1 **RESEARCH LETTERS**

2	
3	Distribution of dipeptidyl peptidase (DPP) 4, DPP5, DPP7, and DPP11 in human oral
4	microbiota – potent biomarkers indicating presence of periodontopathic bacteria
5	
6	
7	
8	Yuko Ohara-Nemoto ^{1,*} , Yu Shimoyama ² , Manami Nakasato ^{2,3} , Haruka Nishimata ⁴ , Taichi
9	Ishikawa ² , Minoru Sasaki ² , Shigenobu Kimura ⁵ , and Takayuki K. Nemoto ¹
10	
11	
12	
13	¹ Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki
14	University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
15	² Division of Molecular Microbiology, Iwate Medical University Graduate School of Dentistry,
16	Iwate 028-3694, Iwate, Japan
17	³ Division of Periodontology, Iwate Medical University Graduate School of Dentistry, Iwate
18	020-0103, Japan
19	⁴ Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki
20	University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
21	⁵ Department of Oral Hygiene, Kansai Women's College, Kashiwara 582-0026, Osaka, Japan
22	
23	
24	
25	* Corresponding author: Department of Oral Molecular Biology, Course of Medical and
26	Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki
27	852-8588, Japan.
28	Tel: +81-95-819-7643; Fax: +81-819-7642; E-mail: ynemoto@nagasaki-u.ac.jp

1	One sentence summary: Measurement of dipeptidyl peptidase activities in subgingival
2	dental plaque is effective for assessment of the presence of periodontopathic bacteria and
3	disease activity.
4	
5	Keywords: dental plaque; dipeptidyl peptidase; periodontopathic bacteria; Porphyromonas
6	gingivalis; saliva
7	
8	Topics: anaerobe, biomarker, database search, dipeptide production, oral microbiota, ortholog
9	distribution
10	
11	Issue Section: Pathogenicity and Virulence/Host Response

1 ABSTRACT

 $\mathbf{2}$

3 Dipeptidyl peptidase (DPP) 4, DPP5, DPP7, and DPP11, expressed in the periplasmic space, 4 are crucial for energy production for Porphyromonas gingivalis, an asaccharolytic bacterium that causes periodontal disease. Bacterial DPP4 seems to be involved in regulation of blood $\mathbf{5}$ 6 glucose level via degradation of incretins. The present study aimed to identify four *dpp* 7 orthologs in oral microbiota by database searches, and their enzymatic activities in 8 periodontopathic and cariogenic bacteria, as well as oral specimens were determined. Search 9 in the databases suggested that 43 species of 772 taxa possess *dpp4* and other *dpp* genes. Most 10species are in the genera Bacteroides, Capnocytophaga, Porphyromonas, Prevotella, and 11*Tannerella*, indicating a limited distribution of *dpp* orthologs in anaerobic periodontopathic 12rods. In accordance with those results, activities of all four DPPs were demonstrated in P. 13gingivalis, Porphyromonas endodontalis, and Tannerella forsythia, while they were negligible 14in Treponema denticola, Fusobacterium nucleatum, and Aggregatibacter 15actinomycetemcomitans. Furthermore, DPP activities were also detected in subgingival dental plaque at different intensities among individual specimens, while DPP4 activity presumably 1617derived from human entity was solely predominant in saliva samples. These findings 18demonstrated that DPP activities in dental plaque serve as potent biomarkers to indicate the

19 presence of periodontopathic bacteria.

1 INTRODUCTION

 $\mathbf{2}$

3 Periodontal disease is a leading cause of tooth loss in adults, resulting in a decrement in 4 overall quality of life, particularly in elderly individuals, with 20-50% of individuals $\mathbf{5}$ worldwide suffering from the disease (Nazir 2017). There are approximately 800 bacterial 6 species harbored in the oral cavity (Chen et al. 2010) and this inflammatory disease is $\mathbf{7}$ attributed to a complex of endogenous anaerobic rods, which colonize in subgingival pockets 8 and form subgingival dental plaque. Porphyromonas gingivalis, Tannerella forsythia, and 9 Treponema denticola are major periodontopathic bacteria implicated in severe forms of 10 periodontal disease. Additionally, Prevotella and Fusobacterium species have been shown to 11 be moderately associated with the disease (Socransky et al. 1998: Holt and Ebersole 2005). 12These anaerobes are considered to form commensal communities that mutually promote 13growth and survival under localized circumstances in subgingival pockets. In addition to oral 14disorders, the presence of periodontal disease is related to increased risk for systemic diseases, 15such as type 2 diabetes mellitus (Lalla and Papapanou 2011) and Alzheimer's disease 16(Teixeira et al. 2017). Therefore, methods for preterm assessment of the disease, as well as 17elucidation of molecular relationships between periodontal and systemic diseases are 18warranted. 19The nutritional aspects of periodontopathic anaerobes are important for understanding

the subgingival ecological niche. *P. gingivalis, Porphyromonas endodontalis,* and *Tan. forsythia* are asaccharolytic organisms, and thus utilize amino acids as their sole carbon and energy sources, while *Prevotella, Treponema, Aggregatibacter,* and *Fusobacterium* species ferment carbohydrates. Furthermore, *Porphyromonas* species incorporate amino acids mainly as dipeptides, whereas *Prevotella* and *Fusobacterium* efficiently utilize single amino acids (Takahashi and Sato 2002). These distinct auxotrophic features imply that these periodontopathic bacteria share a cooperative ecological niche.

For dipeptide production, *Porphyromonas* species possess a series of dipeptide-producing enzymes including dipeptidyl peptidases (DPPs), and acylpeptidyl oligopeptidase, as well as the dipeptide-producing activities of Arg- and Lys-gingipains. Those peptidases are crucial for both bacterial growth and pathogenicity (Nemoto and Ohara-Nemoto 2016). To date, four DPPs that liberate dipeptides from the N-termini of oligopeptides have been identified in *P. gingivalis*. Of those, DPP4 is specific for Pro and

1 weakly associated with Ala at the penultimate residue from the N-terminus (P1 residue)

2 (Abiko et al. 1985; Banbula et al. 2000), while DPP5 (Ohara-Nemoto et al. 2014) and DPP7

3 (Banbula *et al.* 2001) show preferences for P1-position hydrophobic residues, and DPP11 is

4 specific for P1 Asp/Glu (Ohara-Nemoto et al. 2011). Based on the substrate specificities, DPP

5 activities are determined using synthetic dipeptidyl substrates with a chromogenic or

6 fluorogenic group. DPP4 and DPP11 are determined using Gly-Pro- and

7 Leu-Asp-*p*-nitroanilide (pNA) or 4-methylcoumaryl-7-amide (MCA), respectively. For

8 measurement of DPP5 activity, Lys-Ala-MCA can be used, though DPP4 and DPP7 slowly

9 hydrolyze it. The activity of DPP7 is scarcely distinguishable from that of DPP5 due to their

10 similar hydrophobic P1-position preferences. However, a recent investigation of P2- and

11 P1-position specificities established Phe-Met-MCA as a novel DPP7 specific substrate

12 (Nemoto, Ohara-Nemoto, and Ono 2018). Consequently, these four different dipeptidyl

13 substrates allow for quantitative measurements of the activities of the four known DPPs in

14 bacterial cells as well as human specimens.

15In addition to dipeptide production for bacterial nutrition, habitat segregation, and 16adaptation, it is noteworthy that bacterial DPPs are possibly involved in host physiological 17functions. We recently reported in a mouse model that DPP4 from P. gingivalis, Tan. forsythia, 18 and Prev. intermedia cleaves the N-terminal dipeptide from the incretin peptide hormones 19GLP-1 and GIP in the same manner as human DPP4 (Ohara-Nemoto et al. 2017). Since 20incretins enhance insulin secretion from pancreatic β cells after feeding, the limited 21proteolysis of incretins by bacterial DPP4 caused a decrease in blood insulin levels and then 22elevated postprandial hyperglycemia. Those findings strongly suggested that periodontopathic 23bacterial DPP4 is additionally involved in glycemic control in individuals with type 2 24diabetes.

In the present study, we performed a comprehensive ortholog search of the four *P. gingivalis dpp* genes in human oral microbiota to articulate the possible involvement of periodontopathic bacterial DPPs in homeostatic regulation. In addition, DPP activities were determined in representative periodontopathic and cariogenic bacterial species, as well as oral specimens using dipeptidyl fluorogenic substrates. Our findings showed that *dpp* orthologs are specifically distributed in anaerobic oral rods, suggesting conceivable relationships of periodontopathic bacterial DPPs with periodontal and systemic diseases.

1 MATERIALS AND METHODS

2	
3	Ortholog search for <i>P. gingivalis dpp</i> genes
4	
5	An ortholog search was performed using the Kyoto Encyclopedia of Genes and Genomes
6	(KEGG) database (https://www.genome.jp/kegg/kegg_ja.html). Orthologs of the P. gingivalis
7	dpp4 (PGN_1469), dpp5 (PGN_0756), dpp7 (PGN_1479), and dpp11 (PGN_0607) genes with
8	more than 30% identity were listed, and then bacterial species enrolled in the Expanded
9	Human Oral Microbiome Database (eHOMD) (http://www.homd.org; Chen et al. 2010) were
10	selected. BLAST and MEROPS (https://www.ebi.ac.uk/merops; Rawlings et al. 2018)
11	ortholog searches were also performed for finding and ascertaining candidates.
12	
13	Microorganisms and growth conditions
14	
15	P. gingivalis ATCC 33277, P. endodontalis ATCC 35406, Prev. intermedia ATCC 25611, and
16	A. actinomycetemcomitans ATCC 33384 were grown in Anaerobic Bacteria Culture Medium
17	(ABCM) broth (Eiken Chemical Co., Ltd.) supplemented with 5 μ g mL ⁻¹ hemin and 10 μ g
18	mL ⁻¹ menadione, as previously described (Nemoto et al. 2018). Tan. forsythia ATCC 43037
19	was grown in ABCM broth supplemented with 15 μ g mL ⁻¹ N-acetylmuramic acid. For <i>Trep</i> .
20	denticola ATCC 33520, 5% rabbit serum was further added to the broth. F. nucleatum ATCC
21	25586, S. mutans ATCC 25175, and S. salivarius ATCC 7073 were cultured in Tryptic Soy
22	broth. All bacteria were grown under anaerobic conditions (80% N ₂ , 10% CO ₂ , 10% H ₂) at
23	37°C and harvested at the early stationary phase, then washed once with ice-cold phosphate
24	buffered saline (PBS) (pH7.4), and suspended in PBS at OD ₆₀₀ of 2.0.
25	
26	Oral specimens

 $\mathbf{27}$

Whole saliva and subgingival dental plaque specimens were collected from 7 laboratory-staff members aged 26 – 63 years old (mean age 46.7 years; 3 females, 4 males), as previously described (Ohara-Nemoto *et al.* 2008). The subjects were systemically healthy, and showed no or scarcely active pathogenic signs in periodontal tissues, and none had received antibiotic medication within the previous 3 months. Subgingival dental plaque was initially suspended

1	in 100 µL cold PBS	, then a part	of specimens	was diluted at OD ₆₀₀ of 0.2.	
---	--------------------	---------------	--------------	--	--

2	
3	Measurement of peptidase activity
4	
5	Peptidase activity was measured as previously reported (Nemoto et al. 2018). Briefly, the
6	reaction was performed in 200 μ L of a mixture composed of 50 mM sodium phosphate (pH
7	7.0), 5 mM EDTA, and 20 µM aminoacyl- or dipeptidyl-MCA. To measure DPP5 activity, 0.1
8	M NaCl was further added to the mixture (Ohara-Nemoto et al. 2014). The reaction was
9	started by addition of a suspension (5 μ L) of bacterial cells or oral specimens. After 30 min at
10	37°C, fluorescence intensity was measured with excitation at 380 nm and emission at 460 nm.
11	More than three independent analyses were performed in triplicate.
12	
13	
14	
15	RESULTS AND DISCUSSION
16	
17	Ortholog distributions of <i>P. gingivalis dpp4</i> , <i>dpp5</i> , <i>dpp7</i> , and <i>dpp11</i> genes in human oral
18	microbiota
19	
20	Previous studies have shown that DPP4 and DPP5 are present in both eukaryotes and bacteria,
21	whereas the distribution of DPP7 and DPP11 is restricted to bacterial species. Orthologs of
22	the <i>P. gingivalis dpp4</i> (PGN_1469), <i>dpp5</i> (PGN_0756), <i>dpp7</i> (PGN_1479), and <i>dpp11</i>
23	(PGN_0607) genes were searched using the KEGG Orthology, BLAST, MEROPS, and
24	eHOMD databases. The eHOMD indexes 772 microbial species present in the mouth, throat,
25	nose, sinuses, and esophagus. For bacterial species with genome data not listed in KEGG,
26	genome or gene data present in the NCBI and MEROPS databases were used. Consequently,
27	43 bacterial species without strain redundancy were found to possess at least one of four dpp
28	genes with a greater than 30% amino acid identity (Table 1). Thirty-two (74.4%) of 43 species
29	categorized in the phylum Bacteroidetes (also termed the
30	Cytophaga-Flavobacterium-Bacteroidetes group) are gram-negative bacilli growing
31	anaerobically. Those are the six genera Bacteroidals (1 species), Bacteroides (9),
32	Capnocytophaga (6), Porphyromonas (6), Prevotella (8), and Tannerella (2), most of which

1 possess all four dpp orthologs. Three species of the genus Pedobactor also classified in the $\mathbf{2}$ phylum *Bacteroidetes* are aerobic chemoheterotrophic bacilli and scarcely isolated from the 3 oral cavity but generally done from open water and glacier (Margesin et al. 2003: Muurholm 4 et al. 2007). Additionally, 8 bacteria (18.6%) are aerobic gram-negative bacilli in the genera $\mathbf{5}$ Caulobacter (4), Sphingomonas (3), and Stenotrophomonas (1), belonging to the phylum 6 Proteobacteria. A bacterial diversity study by using 16S rRNA sequencing demonstrated the 7high prevalence of the phyla Bacteroidetes, Proteobacteria as well as Firmicutes involving 8 the genus Streptococcus in human subgingival plaque from periodontally healthy and 9 periodontitis subjects (Paster et al. 2001). Thus, most bacteria harboring the dpp genes 10 colonize at least subgingival crevice in the oral cavity and form subgingival dental plaque. In 11 addition, it was noticeable that no orthologs were found in other predominant oral bacteria, 12such as the genera Streptococcus, Actinomyces, Neisseria, and Veillonella, which are 13commonly isolated from buccal epithelium, tongue surface, and tooth surfaces (Aas et al. 142005).

15Among the 43 bacterial species, all seemed to express DPP4. Furthermore, dpp5 16orthologs were also found in all species except for Porphyromonas catoniae and the genus 17Pedobactor, while dpp7 and dpp11 were observed in 32 species excluding the genera 18Caulobacter and Sphingomonas. Although the dpp7 and dpp11 orthologs were not found in 19three *Prevotella* species, additional genome information seems to be required, because five 20other *Prevotella* species were found to possess those two genes. These results indicate that *P*. 21gingivalis-type DPPs, especially DPP4, are generally distributed among anaerobic rods in the 22human oral microbiota, which are major residents that form subgingival dental plaque. 23Dpp orthologs other than the dpp4 gene are presently annotated with a variety of aliases 24(Table 2). This is because DPP4 (conventionally described as DPPIV; S09.003 peptidase 25family in MEROPS classification) has been well studied in both mammalian (Misumi and 26Ikehara 2013) and bacterial (Monod and Beauvais 2013) species since the 1960s. In contrast, 27the other DPPs have been more recently identified. Bacterial DPP5 (S09.075) was first 28discovered in P. gingivalis (Ohara-Nemoto et al. 2014) as an ortholog of fungal DPP5 29(Beauvais et al. 1997). Prior to the identification of bacterial DPP5, this peptidase has been 30 tentatively classified with various names, such as peptidase S9, prolyl oligopeptidase, 31WD-like β propeller containing protein, and putative peptidase. 32

P. gingivalis DPP7 (S46.001) prefers a hydrophobic P1 residue (Banbula et al. 2001) and

1 is distinct from mammalian DPPII/DPP7/QPP (S28.002), which is specific for Pro. We

2 previously discovered a novel DPP specific for Asp/Glu at the P1 position, designated as

3 DPP11 (S46.002) (Ohara-Nemoto et al. 2011). Since DPP11 had been categorized as an

4 isoform of DPP7, some *dpp11* orthologs are still tentatively annotated as DPP7. Annotation of

5 *dpp7* and *dpp11* is not readily accomplished by using the whole nucleotide sequence due to

6 their close similarity, though is possible by using the essential amino acid residue Gly⁶⁷³ for

7 DPP7 and Arg/Ser⁶⁷³ for DPP11 (Ohara-Nemoto *et al.* 2011; Rouf *et al.* 2013). These residues

8 are involved in the active pocket that is responsible for substrate specificity (Rouf *et al.* 2013;

9 Bezerra et al. 2017). In the present study, all candidates for dpp7 and dpp11 orthologs were

10 finally verified using these essential amino acid residues, and we found that 32 bacterial

species (74.4%) possessing the *dpp7* gene and that 23 species (53.4%) with the *dpp11* gene

12 among the 43 species possessing at least one of four *dpp* genes.

13 DPP activities were determined in seven major periodontopathic bacteria and two

14 cariogenic Streptococcus species (Fig. 1). In accordance with the ortholog search findings

15 (Table 1), DPP4, DPP5, DPP7, and DPP11 activities were demonstrated in *P. gingivalis* and *P.*

16 *endodontalis*. DPP4, DPP5, DPP7, and Leu-Asp-MCA hydrolysis corresponding to DPP11

17 activities were observed in *Tan. forsythia*, although *the dpp11* gene is not listed in the genome.

18 Furthermore, *Prev. intermedia* apparently exhibited the activities of the three DPPs, whereas

19 such activities were faint or negligible in Trep. denticola, F. nucreatum, and A.

20 *actinomycetemcomitans*, consistent with the findings showing the absence of orthologs.

Summation of DPP activities was highest in *P. gingivalis* (mean \pm SD; DPP4 = 8.3 \pm 0.2;

22 DPP5 = 1.7 ± 0.05 ; DPP7 = 30.7 ± 0.2 ; DPP11 = 10.8 ± 0.2 pmol min⁻¹), followed by *P*.

- 23 *endodontalis* (DPP4 = 3.1 ± 0.1 ; DPP5 = 6.4 ± 0.05 ; DPP7 = 19.7 ± 0.2 ; DPP11 = 3.1 ± 0.1
- 24 pmol min⁻¹), *Tan. forsythia* (DPP4 = 3.4 ± 0.3 ; DPP5 = 3.3 ± 0.1 ; DPP7 = 7.7 ± 0.1 ; DPP11 =

25 $2.6 \pm 0.2 \text{ pmol min}^{-1}$ and *Prev. intermedia* (DPP4 = 2.6 ± 0.2 ; DPP5 = 0.7 ± 0.05 ; DPP7 = 1.1

 ± 0.1 pmol min⁻¹). These results are in agreement with the fact that dipeptide production is

27 crucially important for *Porphyromonas* species, possibly reflecting their dipeptide

28 incorporation system. In addition, the higher level of activities in *Tan. forsythia* may suggest

29 that dipeptides are incorporated into this bacterium. Lower DPP activities in *Prev. intermedia*

30 as compared to the other three bacteria is likely related to the glucose fermentation and single

amino acid incorporation properties of this bacterium.

32 As for the cariogenic *Streptococcal* species, none of DPP5, DPP7, and DPP11 activities

1 were observed, while moderate Gly-Pro-MCA hydrolysis (S. mutans, 0.8 ± 0.1 ; S. salivarius, $\mathbf{2}$ 2.2 ± 0.0 pmol min⁻¹) was demonstrated, in accordance with a previous study (Suido *et al.* 3 1986). This activity seems to be mediated by an Xaa-Pro dipeptidyl-peptidase, a member of 4 the S15 peptidase family, which has been identified in S. mutans (De et al. 2016). $\mathbf{5}$ We also determined aminopeptidase activity using Arg-, Lys-, Ala-, Leu-, Met-, and Phe-MCA to compare with the DPP activity profiles (Fig. 1). Although Arg- $(2.6 \pm 0.1 \text{ pmol})$ 6 7min⁻¹) and Lys-MCA (0.8 ± 0.1 pmol min⁻¹) hydrolyzing activities, mediated by Arg- and 8 Lys-gingipains, respectively, were demonstrated in *P. gingivalis*, other aminopeptidase 9 activities in the bacterium were basically negligible, in accord with previous reports (Suido et 10 al. 1986; Ohara-Nemoto et al. 2014). Also, relatively high activities toward Leu-, Met-, and Arg-MCA $(3.6 \pm 0.2, 2.2 \pm 0.0, 1.4 \pm 0.0 \text{ pmol min}^{-1}$, respectively) were observed in *Tan*. 11 12forsythia, while the activities toward Ala-, Arg-, and Lys-MCA $(3.8 \pm 0.1, 2.3 \pm 0.1, 1.6 \pm 0.0)$ 13pmol min⁻¹, respectively) were detected in A. actinomycetemcomitans. Aminopeptidase activities in Trep. denticola, S. mutans, and S. salivarius were moderate as compared with the 1415former organisms, and those in Prev. intermedia and F. nucleatum were subtle. Modest DPP 16and aminopeptidase activities in those bacteria seem to be consistent with their energy 17metabolism, which is dependent on carbohydrate fermentation.

Taken together, we conclude that elucidation of DPP activities is useful to estimate the presence of periodontopathic anaerobes including *P. gingivalis*, *P. endodontalis*, *Tan. forsythia*, and *Prev. intermedia*, although the Gly-Pro-MCA hydrolyzing activity considered as DPP4 may represent the prevalence of both periodontopathic and cariogenic bacteria.

22The ortholog search indicated that the *dpp* genes are specifically distributed in anaerobic 23rods in the oral cavity, which are major residents forming subgingival dental plaque. This 24finding is of interest when considering the molecular mechanisms involved in relationships of 25periodontal-systemic diseases that feature degradation of physiologically active peptides and proteins by oral bacteria entering the blood stream via periodontopathic lesions. In fact, using 2627a mouse model we recently demonstrated that periodontopathic bacterial DPP4 modulates 28blood glucose levels by degradation and inactivation of incretin hormones (Ohara-Nemoto et 29al. 2017). Since incretins are involved in not only pancreatic functions but also micro- and 30 macro-vascular diseases, dementia, obesity, and bone fracture (Seino and Yabe 2013), 31degradation of incretins by bacterial DPP4 derived from subgingival dental plaque may 32implicate a relationship between periodontal and systemic diseases, at least a part. In addition

1 to the functions of DPP4, it has been reported that DPP7 from *Capnocytophaga canimorsus*, a $\mathbf{2}$ canine oral bacterium, retards coagulation by degradation of coagulation factors (Hack et al. 3 2017). These observations provide clues for a better understanding of the molecular 4 mechanisms of periodontopathic bacteria involved in exacerbation of systemic diseases. $\mathbf{5}$ To assess an effective method for monitoring periodontitis activity and investigate 6 bacterial DPP functions, the present protocol was utilized as a first attempt to determine 7whether subgingival dental plaque specimens are suitable for measurements of DPP activities, 8 while whole saliva specimens were used as a control (Fig. 2). Oral specimens were collected 9 from seven systemically healthy subjects with no or little active pathogenic signs in 10 periodontal tissues (46.7 ± 18.2 years old; 3 females, 4 males). Subject A alone had a 11 subgingival depth >4 mm, but was without inflammation. The activities of four DPPs in 12subgingival dental plaque specimens seemed to reflect all activities derived from 13periodontopathic bacteria. For example, the total DPP activities were significantly high in subject A. In addition, the previous observation that the level of DPP4 activity in gingival 1415crevicular fluid is markedly related to disease status (Cox and Eley 1992) seems to implicate 16the amount of periodontopathic bacteria colonizing the gingival sulcus.

17In contrast, in saliva samples, the activity of DPP4 was apparently high in all of the 18subjects examined, while the activities of the other three DPPs were subtle. Although the level 19of DPP4 in saliva has been reported to be related to disease status (Elgün, Ozmeriç, and 20Demirtas 2000; Aemaimanan et al. 2009), most of the activity is considered from salivary 21glands (Ogawa et al. 2008). Therefore, the present along with the previous observations 22suggest that DPP activities in subgingival dental plaque are more closely associated with the 23presence of periodontopathic bacteria and possibly with the disease activity as compared to 24those in saliva.

In conclusion, we found that DPP4, DPP5, DPP7, and DPP11 are distributed in anaerobic periodontopathic rods inhabiting the human oral microbiota, and that measurement of the activities of these peptidases provides a useful tool to assess the presence of periodontopathic bacteria and disease activity. Presently, clinical analyses on periodontopathic subjects are underway in our laboratory.

30

31

32 *Conflicts of interest.* None to declare.

- 1
- $\mathbf{2}$

3 ACKNOWLEDGMENTS

- 4
- 5 This work was supported by JSPS KAKENHI Grant Numbers JP16K11481, JP17K17336, and
- 6 JP18K09557.

- 1 **REFERENCES**
- $\mathbf{2}$

3	Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J
4	<i>Clin Microbiol</i> 2005; 43 :5721-32.
5	Abiko Y, Hayakawa M, Murai S, et al. Glycylprolyl dipeptidylaminopeptidase from
6	Bacteroides gingivalis. J Dent Res 1985;64:106–11.
7	Aemaimanan P, Sattayasai N, Wara-aswapati N, et al. Alanine aminopeptidase and dipeptidyl
8	peptidase IV in saliva of chronic periodontitis patients. J Periodontol 2009;80:1809–14.
9	Banbula A, Bugno M, Goldstein J, et al. Emerging family of proline-specific peptidases of
10	Porphyromonas gingivalis: purification and characterization of serine dipeptidyl
11	peptidase, a structural and functional homologue of mammalian prolyl dipeptidyl
12	peptidase IV. Infect Immun 2000;68:1176-82.
13	Banbula A, Yen J, Oleksy A, et al. Porphyromonas gingivalis DPP-7 represents a novel type
14	of dipeptidylpeptidase. J Biol Chem 2001;276:6299-305.
15	Beauvais A, Monod M, Debeaupuis JP, et al. Biochemical and antigenic characterization of a
16	new dipeptidyl-peptidase isolated from Aspergillus fumigatus. J Biol Chem
17	1997; 272 :6238–44.
18	Bezerra GA, Ohara-Nemoto Y, Cornaciu I, et al. Bacterial protease uses distinct
19	thermodynamic signatures for substrate recognition Sci Rep 2017;7:2848.
20	Chen T, W-Han Y, Baranova IJ, et al. The human oral microbiome database: a web
21	accessible resource for investigating oral microbe taxonomic and genomic information.
22	Database 2010;doi:10.1093/database/baq013.
23	Cox SW, Eley BM. Cathepsin B/L-, elastase-, tryptase-, trypsin- and dipeptidyl peptidase
24	IV-like activities in gingival crevicular fluid. A comparison of levels before and after
25	basic periodontal treatment of chronic periodontitis patients. J Clin Periodontol
26	1992; 19 :333–9.

1	De A, Lupidi G, Petrelli D, et al. Molecular cloning and biochemical characterization of
2	Xaa-Pro dipeptidyl-peptidase from Streptococcus mutans and its inhibition by anti-human
3	DPP IV drugs. FEMS Microbiol Lett 2016;363:pii:fnw066.
4	Elgün S, Ozmeriç N, Demirtaş S. Alanine aminopeptidase and dipeptidylpeptidase IV in saliva:
5	the possible role in periodontal disease. Clin Chim Acta 2000;298:187-91.
6	Hack K, Renzi F, Hess E, et al. Inactivation of human coagulation factor X by a protease of
7	the pathogen Capnocytophaga canimorsus. J Thromb Haemost 2017;15:487-99.
8	Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella
9	forsythia: the "red complex", a prototype polybacterial pathogenic consortium in
10	periodontitis. Periodontol 2000 2005;38:72-122.
11	Kon A. Pathogenic factors of Porphyromonas endodontalis. Dent J Iwate Med Univ
12	2002;27:187-96.Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two
13	common interrelated diseases. Nat Rev Endocrinol 2011;28:738-48.
14	Margesin R, Spröer C, Schumann P, Schinner F. Pedobacter cryoconitis sp. nov., a
15	facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol
16	2003; 53 :1291-6.
17	Muurholm S, Cousin S, Päuker O, et al. Pedobacter duraquae sp. nov., Pedobacter
18	westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp.
19	nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol
20	Microbiol 2007; 57 :2221-7.
21	Misumi Y, Ikehara Y. Dipeptidyl-peptidase IV. In Handbook of Proteolytic Enzymes 3rd ed.
22	2013;pp.3374-9. Eds. Rawlings ND, Salvesen G. Elsevier.
23	Monod M, Beauvais A. Dipeptidyl-peptidases IV and V of Aspergillus. In Handbook of
24	Proteolytic Enzymes 3rd ed. 2013;pp.3392-4. Eds. Rawlings ND, Salvesen G. Elsevier.
25	Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and

-		
-		
-	-	

prevention. Int J Health Sci (Qassim) 2017;11:72-80.

2	Nemoto TK, Ohara-Nemoto Y. Porphyromonas gingivalis exopeptidases as crucial factors for
3	its amino acid metabolism. Jap Dent Sci Rev 2016;52:22-9.
4	Nemoto TK, Bezerra GA, Ono T, et al. Identification of a new subtype of dipeptidyl peptidase
5	11 and a third group of the S46-family members specifically present in the genus
6	Bacteroides. Biochimie 2018;147:25–35.
7	Nemoto TK, Ono T, Ohara-Nemoto Y. Establishment of potent and specific synthetic substrate
8	for dipeptidyl-peptidase 7. Anal Biochem 2018;548:78-81.
9	Nishimata H, Ohara-Nemoto Y, Bab, TT, et al. Identification of dipeptidyl-peptidase
10	(DPP)5 and DPP7 in Porphyromonas endodontalis, distinct from those in
11	Porphyromonas gingivalis. PLoS ONE 2014;9:e114221.
12	Ohara-Nemoto Y, Shimoyama Y, Kimura S, et al. Occurrence of staphylococci in the oral
13	cavities of healthy adults and nasal-oral trafficking of the bacteria. J Med Microbiol
14	2008; 57 :95–9.
15	Ohara-Nemoto Y, Shimoyama Y, Kimura S, et al. Asp- and Glu-specific novel dipeptidyl
16	peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy
17	sources. J Biol Chem 2011;286:38115–27.
18	Ohara-Nemoto Y, Rouf SM, Naito M, et al. Identification and characterization of prokaryotic
19	dipeptidyl-peptidase 5 from Porphyromonas gingivalis. J Biol Chem 2014;28;289:5436-
20	48.
21	Ohara-Nemoto Y, Nakasato M, Shimoyama Y, et al. Degradation of incretins and modulation
22	of blood glucose levels by periodontopathic bacterial dipeptidyl peptidase 4. Infect
23	<i>Immun</i> 2017; 85 :e00277–17.
24	Ogawa Y, Kanai-Azuma M, Akimoto Y et al. Exosome-like vesicles with dipeptidyl
25	peptidase IV in human saliva. Biol Pharm Bull 2008; 31 :1059–62.

1	Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in human subgingival plaque. J
2	Bacteriol 2001;183:3770-83.
3	Rawlings ND, Barrett AJ, Thomas PD, et al. The MEROPS database of proteolytic enzymes,
4	their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER
5	database. Nucleic Acids Res 2018;46: D624-D632.
6	Rouf SMA, Ohara-Nemoto Y, Hoshino T, et al. Discrimination based on Gly and Arg/Ser at
7	position 673 between dipeptidyl-peptidase (DPP) 7 and DPP11, widely distributed DPPs
8	in pathogenic and environmental Gram-negative bacteria. <i>Biochimie</i> 2013;95:824-32.
9	Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1:
10	Incretin actions beyond the pancreas. J Diabet Invest 2013;4:108-30.
11	Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J
12	<i>Clin Periodontol</i> 1998; 25 :134–44.
13	Suido H, Nakamura M, Mashimo PA, et al. Arylaminopeptidase activities of oral bacteria. J
14	Dent Res 1986;65:1335–40.
15	Takahashi N, Sato T. Dipeptide utilization by the periodontal pathogens Porphyromonas
16	gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum.
17	Oral Microbiol Immunol 2002;15:188–95.
18	Teixeira FB, Saito MT, Matheus FC. et al. Periodontitis and Alzheimer's disease: A possible
19	comorbidity between oral chronic inflammatory condition and neuroinflammation.
20	Front. Aging Neurosci 2017; https://doi.org/10.3389/fnagi.2017.00327.

No	Property	Species	KEGG		ΠΡΡ5	ΠΡΡ7	DPP1 1	Reference
1	Anaerobic	Bacteroidales bacterium CF	bacc	30.9	52.8	44.1	43.9	Kererenee
2		Bacteroides cellulosilvticus	bcel	50.1	58.8	44.9	46.9	
2	-	Bacteroides dorei	bdo.	8cellWH2_04067 47.7	55.4	45.0	BcellWH2_01041 47.4	Nemoto et al 2018
	-	Bacteroides fragilis	buo	EL88_17320 50.9	EL88_10115 56.9	EL88_01065 45.8	EL88_04195 47	Rouf et al. 2013: Nemoto et al. 2018
4	-	Bacteroides halcogenes		VU15_04185 49.4	VU15_11640 58	VU15_00190 44.6	VU15_13540 48.2	Rour <i>et al.</i> 2013, Nemoto <i>et al</i> . 2018
5	-	Bacteroides nuclogenes	bn	Bache_1336 49.5	Bache_2506 57.5	Bache_0623 44.5	Bache_2936 47.6	Nometa at al 2018
0	-	Bacteroides ovatus	boa	Bovatus_04481 49.2	Bovatus_01140 55	Bovatus_03382 43.2	Bovatus_00117 48.9	
	-	Bacteroides salaritronis	bsa	Bacsa_1666 50.1	Bacsa_0556 56.2	Bacsa_3552 45.3	Bacsa_3553 47.2	Nemete et el 2019
8	-	Bacteroides vulgatus	bth	Cabther_A1882 47.6	BT_0587 54.9	BT_3289 45.8	BT_0236 47.4	Nemoto et al. 2018
9	-	Bacteroides vulgatus	bvu	BVU_1991 49.7	BVU_3355 57.7	BVU_1292 44.9	BVU_2253 47	Rouf <i>et al.</i> 2013
10	-	Bacteroides xylanisoivens	бху	BXY_33000 30.2	BXY_01510 30.3	BXY_25380 30.7	BXY_42300	
11	-	Porpnyrobacter neustonensis	pns	A9D12_13280 55.6	A9D12_04605 61.4	A9D12_08420 63.2	54.3	
12	-	Porphyromonas asaccharolytica	pah	Poras_1656 60.0	Poras_0376	Poras_0497 59.3	Poras_0411 54.0	
13	-	Porpnyromonas catoniae	-	MNR0996852	-	MER1065355	MER1065271 57.9	
14		Porphyromonas endodontalis	-	55.4 MER192286	61.5 MER0236725	65.2 MER0278904	AB610284 MER0290751	Kon 2002; Ohara-Nemoto <i>et al.</i> 2011; Nishimata <i>et al.</i> 2014; this study
15		Porphyromonas gingivalis	pgn	100 PGN_1469	100 PGN_0756	100 PGN_1479	100 PGN_0607	Abiko <i>et al.</i> 1985; Banbula <i>et al.</i> 2000; 2001; Ohara-Nemoto <i>et al.</i> 2011; Rouf <i>et al.</i> 2013; Ohara-Nemoto <i>et al.</i> 2014; 2017; this study
16		Porphyromonas uenonis	-	55 MER0192283	60.2 MER0233073	62.3 MER0275386	54.3 MER0217397	
17		Prevotella dentalis	pdt	42 Prede_1788	47.9 Prede_0500	=	-	
18		Prevotella denticola	pdn	43.4 HMPREF9137_11 31	47.8 HMPREF9137_19 04	35.6 HMPREF9137_06 62	-	
19	1	Prevotella dintalis	pdt	42 Prede 1788	47.9 Prede 0500	-	-	
20	1	Prevotella enoeca	peo	42.3 Ccan 05140	48.5 AS203_05860	-	-	
21	1	Prevotella fusca	pfus	43.3 AD177_02160	47.6 AD177_11435	40.5 AD177_05700	-	
22	1	Prevotella intermedia	pit	43.1 PIN17_A1740	48.3 PIN17_A1793	42.5 PIN17_0473*	-	Ohara-Nemoto <i>et al</i> . 2017; this study
23		Prevotella melaninogenica	pmz	42.8 HMPREF0659_A5	48.3 HMPREF0659_A6	40.3 HMPREF0659_A5	-	
24	-	Prevotella ruminicola	pru	40.7 PRU 0634	50.1 PRI 1443	40.7 PRI 2649	-	
25	1	Tannerella forsythia	tfo	61.1 BEO_16E0	43.6 PEO 2080	59.1	-	Ohara-Nemoto <i>et al</i> . 2017; this study
26	-	- Tannerella sp. oral taxon HOT-286	toh	57.1 BCB71_01420	43.3 PCP71_01255	61.1 PCP71_00625	-	
27	Facultative	Cappocytophaga canimorsus	ccm	42.3	40.5	36.3	41.7	Hack <i>et al.</i> 2017
20	anaerobic	Cannocytonhaga gingiyalis	cab	42.6	44	38.5	41.5	Nemoto et al 2018
29	-	Caphocytophaga baemolytica	cyn	CGC50_03250 42.5	CGC50_00410 42.7	CGC50_08370 37.0	CGC50_05115 40.8	
20	-	Caphocytophaga laadhottari	cng all	AXF12_02670 42.9	AXF12_08230 41.9	AXF12_07190 37.7	AXF12_04065 41.4	
30	-	Caphocytophaga achracaa	CIK	CGC53_04935 43.6	CGC53_10585 41.8	CGC53_07790 37.5	CGC53_07790 41.0	
22	-	Caphocytophaga ochracea		Coch_1057 43.6	Coch_1823 41.9	Coch_1768 37.2	Coch_0404 41.0	
32	A	Capilocytophaga sp. orai taxon 5	COI	AM608_08390 30.5	AM608_01605	AM608_01320	AM608_05550	
33	Aerobic	Pedobacter cryoconitis	pcm	AY601_0660 30.5	-	39.2	33.4	
34	-	Pedobacter sp. FACM 27299	рер	AQ505_07725 31.2		AQ505_06390 39	AQ505_10325 32.9	
35	-		psty	BFS30_18605 30.2	31.7	BFS30_16700	BFS30_26025	
36	-	Caulobacter crescentus	ccs	CCNA_02237 32.6	CCNA_02065 30.9	-	-	
31	-		cnq	AQ619_12080 32.2	AQ619_11240 31.6	-	-	
38	-	Caulobacter segnis	cse	Cseg_1267 31.1	Cseg_1441 31.4	-	-	
39	-	Caulobacter sp. K3 I	cak	Caul_3418 30	CauL3102 33.8	-	-	
40	-	Sphingomonas melonis	smy	BJP26_07260	BJP26_09085	-	-	
41	4	Spningomonas sp. MM-1	sphm	G432_00900	G432_03400	-	-	
42	4	Sphingomonas taxi	stax	MC45_05965	MC45_02335	- २२ ६	-	
43		Stenotrophomonas maltophilia	sml	Smlt4503	Smlt1246	Smlt0962	-	

1 Table 1. Distribution and % identity of *P. gingivalis dpp* orthologs in the human oral microbiome.

Human oral bacterial species, percent identity of amino acid sequence, and entry codes of 1 $\mathbf{2}$ orthologs for the P. gingivalis dpp4, dpp5, dpp7, and dpp11 genes are listed. Genome data that have not been enrolled in KEGG were obtained from GeneBank and MEROPS. Bacterial species 3 more than a single DPP identified in either recombinant proteins or bacterial cells are shaded. DPP 4 activities measured using recombinant proteins are shown in blue, while those solely occurring in $\mathbf{5}$ 6 bacterial cells are in pink. Bacteria nos. 1-35 and 36-43 belong to the phyla Bacteroidetes and Proteobacteria, respectively. *Recombinant DPP7 of Prev. intermedia was expressed and its 78 activity was confirmed (unpublished observation).

1 Table 2. Definitions of *P. gingivalis dpp* orthologs in the databases.

Enzyme	KEGG Orthology and GenBank
DPP4	dipeptidyl aminopeptidase IV
	peptidase S9
	peptidase S9B DPP4 domain
	putative exported DPP4
	170-kDa melanoma membrane-bound gelatinase
	prolyl tripeptidyl peptidase precur
DPP5	dipeptidyl-peptidase V
	prolyl oligopeptidase
	prolyl oligopeptidase family protein
	peptidase S9
	prolyl tripeptidyl peptidase precursor
	WD40-like beta Propeller containing protein
	dipeptidyl aminopeptidases/acylaminoacyl-peptidases
	putative exported aminopeptidase
	putative peptidase
	putative exported aminopeptidase
	putative peptidase yuxL
	WD40-like beta Propeller containing protein
	peptidase S9 prolyl oligopeptidase active site domain protein
	acylaminoacyl-peptidase
	S9A/B/C family, catalytic domain protein
	S9C (acylaminoacyl-peptidase) subfamily
	peptidase S9 prolyl oligopeptidase
	putative exported peptidase
DPP7	dipeptidyl peptidase 7
	peptidase S46
	conserved hypothetical protein
	hypothetical protein
	serine protease
	peptidase 7
	peptidase S10 [carboxypeptidase Y (<i>Saccharomyces cerevisiae</i>)]
DPP11	hypothetical protein
	conserved hypothetical protein
	peptidase S46
	dipeptidyl-peptidase 7
	serine protease
	V8-like Glu-specific endopeptidase
	hypothetical protein
	peptidase S10 [carboxypeptidase Y (<i>Saccharomyces cerevisiae</i>)]

30 activities of DPP4, DPP5, DPP7, and DPP11 were determined.

