to ten-
sile stress. Figure 5 shows the t-XRD results for four differ-
ent indexes of the �440�, �620�, �444�, and �642� planes of the
Fe3Si phase in an Fe73.5Si15.5B7Nb3Cu1 alloy annealed under
10, 213, and 461 MPa. The observed anisotropy of the planes
shows a large difference depending on the index of the
planes, even in samples annealed under the same stress. The
diffraction peak for �440�, �620�, and �642� shows clear an-
isotropy, while the peak for �444� shows little anisotropy
under all applied stresses. Using Eq. �2�, the strain, e�, for
each index plane is evaluated and plotted in Fig. 6. The re-
sults show the different strains depending on the index, indi-
cating that the studied alloy is far from uniform strain con-
dition. Table I shows the elastic modulus for each direction
from the gradient assuming an elastic response to the applied
stress. Obtained values are about 100, 400, and 500 GPa in

the �310�, �110�, and �321� directions, respectively. The small
change of the �444� planes suggests that the elastic modulus
for the �111� direction is even larger than in the �321� direc-
tion. The difference in the elastic modulus corresponds to the
difference of elastic modulus for single crystals. For the cu-
bic system,13 the specific modulus for single crystalline hkl
plane, Ehkl, can be described as

1/Ehkl = S11 − 2�S11 − S12 − 1/2S44�Ahkl, �3�

where Sij in the single crystal compliance tensor in collapsed
matrix notation and Ahkl is

Ahkl = �h2k2 + h2l2 + k2l2�/�h2 + k2 + l2�2. �4�

Using Eqs. �3� and �4�, and the published dependence of
S11, S12, S44 on Si concentration,14 Ehkl for Fe-20at. %Si
single crystal can be calculated and listed in Table I. As show
in Table I, the observed modulus relates to the elastic nature
in each direction, qualitatively, i.e., �310� direction is softer
direction, �110� and �321� are similar values within the error,
and �111� is the hardest directions among them. These facts
suggest that the residual strain is formed under a uniform
stress condition in which all grains are under the same stress.
Therefore, depending on the crystalline direction of each
nanosingle crystal, the elastic response is different parallel to
the tensile stress. This is reasonable for the case where the
residual amorphous phase with an isotropic nature already in
the plastic region at high temperature is a medium for uni-
form stress distribution. There are still some differences be-
tween observed and calculated elastic modulus. This is par-
tially attributed to the fact that the amorphous matrix exceeds
the elastic limit due to softening, which is characteristic of

FIG. 4. �Color online� Anisotropy energy Ku vs elongation determined from
�620� or �310� plane for Fe73.5SiXB22.5−XNb3Cu1 �X=9,15.5� and
Fe77.5B15.5Nb3Cu1 alloys, parallel to applied stress, e�. Circles: x=15.5, tri-
angles: x=9, squares: Fe77.5B15.5Nb3Cu1 alloys.

FIG. 5. �Color online� XRD profiles of four different index planes ��440�,
�620� �444� and �642�� of Fe3Si phase in Fe73.5Si15.5B7Nb3Cu1 alloy an-
nealed under 10, 213, and 461 MPa, from bottom to top. Circles and curves
indicate t-XRD profiles with diffraction vector parallel and perpendicular to
the applied stress, respectively.

FIG. 6. �Color online� Strains, e�, for different index planes measured par-
allel to applied stress plotted as a function of applied stress during anneal-
ing. circles: �620�, squares: �440�, triangles: �642�, diamonds: �444� planes.

TABLE I. Observed and calculated elastic modulus, Ehkl
obs ,Ehkl

calc and Ahkl for
Fe-20at. %Si bcc crystals.

Index of planes
Ehkl

obs

�Gpa�
Ehkl

calc

�Gpa� Ahkl

100 ¯ 103 0
111 ¯ 313 0.333
220 403+ /−50 208 0.25
310 99+ /−20 126 0.09
321 535+ /−60 208 0.25

093927-3 Ohnuma et al. J. Appl. Phys. 108, 093927 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



non-crystalline materials. Therefore, the effective cross sec-
tion that behaves elastically is smaller than that of ribbons. In
addition, observed elastic moduli, Ehkl

obs of Fe–Si crystals cor-
respond to those of the annealing temperature where the
stress is loaded. They can be different from Ehkl

calc which are
calculated from the Sij values obtained at room temperature.
In contrast, because Ku is measured at room temperature, the
elastic modulus at room temperature should be used for the
analysis of the magnetoelastic effect. Therefore, calculated
E310

cal is used as the best approximation for discussing the
relationship between Ku and e� determined from �620�/�310�
planes in the following part.

The strains obtained from the XRD profiles are purely
from bcc crystals. In contrast, the anisotropic energy, Ku,
obtained from magnetic measurements corresponds to one
from both bcc and amorphous phases. Thus, the effect of
volume fraction on Ku must be taken into account following
the method proposed by Herzer.8,15 In this model, the satu-
ration magnetostriction of the ribbon, �s

ribbon, is given by the
simple sum of the magnetostriction of the Fe-Si nanocrystals,
�s

Fe–Si, and that of the remaining amorphous material, �s
AM,

weighted by their volume fractions:8

�s
ribbon = vFe–Si�s

Fe–Si + �1-vFe–Si��s
AM. �5�

Here, vFe–Si is the volume fraction of the Fe–Si nanocrystals,
which can be evaluated from the valance of the chemical
composition under the assumption that perfect partitioning of
Si, B, Nb, and Cu to the constituent phases occurs as fol-
lows:

Fe – Si – B – Nb – Cu → vFe–SiFe1−ySiy + �0.99-vFe–Si�

��Fe1−aNba�nB + 0.01Cu. �6�

Here, y is the Si content in the Fe–Si nanocrystals, and a is
the Nb content in the remaining B-rich amorphous phase.
The value of 2.2 is adopted from Ref. 15 for n. Conse-
quently, the volume fraction and the Si content in the Fe–Si
phase are evaluated and listed in Table. II. In order to under-
stand what happens on average along the applied stress axis,
the contribution of the Fe–Si phase to the magnetic aniso-
tropy, Ku

Fe–Si can be correlated with the residual stress of
Fe-Si phase, ��

Fe–Si parallel to the applied stress direction. For
evaluating average ��

Fe–Si, e� determined from �620�/�310�
peak and the elastic modulus, E310 is used under the assump-
tion of uniform stress condition, i.e., ��

Fe–Si=e�E310. There-
fore, Ku

Fe–Si can now be rewritten using Eqs. �1� and �3� as
follows �cf �8��:

Ku
Fe–Si = − 3

2vFe–SiE310e��s
Fe–Si. �7�

Consequently, the saturation magnetostriction, �s
Fe–Si, can be

calculated from the gradient of the lines shown in Fig. 4
using vFe–Si and E310 calculated from Eqs. �3� and �4� with
the elastic constrains of bcc Fe–Si for corresponding Si con-
tent. The �s

Fe–Si values obtained are �0.6 ppm, �3.3 ppm,
and �7.7 ppm, respectively, and listed in Table II together
with each E310. Those values are plotted together with the
results for the Fe–Si phase in Fe–Si–B–Nb–Cu alloys8 and
for conventional Fe–Si alloys16 in Fig. 7. Although simple
models are used for evaluating the Si content and the volume
fraction of Fe–Si crystals, the results show excellent agree-
ment with the previous data, again indicating that the in-
duced magnetic anisotropy is a magnetoelastic effect.

IV. SUMMARY

The anisotropy of the lattice spacing in Fe–Si nanocrys-
tals of Fe–Si–B–Nb–Cu alloys annealed under different
stresses was studied, resulting in the following:

�1� All alloys show structural anisotropy when annealed un-
der a certain stress.

�2� Independent of Si content, a linear response between
applied stress and strain was determined from the struc-
tural anisotropy.

�3� The elastic constant determined from the gradient of the
strain-applied stress plot shows a strong dependence on
the lattice plane. The origin of the difference can be
understood from the anisotropic elastic nature of each
single crystal. It also indicates that the nanocrystals in
the alloys are under uniform stress conditions during
annealing.

�4� The dependence of the magnetic anisotropy on compo-
sition is explained by the corresponding variation of the
local magnetostriction, �s

Fe–Si of the crystallites. The
�s

Fe–Si determined from structural anisotropy agrees well
with bulk values in conventional Fe–Si and nanocrystal-
line alloys.

TABLE II. Volume fraction vFe–Si and Si content in Fe–Si crystals evaluated
from mass balance of Eq. �5� Corresponding Elastic modulus for �310�
direction calculated from Eqs. �3� and �4� and obtained �s are also listed.

Alloy comp. vFe–Si

Si content
in Fe–Si
�at. %�

E310

�Gpa�
�s

�ppm�

Fe77.5B15.5Nb3Cu1 0.49 0 153 �0.6
Fe73.5Si9B13.5Nb3Cu1 0.56 16 126 �3.3
Fe73.5Si15.5B7Nb3Cu1 0.77 20 126 �7.7

FIG. 7. �Color online� Dependence of �s on Si content in Fe–Si crystals.
Solid circles: �s determined in this study. Other markers: �s adopted from
Ref. 8 in different Si and B content of Fe–Si–B–Nb–Cu nanocrystalline
alloys �cross: 18.5; triangle: 20.5; square: 22.5; diamond: 23.5 at % of the
sum of Si and B content in the alloys�. Dotted lines: polycrystalline Fe–Si
alloys �Ref. 16�.
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