Identification of a Major Glucose Transporter in *Flavobacterium johnsoniae*: Inhibition of *F. johnsoniae* Colony Spreading by Glucose Uptake

Keigo Imamura^{1,2}, Keiko Sato¹, Yuka Narita^{1,*}, Yoshio Kondo², Daisuke Nakane³, Mariko Naito¹, Taku Fujiwara² and Koji Nakayama¹

¹Department of Microbiology and Oral Infection and ²Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 and ³Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku,Tokyo 171-8588, Japan

*Present Address: Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan

Short Running Title: MFS Glucose Transporter

Correspondence:

Koji Nakayama, Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan. Tel: +81 95 819 7648; fax: +81 95 819 7650; email address: knak@nagasaki-u.ac.jp List of Abbreviations: CCCP, carbonyl cyanide *m*-chlorophenylhydrazone; CYE, casitone yeast extract; DCCD, *N*,*N*'-dicyclohexylcarbodiimide; DNP, 2,4-dinitrophenol; Em, erythromycin; MFS, major facilitator superfamily; PBS, phosphate buffered saline; RT, room temperature; Sm, streptomycin; 2DG, 2-deoxy-D-glucose

ABSTRACT

Many members of the phylum *Bacteroidetes* such as *Flavobacterium johnsoniae* can glide over a solid surface: an ability called *gliding motility*. It can be usually observed on agar plates as thin, flat, spreading colonies with irregular, feathery edges; this phenomenon is called *colony spreading*. Colony spreading of F. johnsoniae on 1.5% agar plates containing poor nutrients is dose-dependently inhibited by addition of D-glucose, as previously reported. Accordingly, here, we created mutants (by transposon mutagenesis) that partially suppressed glucose-mediated inhibition of colony spreading. Among the isolates, we found that one had a transposon insertion in Fjoh 4565, tentatively named *mfsA*, which encodes a major facilitator superfamily (MFS) be required for transporter previously shown to growth glucose, on N-acetyl-glucosamine, and chitin. We constructed an mfsA deletion mutant and found that the mutant showed no glucose-mediated acceleration of growth or glucose uptake. The *mfsA* gene complemented the phenotype of a glucose-negative *Escherichia coli*. These results suggested that the *mfsA* gene encodes the sole MFS transporter of glucose in F. johnsoniae and that glucose uptake is partially required for the glucose-mediated inhibition of F. johnsoniae colony spreading.

Key words: *Bacteroidetes*, colony spreading, gliding motility, glucose uptake, major facilitator superfamily transporter

INTRODUCTION

Many bacterial species can glide over solid surfaces: an ability that is called *gliding motility*. This ability can be observed in many members of the phylum *Bacteroidetes*, *Myxococcus xanthus*, *Mycoplasma mobile*, and many cyanobacteria, but these bacteria have their own unique motility machineries (1). *Flavobacterium johnsoniae* belonging to the phylum *Bacteroidetes* has been studied for many years to understand the motility mechanism. A large number of *F. johnsoniae* proteins have been found to be involved in gliding motility, which include Gld, Spr, and Rem (2). Some of these proteins are also components of the type IX protein secretion system (3, 4). We proposed a helical track model, where adhesive SprB filaments are propelled along a left-handed closed helical loop on the cell surface. Attachment of SprB to a substratum results in cell movement (5).

Gliding motility of *F. johnsoniae* is usually observed on agar plates as thin, flat, spreading colonies with irregular, feathery edges: this phenomenon is called *colony spreading* (6). This phenomenon requires gliding motility because *F. johnsoniae* mutants deficient in *gld* or *spr* genes show no colony spreading (3, 7-19). Colony spreading takes place on rather nutrient-poor plates, and when nutrients are added, the colonies tend to be raised and smooth-edged (6). Chang & Pate (20) first reported that sugars suppress colony spreading of *F. johnsoniae* on 1.5% agar plates. In their study, they found that metabolizable sugars including glucose, galactose, fructose, mannose, xylose, and maltose suppress colony spreading, whereas a nonmetabolizable sugar, lactose, does not. More extensive experiments revealed that a nonmetabolizable sugar, sucrose, suppresses colony spreading at a low concentration and minimal inhibitory concentrations for colony spreading vary among metabolizable sugars (21). Gorski et al.

(22) found that the inhibitory sugars have a common structural feature regardless of their metabolizable abilities.

In this study, we created *F. johnsoniae* mutants that showed colony spreading on glucose-containing agar plates using transposon mutagenesis to investigate which genes are involved in the inhibitory effect of glucose on colony spreading of the bacterium.

MATERIALS AND METHODS

Bacterial strains and culture conditions

Bacterial strains and plasmids used in this study are listed in Table 1 (23, 24). *F. johnsoniae* cells were grown aerobically in the enriched casitone yeast extract (CYE) medium and on enriched CYE agar. For selection and maintenance of antibiotic-resistant *F. johnsoniae* strains, antibiotics were added to the medium at the following concentrations: streptomycin (Sm) 100 μ g/ml and erythromycin (Em) 100 μ g/ml. To observe colony spreading, we grew *F. johnsoniae* on PY2 agar (7) at 25°C.

Transposon mutagenesis and gene-directed mutagenesis

Transposon mutagenesis in *F. johnsoniae* strain UW101 by means of Tn4351 was described previously (25). Gene-directed mutagenesis of *F. johnsoniae* was carried out as follows. After the mating of *E. coli* S17-1 λpir (carrying a pRR51 derivative) with *F. johnsoniae* CJ1827, an Em^r transconjugant was obtained to select for integration of the plasmid into the genome by homologous recombination. An erythromycin-resistant clone was grown overnight in CYE, and the loss of the plasmid via a second recombination event was selected by growth on CYE agar containing streptomycin

(18).

Construction of plasmids and bacterial strains

For construction of a targeting plasmid vector designed to create an *F. johnsoniae mfsA* deletion mutant, DNA regions upstream and downstream of *mfsA* were PCR-amplified from the chromosomal DNA of *F. johnsoniae* using pairs of primers (F4565-UF-BamHI plus F4565-UR-SalI and F4565-DF-SalI plus F4565-DR-SphI, respectively, where "U" indicates upstream, "F" indicates forward, "D" indicates downstream, and "R" indicates reverse). Primers used in this study are listed in Table S1. The amplified DNA upstream was double-digested with BamHI plus SalI. The DNA downstream was digested with SalI plus SphI. Both digested products were ligated with pRR51 that had been digested with BamHI and SphI. (Consequently, we obtained pDF1.)

For construction of shuttle vector pNS1 for *F. johnsoniae*, the multiple cloning site (MCS) region was 1st-PCR-amplified from pFj29 using the primer pair pFj29-1st-F and gfpmut3-R-SphI. Then, the MCS region was 2nd-PCR-amplified from the 1st-amplified DNA using the primer pair pFj29-2nd-F and gfpmut3-R-SphI. The amplified DNA was digested with BgIII and SphI and inserted at the BamHI and SphI sites of pFj29, resulting in pNS1.

For construction of a complemented version of the *mfsA* strain DFJ, the gene encoding Fjoh_4565 was PCR-amplified from *F. johnsoniae* UW101 chromosomal DNA using the primer pair F4565-F-BamHI and F4565-stop-R-NotI. The amplified DNA was digested with BamHI and NotI and inserted into the corresponding region of pNS1, resulting in plasmid pNS1 containing *mfsA* (pDF2).

For construction of an F. johnsoniae strain expressing MfsA-Gfp, the gene

encoding Fjoh_4565 was PCR-amplified from *F. johnsoniae* UW101 chromosomal DNA using the primer pair F4565-F-BamHI and F4565-GR-NotI. The amplified DNA was digested with BamHI and NotI and inserted into the corresponding region of pNS1, resulting in plasmid pNS1 containing *mfsA-gfp* (pDF3).

For construction of a glucose-negative *E. coli* strain expressing *F. johnsoniae* MfsA and MfsA-Gfp, the *mfsA* gene DNA encoding Fjoh_4565 was PCR-amplified from *F. johnsoniae* UW101 chromosomal DNA and from the pDF2 plasmid DNA using the primer pairs F4565-22bF-NdeI and F4565-22bR-XhoI as well as F4565-22bF-NdeI and Gfpmut3-stopR-XhoI, respectively. The amplified DNAs were digested with NdeI and XhoI and inserted into the corresponding region of pET-22b (Novagen), resulting in plasmids pDF4 and pDF5, respectively. The glucose-negative *E. coli* strain LJ141 was then transformed with pDF4 and pDF5.

Glucose uptake

F. johnsoniae cells were grown in the CYE medium at 27°C with shaking (165 rpm) overnight to optical density of ~1.0 at 600 nm. The samples were washed two times with 10 mM Tris-HCl (pH 7.5). The cells were exposed to 1 mM 2,4-dinitrophenol (DNP), 10 μ M carbonyl cyanide *m*-chlorophenylhydrazone (CCCP), 50 μ M *N,N'*-dicyclohexylcarbodiimide (DCCD), or 50 mM arsenate for 1 min at room temperature (RT) and incubated in 10 mM Tris-HCl (pH 7.5) supplemented with 2-deoxy-D-glucose (2DG) at RT for 2 h. Glucose uptake was determined by means of the 2DG uptake in an enzymatic photometric assay using the 2DG Uptake Measurement Kit (COSMO BIO Co.) (26, 27).

RNA Isolation

Total RNA from cells of the wild-type and the *mfsA* mutant at different growth conditions (1% PY2 and 1% PYG) from three independent cultures. After 24 h of culture, bacterial cells were collected by cell scraping in RNAlater^B solution (Thermo Fisher Scientific) and centrifuged at 8,000 rpm for 10 min. Cell pellets were resuspended with Trizol, and RNA was extracted using an RNeasy Mini Kit (Qiagen) according to the manufacturer's recommendations. DNA was removed with RNase-free DNase.

Gene Expression Microarrays

According to manufacturers' instructions, the complementary RNA was amplified and labeled by Low Input Quick Amp Labeling Kit (Agilent Technologies), and hybridized to Agilent-based microarray platform with 4 x 44 K probes per slide (Agilent Technologies). The array contains probe sets to 5,113 open reading frames of *F. johnsoniae* UW101. Designing microarray probes was done with the Agilent eArraysystem with the following settings during the microarray probe design: Tm (70°C) matching methodology, 60-mer probe length, 8 probes/gene. All hybridized microarray slides were scanned using an Agilent scanner. Relative hybridization intensities and background hybridization values were calculated using Agilent Feature Extraction Software (ver. 9.5.1.1).

Localization of MfsA

Cells were examined by microscopy to identify MfsA on the cell membrane. Cells of *F. johnsoniae mfsA/mfsA-gfp* (200 μ l) were placed on a slide glass for 3 min at RT and

were washed two times with PBS. DAPI (Invitrogen) and FM4-64 (Invitrogen) were used for detection of DNA and cell membranes, respectively. After two washes with PBS, the cells were incubated with a 1/500 dilution of DAPI (Invitrogen) and FM4-64 (Invitrogen) for 30 min and were washed two times with PBS. The coverslip was mounted on glass and examined under an inverted fluorescence microscope.

Cell growth

The growth curves of the wild-type, *mfsA* deletion mutant, and *mfsA/mfsA*⁺ complemented strain were determined. The cells were incubated in CYE overnight to optical density of ~1.0 at 600 nm. The microorganisms were washed two times with 10 mM Tris-HCl (pH 7.5) and incubated in the mPY2 medium (0.05% peptone, 0.05% yeast extract) or mPY2 supplemented with D-glucose (15 mM) with shaking at 27°C. Cell growth was measured by optical density at 600 nm at indicated time points. Error bars show standard deviation.

Statistical analysis

The data of glucose uptake test were analysed using Student's *t*-test. Results were considered to be statistically significant with a P value <0.001.

RESULTS

The inhibitory effect of glucose on colony spreading of F. johnsoniae

As previously found (20-22), glucose suppressed colony spreading of *F. johnsoniae* on PY2 plates in a concentration-dependent manner, and D-glucose with 10 mM completely inhibited colony spreading (Fig. 1A and B). A nonmetabolizable derivative

of glucose, 2-deoxy-D-glucose (15 mM), partially suppressed colony spreading (Fig. 1C), suggesting that there were two types of suppression: metabolism-dependent and metabolism-independent.

Construction of a transposon insertion library and screening on the basis of colony spreading

Transposon-containing suicide plasmid R751::Tn $4351\Omega4$ was used for mutagenesis of F. johnsoniae strain UW101. Cells were grown on agar plates supplemented with 15 mM glucose and 100 mM Em. Seventeen colonies showing higher levels of colony spreading compared to the wild type were found among nearly 48,000 colonies. The transposon insertion sites in all the mutants were determined by DNA sequencing. Fjoh 4565, which encode a major facilitator superfamily (MFS) transporter, was present at the insertion site of one of the mutants (Fig. 2A). Fjoh 4565 was recently shown to be required for growth on glucose, N-acetyl-glucosamine, and chitin (28). We tentatively named this gene mfsA. We constructed an mfsA deletion mutant (DFJ1), which partially restored colony spreading on the 15 mM glucose-containing plate (Fig. 2B and Fig. S1). E. coli-F. johnsoniae shuttle vector plasmids containing the mfsA⁺ and *mfsA-gfp* fusion genes were then introduced into strain DFJ1, resulting in *mfsA/mfsA*⁺ complemented (DFJ1/pDF2 and mfsA/mfsA-gfp strains and DFJ1/pDF3). Complemented strains DFJ1/pDF2 and DFJ1/pDF3 showed no colony spreading on a 15 mM glucose-containing plate, just as the wild type did (Fig. 2B and Fig. S1). The other sixteen mutants had the transposon DNA in different genes and the results will be reported elsewhere.

Growth of the *mfsA* mutant in media with or without glucose

The *mfsA* mutant, the *mfsA/mfsA*⁺ complemented strain, and the wild type were incubated in mPY2 with or without 15 mM glucose, and growth of the strains was determined via optical density at 600 nm. Addition of glucose resulted in increased growth of the wild-type and *mfsA/mfsA*⁺ complemented strains, whereas the growth of the *mfsA* mutant was not changed by addition of glucose (Fig. 2C).

Glucose uptake in the *mfsA* mutant

Glucose uptake of the *mfsA* mutant, of the *mfsA/mfsA*⁺ complemented strain, and of the wild type was determined. The *mfsA/mfsA*⁺ complemented strain and the wild type showed glucose uptake, whereas the *mfsA* mutant showed no glucose uptake (Fig. 3A). Glucose uptake of the wild type was decreased by proton motive force inhibitors, CCCP and DNP, but not decreased by ATPase inhibitors, arsenate, and DCCD, indicating that the glucose uptake system in *F. johnsoniae* depends on proton motive force (Fig. 3B).

Gene expression in the mfsA mutant

To determine which genes are influenced by mfsA, microarray analysis of the mfsA mutant, which was grown in agar plates supplemented with 15 mM glucose, was performed, and the result was compared to that of the wild type grown in the glucose-supplemented agar plates. The ratio of expression of each gene in the mfsA mutant with glucose versus that in the wild type with glucose was compared with the ratio of expression of each gene in the wild type without glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose versus that in the wild type with glucose versus that in the wild type without glucose. The 100 genes most upregulated

and downregulated by the disruption of mfsA (mfsA with glucose versus the wild type with glucose) were compared with those under the influence of depletion of glucose in the wild type (wild type without glucose versus wild type with glucose) (Tables S2 and S3). Seventy-seven and 87 of the 100 upregulated and downregulated genes, respectively, were common between the two comparisons. These results suggested that the mfsA mutant experienced glucose starvation even when glucose was added into the medium.

Location of the MfsA protein

To determine intracellular localization of MfsA, we used the *mfsA/mfsA-gfp* fusion strain. Using fluorescence microscopy, we found that green fluorescence was located around the cell (Fig. 5A), suggesting that MfsA is located in the cell surface membranes. FM4-64 (red) and DAPI (blue) were used to indicate the areas of lipid layers and cytoplasm, respectively (Fig. 5B, C, and D).

Complementation of the glucose-negative phenotype in *E. coli* by the *mfsA* gene

We tested whether *F. johnsoniae* MfsA can complement the glucose-negative phenotype in *E. coli*. The *mfsA* and *mfsA-gfp* genes were placed after the T7 promoter in plasmid pET-22b, resulting in vectors pDF4 and pDF5, respectively. The glucose-negative *E. coli* strain LJ141 that lacks detectable glucose transport activity was then transformed with pDF4 and pDF5. The transformed *E. coli* strains were streaked onto MacConkey agar plates supplemented with 50 mM glucose. Strains LJ141/pDF4 and LJ141/pDF5 formed red colonies because of the fermentation of glucose, whereas strains LJ141 and LJ141 carrying the vector plasmid pET-22b showed non-glucose-fermenting ocher colonies, demonstrating that *F. johnsoniae* MfsA can function as a glucose transporter in *E. coli* (Fig. 6). Strains LJ141/pDF4 and LJ141/pDF5 did not form red colonies on MacConkey agar supplemented with 50 mM mannose or mannitol, suggesting that MfsA has no contribution to the uptake of mannose or mannitol (Fig. 6).

DISCUSSION

The results presented here illustrate the role of *mfsA* in glucose inhibition of colony spreading. A recent study by Larsbrink et al (28) identified a locus containing mfsA and 10 other genes that were involved in F. johnsoniae chitin utilization. mfsA was shown to be required for growth on glucose, N-acetylglucosamine, and chitin. Our results confirm and extend these findings. Genome information on F. johnsoniae reveals that it has no phosphotransferase system but has 8 genes encoding putative major MFS transporters. The MFS is one of the largest groups of secondary active transporters conserved from bacteria to humans. In this study, we found that (i) the mfsA mutant showed no glucose uptake, (ii) the mfsA mutant did not utilize glucose for its growth, and (iii) the mfsA gene complemented the glucose-negative phenotype of E. coli LJ141. The present findings with the previous one (28) strongly indicate that mfsA (Fjoh 4565, which is one of the 8 above-mentioned genes) encodes the sole glucose transporter in F. johnsoniae. Comparison with proteins in the MFS family using the IUBMB-approved Transporter Classification Database (www.tcbd.org) revealed that a protein most similar to MfsA is glucose/galactose transporter Ggp (2.A.1.7.2) in Brucella abortus, which belongs to the fucose: H+ symporter (FHS) family (2.A.1.7) and that the top 13 proteins similar to MfsA belong to the FHS family. These 13 proteins including Ggp in B. abortus have 12 transmembrane segments (TMSs) except for one protein, which has 11

TMSs. On the other hand, MfsA appears to have 14 TMSs (Fig. S2). In this study, we found that MfsA requires proton motive force for its glucose uptake; this finding is consistent with the comparison result, which suggested that MfsA may belong to the FHS family.

In 1947, Stanier (6) reported that F. johnsoniae cells form spreading colonies on nutrient-poor plates. The cells formed rather small colonies with smooth edges on a plate with 2.0% tryptone, whereas they formed larger colonies with irregular, feathery edges on a plate containing 0.25% tryptone. Carbohydrates such as glucose, maltose, glucosamine, N-acetylglucosamine, sucrose, and trehalose can suppress colony spreading of F. johnsoniae (21). Most of the carbohydrates are metabolized by F. johnsoniae, but this bacterium cannot utilize sucrose as an energy source. Nevertheless, sucrose inhibits colony spreading. Similarly, a nonmetabolizable derivative of glucose, 2-deoxy-glucose, also inhibits colony spreading although the inhibitory effect was much weaker than that of D-glucose, suggesting that there may be two types of the carbohydrate-mediated inhibitory effect: metabolism-dependent and metabolism-independent. In this study in F. johnsoniae, we created mutations that suppress the effect of glucose on colony spreading. They included the mutant possessing the transposon DNA in the mfsA gene, which encode an MFS protein. These results suggest that the glucose-mediated inhibitory effect on colony spreading is at least partly attributable to glucose uptake. Further research is needed to find which metabolite(s) in the metabolic pathway inhibits colony spreading.

ACKNOWLEDGMENT

We thank Drs. K. Jahreis and S. Chen for generous gifts of E. coli LJ141 and the shuttle

plasmid pFj29, respectively. This work was supported by the Japan Society for the Promotion of Science Kakenhi Grants (Grant IDs 24117006 and 25293375 to KN).

DISCLOSURE

The authors have no conflicting financial interests.

REFERENCES

- 1. Jarrell K.F., McBride M.J. (2008) The surprisingly diverse ways that prokaryotes move. *Nat Rev Microbiol* **6**: 466-76.
- McBride M.J., Nakane D. (2015) Flavobacterium gliding motility and the type IX secretion system. *Curr Opin Microbiol* 28: 72-7.
- Sato K. Naito M., Yukitake H., Hirakawa H., Shoji M., McBride M.J., Rhodes R.G., Nakayama K. (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. *Proc Natl Acad Sci U S A* 107: 276-81.
- Nakayama K. (2015) *Porphyromonas gingivalis* and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. *J Periodont Res* 50: 1-8.
- Nakane D., Sato K., Wada H., McBride M.J., Nakayama K. (2013) Helical flow of surface protein required for bacterial gliding motility. *Proc Natl Acad Sci U S A* 110: 11145-50.
- Stanier R.Y., (1947) Studies on nonfruiting myxobacteria I. *Cytophaga johnsoae* sp., a chitin-decomposing myxobacterium. *J Bacteriol* 53: 297-315.
- Agarwal S., Hunnicutt D.W., McBride M.J. (1997) Cloning and characterization of the *Flavobacterium johnsoniae* (*Cytophaga johnsonae*) gliding motility gene, *gldA*. *Proc Natl Acad Sci U S A* 94: 12139-44.
- Braun T.F., Khubbar M.K., Saffarini D.A., McBride M.J. (2005) *Flavobacterium johnsoniae* gliding motility genes identified by mariner mutagenesis. *J Bacteriol* 187: 6943-52.
- 9. Braun T.F., McBride M.J. (2005) *Flavobacterium johnsoniae* GldJ is a lipoprotein that is required for gliding motility. *J Bacteriol* **187**: 2628-37.

- Hunnicutt D.W., Kempf M.J., McBride M.J. (2002) Mutations in *Flavobacterium johnsoniae gldF* and *gldG* disrupt gliding motility and interfere with membrane localization of GldA. *J Bacteriol* 184: 2370-8.
- Hunnicutt D.W., McBride M.J. (2000) Cloning and characterization of the *Flavobacterium johnsoniae* gliding motility genes *gldB* and *gldC*. J Bacteriol 182:911-8.
- Hunnicutt D.W., McBride M.J. (2001) Cloning and characterization of the *Flavobacterium johnsoniae* gliding motility genes *gldD* and *gldE*. *J Bacterial* 183: 4167-75.
- McBride M.J., Braun D.W. (2004) GldI is a lipoprotein that is required for *Flavobacterium johnsoniae* gliding motility and chitin utilization. *J Bacteriol* 186: 2295-302.
- McBride M.J., Braun T.F., Brust J.L. (2003) *Flavobacterium johnsoniae* GldH is a lipoprotein that is required for gliding motility and chitin utilization. *J Bacteriol* 185: 6648-57.
- 15. Rhodes R.G., Samarasam M.N., Shrivastava A. van Baaren J.M., Pochiraju S., Bollampalli S., McBride M.J. (2010) *Flavobacterium johnsoniae gldN* and *gldO* are partially redundant genes required for gliding motility and surface localization of SprB. *J Bacteriol* **192**: 1201-11.
- Shrivastava A., Rhodes R.G., Pochiraju S., Nakane D., McBride M.J. (2012) *Flavobacterium johnsoniae* RemA is a mobile cell surface lectin involved in gliding. *J Bacteriol.* 194: 3678-88.

- Rhodes R.G., Samarasam M.N., Van Groll E.J., McBride M.J. (2011) Mutations in *Flavobacterium johnsoniae sprE* result in defects in gliding motility and protein secretion. *J Bacteriol.* 193: 5322-7.
- Rhodes R.G., Pucker H.G., McBride M.J. (2011) Development and use of a gene deletion strategy for *Flavobacterium johnsoniae* to identify the redundant gliding motility genes *remF*, *remG*, *remH*, and *remI*. *J Bacteriol*. **193**: 2418-28.
- Rhodes R.G., Nelson S.S., Pochiraju S., McBride M.J. (2011) *Flavobacterium johnsoniae sprB* is part of an operon spanning the additional gliding motility genes *sprC, sprD*, and *sprF.J Bacteriol* 193: 599-610.
- 20. Chang L.E. Pate J.L. (1981) Nutritional requirements of *Cytophaga johnsonae* and some of its auxotrophic mutants. *Curr Microbiol* **5**: 235-40.
- 21. Wolkin R.H., Pate J.L. (1984) Translocation of motile cells of the gliding bacterium *Cytophaga johnsonae* depends on a surface component that may be modified by sugars. J Gen Microbiol 130: 2651-69.
- 22. Gorski L., Godchaux III W., Leadbetter E.R. (1993) Structural specificity of sugars that inhibit gliding motility of *Cytophaga johnsonae*. *Arch Microbiol* **60**: 121-5.
- 23. Simon R., Priefer U., Puhler A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. *Bio/Technology* 2:784-91.
- 24. Chen S., Bagdasarian M., Kaufman M.G., Bates A.K., Walker E.D. (2007) Mutational analysis of the *ompA* promoter from *Flavobacterium johnsoniae*. J Bacteriol 189:5108–18.

- 25. McBride M.J., Baker S.A. (1996) Development of techniques to genetically manipulate members of the genera *Cytophaga*, *Flavobacterium*, *Flexibacter*, and *Sporocytophaga*. *Appl Environ Microbiol* **62**: 3017-22.
- 26. Monden M., Koyama H., Otsuka Y., Morioka T., Mori K., Shoji T., Mima Y., Motoyama K., Fukumoto S., Shioi A., Emoto M., Yamamoto Y., Yamamoto H., Nishizawa Y., Kurajoh M., Yamamoto T., Inaba M. (2013) Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice. *Diabetes* 62: 478-89.
- 27. Saito K., Lee S., Shiuchi T., Toda C., Kamijo M., Inagaki-Ohara K., Okamoto S., Minokoshi Y. (2011) An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes. *Anal Biochem* **412**:9–17
- 28. Larsbrink J., Zhu Y., Kharade S.S., Kwiatkowski K.J., Eijsink V.G.H., Koropatkin N.M., McBride M.J., Pope P.B. (2016) A polysaccharide utilization locus from *Flavobacterium johnsoniae* enables conversion of recalcitrant chitin. *Biotechnol Biofuels* **9**: 260.

FIGURE LEGENDS

Fig. 1. The inhibitory effect of D-glucose on colony spreading. (A) *F. johnsoniae* strains wild type (UW101) and *gldJ* mutant (UW102-55) were grown on PY2 agar with or without 15 mM D-glucose at 25°C for 96 h. (B) A concentration-dependent inhibitory effect of D-glucose on colony spreading. (C) Effects of 2-deoxy-D-glucose on colony spreading.

Fig. 2. Insertion sites of transposon-mediated mutations, and the growth of the *mfsA* mutant on a PY2 plate with D-glucose and in mPY2 broth with or without D-glucose. (A) Insertion site of Tn4351 in Fjoh_4565 (*mfsA*). (B) Colonies of *F. johnsoniae* strains: wild type (CJ1827), $\Delta mfsA$ (DFJ1), $\Delta mfsA$ with a vector plasmid (DFJ1/pNS1), $\Delta mfsA$ /pNS1 containing $mfsA^+$ (DFJ1/pDF2), and $\Delta mfsA$ /pNS1 containing $mfsA^+$ (DFJ1/pDF2), and $\Delta mfsA$ /pNS1 containing mfsA-gfp (DFJ1/pDF3) on PY2 agar with 15 mM D-glucose after 5 days incubation at 25°C. (C) Growth of the wild type, $\Delta mfsA$, and $\Delta mfsA$ /pNS1 containing $mfsA^+$ (pDF2) in mPY2 broth with (red) or without (blue) 15 mM D-glucose.

Fig. 3. Glucose uptake of *F. johnsoniae* strains. (A) *F. johnsoniae* strains—wild type, $\Delta mfsA/pNS1$ containing $mfsA^+$ (pDF2), and $\Delta mfsA/pNS1$ containing mfsA-gfp(pDF3)—were grown in the CYE medium at 27°C to optical density of ~1.0 at 600 nm. After two washes with 10 mM Tris-HCl buffer (pH 7.5), the cells were incubated in the buffer containing 2-deoxy-D-glucose at RT for 2 h. Glucose uptake was measured by an enzymatic photometric assay. (B) *F. johnsoniae* wild-type cells were treated with CCCP, DNP, arsenate, or DCCD. *: P<0.001. Fig. 4. Comparison of gene expression between the *mfsA* mutant with glucose and the wild type without glucose. Ratio of expression of each gene in the *mfsA* mutant with glucose versus that in the wild type with glucose was compared with ratio of expression of each gene in the wild type without glucose versus that in the wild type without glucose versus that in the wild type without glucose.

Fig. 5. Subcellular localization of MfsA. Cells were examined by microscopy to identify the location of MfsA. To stain DNA and cell membranes, DAPI (Invitrogen) and FM4-64 (Invitrogen) were used, respectively. A, GFP fluorescence; B, FM4-64 fluorescence; C, DAPI fluorescence; D, Merging of A, B, and C. All the images were captured at 100× magnification.

Fig. 6. Complementation of the glucose-negative phenotype of *E. coli*. *E. coli* strains LJ141 (glucose-negative), LJ141 harboring pET-22b, LJ141 harboring pET-22b containing $mfsA^+$ (pDF4), and LJ141 harboring pET-22b containing mfsA-gfp (pDF5) were streaked on MacConkey agar plates supplemented with 50 mM glucose, mannose, and mannitol. Red colonies indicate the fermentation of sugars, whereas ocher colonies reflect a deficiency in sugar fermentation.

Supporting Information

Table S1. Primers.

Table S2. Upregulated genes. The 100 genes most upregulated by the disruption of

mfsA (*mfsA* with glucose versus the wild type with glucose) were compared with those under the influence of depletion of glucose in the wild type (wild type without glucose versus wild type with glucose).

Table S3. Downregulated genes. The 100 genes most downregulated by the disruption of *mfsA* (*mfsA* with glucose versus the wild type with glucose) were compared with those under the influence of depletion of glucose in the wild type (wild type without glucose versus wild type with glucose).

Fig. S1. Colony spreading of *F. johnsoniae* strains on PY2 agar with or without glucose. *F. johnsoniae* strains were incubated on PY2 agar with 5 mM glucose (A), with 15 mM glucose (B) and without glucose (C) for 5 days at 25°C. Panel A: 1, wild type (CJ1827); 2, $\Delta mfsA$ /pNS1 containing mfsA-gfp (DFJ1/pDF3); 3, $\Delta mfsA$ with a vector plasmid (DFJ1/pNS1); 4, $\Delta mfsA$ (DFJ1); 5, $\Delta mfsA$ /pNS1 containing $mfsA^+$ (DFJ1/pDF2). Panel B: 1, wild type (CJ1827); 2, $\Delta mfsA$ with a vector plasmid (DFJ1/pNS1); 3, $\Delta mfsA$ /pNS1 containing mfsA-gfp (DFJ1/pDF3); 4, $\Delta mfsA$ (DFJ1); 5, $\Delta mfsA$ /pNS1 containing $mfsA^+$ (DFJ1/pDF2). Panel C: 1, wild type (CJ1827); 2, $\Delta mfsA$ /pNS1 containing $mfsA^+$ (DFJ1/pDF2); 3, $\Delta mfsA$ /pNS1 containing mfsA-gfp(DFJ1/pDF3); 4, $\Delta mfsA$ with a vector plasmid (DFJ1/pDF3); 4, $\Delta mfsA$ with a vector plasmid

Fig. S2. Transmembrane segments of the MfsA protein.

Table 1. Bacterial strains and plasmids used in this study

Strain	Strain Description	
E. coli strain		
S17-1 λ <i>pir</i>	hsdR17 (rK ⁻ mK ⁻) recA RP4-2-Tc::Mu aph ::Tn7 λpir lysogen, Sm ^r	23
LJ141	W3110 Δ[<i>ptsHI crr</i>]::kan galP ::cam mgl500 ::Tn10	K. Jahreis
F. johnsoniae strain	1	
UW101	wild type	ATCC
CJ1827	WT (rps1), Background UW101	18
UW102-55	gldJ	9
DFJ1	$\Delta mfsA$	this study
F. johnsoniae plasr	nid	
pFj29	Ap ^r Em ^r , E. coli-F. johnsoniae shuttle plasmid	24
pNS1	Ap ^r Em ^r , <i>E. coli-F. johnsoniae</i> shuttle plasmid	this study
pDF1	Apr, pRR51 containing mfsA upstream and downstream regions	this study
pDF2	Ap ^r Em ^r , pNS1 containing mfsA ⁺	this study
pDF3	$Ap^{r}Em^{r}$, pNS1 containing <i>mfsA-gfp</i>	this study
pRR51	suicide vector	18
E. coli plasmid		
pET-22b	Ap ^r , expression vector	Novagen
pDF4	Ap^{r} , pET-22b containing <i>mfsA</i> +	this study
pDF5	Ap ^r , pET-22b containing <i>mfsA-gfp</i>	this study

15 mM

D-glucose

WT

15 mM 2-Deoxy-D-Glucose

WT

Fig. 2 С WT 1.0 А 0.8 009[.]0.6 0.4 Fjoh_4565 (mfsA) 0.2 0.0 Tn4351 10 2 4 6 8 0 Time (h) mfsA 1.0 0.8 009.0.6 0.4 В 0.2 ∆mfsA *∆mfsA/*pNS1 WT 0.0 0 2 4 6 8 10 Time (h) mfsA/mfsA+ 1.0 0.8 009.0.6 0.4 0.2 0.0 *∆mfsA/*pDF2 *∆mfsA/*pDF3 0 2 4 6 8 10

Time (h)

Fig. 3

Fig. 4

WT without glucose / WT with glucose

Fig. 5

LJ141 vector *mfsA*⁺ *mfsA-gfp*

Glucose +

Mannose +

Mannitol +

Table S1. Primers.

F4565-UF-BamHI: GGATCCTATACGAAAATGCCAAAACATCCC F4565-UR-SalI: GTCGACTACTGGAATCAGGATGTCATTGGC F4565-DF-SalI: GTCGACCTCTTATGTAGTACCACTTATTGG F4565-DR-SphI: GCATGCTCCTCTTGTGGCTTTAGACGTTCG F4565-F-BamHI: GGATCCATGAGTTCAGAAAATGTTCAAACC F4565-stop-R-NotI: GCGGCCGCATTAGTGTCCGCCGCCTTCGCT F4565-GR-NotI: GCGGCCGCAGTGTCCGCCGCCTTCGCTTTC pFj29-1st-F: GGATCCGGTACCGATATGGCGGCCGCAGTAAAGGAGAAGAAC pFj29-2nd-F: AGATCTCTTTAAGAAGGAGATATACATATGGGATCCGGTACCGATATG Gfpmut3-R-SphI: GCATGCTTATTTGTATAGTTCATCCATGCC F4565-22bF-NdeI: CATATGAGTTCAGAAAATGTTCAAACCAAA F4565-22bR-XhoI: CTCGAGGTGTCCGCCGCCTTCGCTTTCAAC Gfpmut3-stopR-XhoI: CTCGAGTTATTTGTATAGTTCATCCATGCC

Table S2. Upr	egulated genes.									
Fioh	<i>∆ mfsA</i> with glucose versus WI with glucose definition	ratio <i>t</i> -te	est		Fioh	definition	WT without gl	ucose versus WT with glucose	ratio	t-test
1 Fjoh_385	6 Fjoh_3856-hypothetical protein	6436 8.74	4E-11	1	Fjoh_385	6 Fjoh_385	6-hypothetica	Il protein	4616	3.91E-08
2 Fjoh_247	8 Fjoh_2478-hypothetical protein	2445 1.01	1E-05	2	2 Fjoh_247	8 Fjoh_247	8-hypothetica	Il protein	1589	2.08E-05
3 Fjon_247 4 Fioh 385	5 Fioh 3855-hypothetical protein	1045 6.04	4E-08	2	3 Fjon_484 1 Fioh 247	18 Fjon_484 7 Fioh 247	8-nypotnetica 7-cvtochrome	n protein e-c peroxidase	855	0.002141 3.06E-07
5 Fjoh_385	Fjoh_3854-hypothetical protein	867 3.81	1E-07	5	5 Fjoh_484	19 Fjoh_484	9-hypothetica	l protein	697	1.17E-05
6 Fjoh_385	7 Fjoh_3857-TonB-dependent receptor	650 2.17	7E-05	6	5 Fjoh_485	50 Fjoh_485	0-hypothetica	Il protein	610	3.8E-08
7 Fjon_385 8 Fjoh_054	9 Fjoh_0549-hypothetical protein	586 3.63 466 3.44	4E-08	8	7 Fjon_380 3 Fjoh_196	50 Fjon_385 50 Fjoh_196	o-nypotnetica 0-hypothetica	il protein Il protein	605	8.54E-05 5.91E-06
9 Fjoh_085	2 Fjoh_0852-hypothetical protein	432 7.19	9E-09	ę	Fjoh_484	7 Fjoh_484	7-hypothetica	l protein	567	0.006007
10 Fjoh_385	8 Fjoh_3858-FecR anti-FecI sigma factor	422 0.00	00156	10) Fjoh_195	59 Fjoh_195	9-hypothetica	Il protein	425	0.000585
12 Fjoh_114	8 Fjoh_1148-meta-pathway phenol degradation-like protein	307 0.0	.00022	12	2 Fjoh_054	9 Fjoh_054	9-hypothetica	I protein	397	1.97E-07
13 Fjoh_289	Fjoh_2894-TonB-dependent receptor, plug	290 1.22	2E-07	13	3 Fjoh_195	58 Fjoh_195	8-hypothetica	l protein	390	0.0132
14 Fjoh_385 15 Fioh_416	2 Fjoh_3852-hypothetical protein 8 Fioh_4168-hypothetical protein	28/ /.09	9E-09	14	1 Fjoh_183 5 Fioh_114	33 Fjoh_183 17 Fich 114	3-hypothetica 7-response re	Il protein Agulator receiver protein	324 289	2.45E-22 0.000191
16 Fjoh_114	9 Fjoh_1149-hypothetical protein	262 0.00	04941	16	5 Fjoh_195	7 Fjoh_195	7-ATPase cer	ntral domain-containing protein	257	1.57E-06
17 Fjoh_416	9 Fjoh_4169-TonB-dependent receptor	223 6	6E-06	17	7 Fjoh_289	4 Fjoh_289	4-TonB-depe	ndent receptor, plug	240	9.35E-07
18 Fjon_488 19 Fioh 210	Fjon_4889-nypotnetical protein Fioh 2102-amino acid adenvlation protein	185 5.7	7E-07	19	Fioh 114	8 Fioh 114	2-amino acid 8-meta-pathy	adenyiation protein vav phenol degradation-like protein	229	0.000551
20 Fjoh_289	Fjoh_2892-hypothetical protein	163 4.56	6E-09	20	Fjoh_385	7 Fjoh_385	7-TonB-depe	ndent receptor	208	4.87E-05
21 Fjoh_289	3 Fjoh_2893-hypothetical protein	160 2.07	7E-09	21	Fjoh_416	8 Fjoh_416	8-hypothetica	Il protein	207	4.99E-08
23 Fjoh_289	1 Fjoh_2891-hypothetical protein	136 8.48	8E-09	23	Fjoh_200	3 Fjoh_385	o-ono type o 3-peptidase S	341	195	9.36E-06
24 Fjoh_210	3 Fjoh_2103-alpha/beta hydrolase fold protein	116 1.13	3E-06	24	Fjoh_485	5 Fjoh_485	5-hypothetica	Il protein	194	2.96E-08
25 Fjoh_417	7 Fjoh_4177-glycoside hydrolase	101 1.97	7E-06	25	5 Fjoh_385	58 Fjoh_385	8-FecR anti-f	FecI sigma factor	176	0.001114
27 Fioh 347	7 Fioh 3477-hypothetical protein	99 7.76	6E-07	20	7 Fioh 114	9 Fioh 114	9-hypothetica	l protein	173	0.006355
28 Fjoh_317	1 Fjoh_3171-pyridoxal-dependent decarboxylase	98 2.38	8E-07	28	3 Fjoh_322	27 Fjoh_322	7-hydrophobe	/amphiphile efflux-1 (HAE1) family protein	152	5.49E-05
29 Fjoh_472	3 Fjoh_4723-endonuclease I	95 8.98	8E-09	29	Fjoh_416	59 Fjoh_416 12 Fieb 210	9-TonB-depe	ndent receptor	149	2.52E-05
31 Fjoh_347	8 Fjoh_3478-hypothetical protein	93 1.95	5E-08	31	Fjoh_289	2 Fjoh_289	2-hypothetica	Il protein	143	3.47E-08
32 Fjoh_340	1 Fjoh_3401-hypothetical protein	90 3.43	3E-05	32	2 Fjoh_488	89 Fjoh_488	9-hypothetica	l protein	140	1.48E-06
33 Fjoh_31 / 34 Fioh_347	0 Fjoh_31/0-nitroreductase 6 Fioh_3476-OmpA/MotB.domain-containing protein	88 1.44	4E-07	33	3 Fjoh_183 1 Fioh 200	32 Fjoh_183 18 Fich 209	2-hypothetica 8-TonB-dene	il protein ndent recentor	138	8.88E-06
35 Fjoh_114	6 Fjoh_1146-hypothetical protein	88 2.27	7E-07	35	5 Fjoh_289	3 Fjoh_289	3-hypothetica	Il protein	137	2.76E-08
36 Fjoh_417	5 Fjoh_4175-glycoside hydrolase	85 3.66	6E-06	36	5 Fjoh_142	23 Fjoh_142	3-hypothetica	Il protein	127	0.001784
37 Fjoh_417 38 Fioh 142	4 Fjoh_41/4-carbohydrate-binding family 6 protein 3 Fioh 1423-hypothetical protein	84 2.75	5E-08 02033	3/	7 Fjoh_208 3 Fioh 289	84 Fjoh_208 91 Fioh 289	4-hypothetica 1-hypothetica	il protein Il protein	125	3.36E-21 2.79E-08
39 Fjoh_334	9 Fjoh_3349-hypothetical protein	81 7.08	8E-05	39	Fjoh_341	4 Fjoh_341	4-hypothetica	Il protein	121	7.56E-06
40 Fjoh_218	5 Fjoh_2185-hypothetical protein	80 2.08	8E-06	40) Fjoh_323	89 Fjoh_323	9-hydrophobe	/amphiphile efflux-1 (HAE1) family protein	120	1.23E-05
41 Fjon_209 42 Fioh 417	6 Figh 4176-carbohydrate-binding family 6 protein	80 1.58 77 4.51	1E-05	41	Fioh 209	95 Fjon_209 94 Fioh 209	o−amino acid 4−class III ami	adenyiation protein inotransferase	113	4.8E-06 0.000261
43 Fjoh_209	5 Fjoh_2095-amino acid adenylation protein	72 4.36	6E-06	43	Fjoh_209	7 Fjoh_209	7-amino acid	adenylation protein	110	1.78E-05
44 Fjoh_417	0 Fjoh_4170-FecR anti-FecI sigma factor	71 0.01	10909	44	1 Fjoh_322	8 Fjoh_322	8-RND family	efflux transporter MFP subunit	109	1.91E-06
45 Fjoh_209 46 Fioh 208	4 Fjoh_2094-class III aminotransferase 4 Fioh 2084-hypothetical protein	70 0.00	3E-18	4:	5 Fjoh_485 5 Fioh 385	2 Fioh 385	1-hypothetica 2-hypothetica	il protein Il protein	107	0.000228 2.61E-08
47 Fjoh_322	7 Fjoh_3227-hydrophobe/amphiphile efflux-1 (HAE1) family protein	68 3.56	6E-05	47	7 Fjoh_173	88 Fjoh_173	8-malate synt	hase	99	4.98E-06
48 Fjoh_209	9 Fjoh_2099-thioesterase	67 0.00	01056	48	3 Fjoh_485	6 Fjoh_485	6-hypothetica	Il protein	98	1.08E-15
49 Fjoh_385 50 Fioh 335	I Fjoh_3851-polyphosphate kinase 0 Fioh 3350-hypothetical protein	65 0.00	03495	49	Fioh_485	4 Fjoh_485 32 Fioh 323	4-hypothetica 2-UspA doma	il protein in-containing protein	96 93	1.56E-13 0.000199
51 Fjoh_456	2 Fjoh_4562-TonB-dependent receptor, plug	64 2.44	4E-05	51	Fjoh_209	9 Fjoh_209	9-thioesteras	e	93	0.001601
52 Fjoh_417	1 Fjoh_4171-ECF subfamily RNA polymerase sigma-24 factor	63 0.01	19574	52	2 Fjoh_209	3 Fjoh_209	3-amino acid	adenylation protein	91	1.99E-07
53 Fjon_151 54 Fioh 325	3 Fioh 3253-ECF subfamily RNA polymerase sigma-24 factor	62 8.44	4E-05	54	Fjon_347 Fioh 322	25 Fioh 322	7-nypothetica 5-hypothetica	a protein Il protein	89	0.000234
55 Fjoh_341	8 Fjoh_3418-hypothetical protein	60 1.5	5E-16	55	5 Fjoh_173	39 Fjoh_173	9-isocitrate ly	vase	88	0.005507
56 Fjoh_315	4 Fjoh_3154-hypothetical protein	60 7.02	2E-07	56	5 Fjoh_210	0 Fjoh_210	0-hypothetica	Il protein	87	1.66E-19
58 Fjoh_457	7 Fjoh 4577-metallophosphoesterase	58 0.00	00581	58	Fjoh_384 Fjoh_347	6 Fjoh_347	6-OmpA/Mot	B domain-containing protein	83	9.57E-05
59 Fjoh_432	5 Fjoh_4325-hypothetical protein	57 3.71	1E-06	59	Fjoh_369	2 Fjoh_369	2-hypothetica	Il protein	82	7.31E-13
60 Fjoh_210 61 Fioh_325	0 Fjoh_2100-hypothetical protein 1 Fioh_3251-TonB-dependent recentor	57 5.94	4E-18	60) Fjoh_417 1 Fioh 218	74 Fjoh_417 5 Fioh_218	4-carbohydrat 5-bypothetica	te-binding family 6 protein I protein	81 80	1.27E-07 4.86E-06
62 Fjoh_082	1 Fjoh_0821-TonB-dependent receptor	56 2.4	4E-05	62	2 Fjoh_209	6 Fjoh_209	6-beta-lactan	nase domain-containing protein	79	9.86E-05
63 Fjoh_210	Fjoh_2101-cyclic peptide transporter	55 0.00	00392	63	3 Fjoh_472	3 Fjoh_472	3-endonuclea	seI	78	2.16E-08
64 Fjoh_317 65 Fioh 136	3 Fjoh_31/3-L-lysine 6-monooxygenase 8 Fioh 1368-TonB-dependent receptor	55 7.01	3E-06	64	1 Fjoh_347 5 Fioh 114	8 Fjoh_347	8-hypothetica 6-hypothetica	il protein Il protein	/8 77	4.85E-08 1.04E-06
66 Fjoh_209	3 Fjoh_2093-amino acid adenylation protein	54 2.42	2E-07	66	5 Fjoh_208	88 Fjoh_208	8-amino acid	adenylation protein	76	0.000701
67 Fjoh_209	6 Fjoh_2096-beta-lactamase domain-containing protein	53 4.13	3E-05	67	7 Fjoh_322	26 Fjoh_322	6-RND efflux	system outer membrane lipoprotein	75	9.26E-06
69 Fioh 293	י רואד אנארארעס דא דין דאזווע transporter MFP subunit 7 Fjoh_2937-hypothetical protein	53 2.67 52 1.13	7E-06 3E-07	60	Fjoh_417	0 Fjoh_417 4 Fioh 210	u-giycoside h 4-hypothetica	yarolase Il protein	/3 73	1.25E-05 0.012579
70 Fjoh_054	6 Fjoh_0546-hypothetical protein	51 1.1	1E-08	70	Fjoh_208	7 Fjoh_208	7-NAD-deper	ident epimerase/dehydratase	72	2.05E-05
71 Fjoh_208	8 Fjoh_2088-amino acid adenylation protein	51 0.00	00010	71	Fjoh_417	7 Fjoh_417	/-glycoside hy	ydrolase de transporter	72	7.23E-06
73 Fjoh 208	9 Fjoh_2089-amino acid adenylation protein	48 5.25	5E-05	72	3 Fjoh 208	39 Fjoh 208	9-amino acid	adenylation protein	71	5.81E-05
74 Fjoh_485	7 Fjoh_4857-beta-glucosidase	47 1.23	3E-05	74	1 Fjoh_151	8 Fjoh_151	8-hypothetica	Il protein	68	0.000125
/5 Fjoh_209 76 Fich 323	U Fjoh_2090-amino acid adenylation protein 9 Fioh 3239-bydrophohe/amphiphile effluy-1 (HAF1) family protein	47 3.46	0E-06	75	5 Fjoh_340 5 Fioh_083	71 Fjoh_340 21 Fjoh_082	I-hypothetica	il protein ndent receptor	68 68	9.29E-05 2 75E-05
77 Fjoh_208	7 Fjoh_2087-NAD-dependent epimerase/dehydratase	46 1.12	2E-05	77	7 Fjoh_323	38_Fjoh_323	8-RND family	efflux transporter MFP subunit	68	2.68E-07
78 Fjoh_315	3 Fjoh_3153-hypothetical protein	45 1.74	4E-15	78	Fjoh_209	0 Fjoh_209	0-amino acid	adenylation protein	67	4.18E-06
79 Fjoh_322 80 Fich 240	5 Fjoh_3225-hypothetical protein 8 Fich_2408-hypothetical protein	45 0.00	2E-13	79	Fjoh_209	2 Fjoh_209	2-AMP-deper	ndent synthetase/ligase	65 65	9.19E-06
81 Fjoh_209	2 Fjoh_2092-AMP-dependent synthetase/ligase	43 1.14	4E-05	81	Fjoh_334	9 Fjoh_334	9-hypothetica	Il protein	64	0.00015
82 Fjoh_317	5 Fjoh_3175-MATE efflux family protein	42 4.48	8E-06	82	2 Fjoh_417	76 Fjoh_417	6-carbohydrat	te-binding family 6 protein	63	6.16E-05
83 Fjoh_456 84 Fioh 315	∎rjon_4361-hypothetical protein 5 Fioh 3155-Rhs element Vgr protein	41 0.00 41 2.8F	00353 5E-05	83 87	5 Fjoh_136 1 Fioh 209	1 Fjoh_136	o-IonB-depe 1-short-chain	ndent receptor dehydrogenase/reductase SDR	61 59	4./3E-06 0.000276
85 Fjoh_250	2 Fjoh_2502-hypothetical protein	41 6.65	5E-11	85	5 Fjoh_485	53 Fjoh_485	3-hypothetica	Il protein	59	4.04E-15
86 Fjoh_315	2 Fjoh_3152-phage tail protein	40 6.08	8E-07	86	6 Fjoh_457	7 Fjoh_457	7-metallophos	sphoesterase	58	0.000728
88 Figh 114	u rjon_vözu-nypotnetical protein 2 Fioh 1142-sulfatase	40 4.91 38 91	1E-05	87	Fjon_325 3 Fioh 485	52 Fioh 485	o-EGF subtan 2-hypothetica	ווא האא polymerase sigma-24 tactor Il protein	57 56	0.000126
89 Fjoh_324	7 Fjoh_3247-leucine-rich repeat-containing protein	37 3.82	2E-05	89	Fjoh_054	6 Fjoh_054	6-hypothetica	Il protein	52	1.93E-08
90 Fjoh_289	5 Fjoh_2895-FecR anti-FecI sigma factor	37 0.02	26316	90) Fjoh_268	89 Fjoh_268	9-hypothetica	l protein	52	9.89E-08
91 Fjoh_209 92 Fioh 243	7 Fich 2437-hypothetical protein	37 0.00	4E-06	91	Fjoh_240 2 Fioh 243	7 Fjoh_240	o-nypothetica 7-hypothetica	n protein Il protein	51 51	0.92E-14 1.06E-06
93 Fjoh_315	7 Fjoh_3157-GPW/gp25 family protein	36 2.06	6E-07	93	3 Fjoh_485	7 Fjoh_485	7-beta-glucos	sidase	50	1.07E-05
94 Fjoh_293	6 Fjoh_2936-PAS/PAC sensor protein	36 4.8	8E-05	94	1 Fjoh_082	0 Fjoh_082	0-hypothetica	Il protein Fool sigmo footor	50	4.89E-05
96 Fioh 134	4 Fjoh_3174-lucA/luco ramily protein 6 Fjoh_1346-hypothetical protein	30 6./9	JE-06 1E-07	96	5 Fjoh 208	6 Fioh 208	o-reck anti-l 6-4'-phospho	pantetheinyl transferase	49 48	0.017712
97 Fjoh_171	5 Fjoh_1715-ADP-heptoseLPS heptosyltransferase-like protein	35 1.13	3E-05	97	7 Fjoh_456	2 Fjoh_456	2-TonB-depe	ndent receptor, plug	48	7.25E-06
98 Fjoh_314	0 Fjoh_3140-catalase 9 Fjoh_3859-ECE subfamily RNA polymerase sigma-24 fector	35 8.29	9E-06	98	3 Fjoh_456	1 Fjoh_456	1-hypothetica	Il protein	47 17	0.000646
100 Fjoh_322	6 Fjoh_3226-RND efflux system outer membrane lipoprotein	33 9.55	5E-06	100) Fjoh_417	1 Fjoh_417	1-ECF subfan	nily RNA polymerase sigma-24 factor	46	0.027402

	Δmft with glucose versus WT with glucose		WT with glucose versus WT with glucose							
Fjoh	definition	ratio t-test	Figh definition	ratio t	t-t					
Fjoh_4837 Fioh_4836	Fjoh_483/-urease subunit gamma	0.0011 1.33E-	Fjoh_1780 Fjoh_1780-hypothetical protein	0.0007	3.					
oh 4863	Figh 4863-RND family efflux transporter MFP subunit	0.0021 4.41E-	3 Fioh 4836 Fioh 4836-urease subunit beta	0.0015	5.					
oh_4861	Fjoh_4861-RND efflux system outer membrane lipoprotein	0.0025 2.35E-	4 Fjoh 4837 Fjoh 4837-urease subunit gamma	0.0015	1.					
h_4862	Fjoh_4862-hydrophobe/amphiphile efflux-1 (HAE1) family protein	0.0026 5.58E-	5 Fjoh_2417 Fjoh_2417-hypothetical protein	0.0015	0.					
oh_4835	Fjoh_4835-urease subunit alpha	0.0033 1.81E-	6 Fjoh_2418 Fjoh_2418-nitrite reductase	0.0015	4.					
oh 1353	Fjoh_1261-major facilitator transporter	0.0030 2.39E-	8 Figh 1779 Figh 1779-hypothetical protein	0.0018	2.					
ioh 2338	Figh 2338-hypothetical protein	0.0040 0.0004	9 Figh 2416 Figh 2416-electron transport protein SCO1/SenC	0.0017	1.					
oh_1355	Fjoh_1355-major facilitator transporter	0.0041 0.0002	10 Fjoh 4056 Fjoh 4056-L-aspartate oxidase	0.0018	5.					
joh_4498	Fjoh_4498-hypothetical protein	0.0045 0.000	11 Fjoh_1068 Fjoh_1068-hypothetical protein	0.0020	1					
oh_2339	Fjoh_2339-hypothetical protein	0.0046 5.98E-	12 Fjoh_1281 Fjoh_1281-major facilitator transporter	0.0023	2.					
oh_2290	Fjoh_2290-hypothetical protein	0.0048 3.97E-	13 Fjoh_4863 Fjoh_4863-RND family efflux transporter MFP subunit	0.0024	4.					
joh_1354	Fjoh_1354-secretion protein HlyD family protein	0.0048 4.53E-	14 Fjoh_4055 Fjoh_4055-quinolinate synthetase complex subunit A	0.0028	6.					
ion_4497	Fjon_4497-nypotnetical protein	0.0053 2.72E-	15 Fjon_3910 Fjon_3910-(NIFe) hydrogenase maturation protein HypF 16 Fich 4861 Fich 4861-BND efflux system outer membrane linoprotein	0.0029	2					
ioh 3836	Figh 3836-thiamine pyrophosphate binding domain-containing protein	0.0062 2.73E-	17 Figh 4862 Figh 4862-hydrophobe/amphiphile efflux-1 (HAE1) family protein	0.0023	5.					
joh_4834	Fjoh_4834-urease accessory protein UreE	0.0062 1.49E-	18 Fjoh 4053 Fjoh 4053-CRP/FNR family transcriptional regulator	0.0032	0					
joh_3835	Fjoh_3835-amine oxidase	0.0063 6.24E-	19 Fjoh_4059 Fjoh_4059-hypothetical protein	0.0034	6.					
joh_4108	Fjoh_4108-phosphatidylserine decarboxylase	0.0085 8.58E-	20 Fjoh_1582 Fjoh_1582-hypothetical protein	0.0035	3.					
joh_4833	Fjoh_4833-urease accessory protein UreF	0.0090 0.0006	21 Fjoh_3907 Fjoh_3907-nickel-dependent hydrogenase, large subunit	0.0036						
joh_2005	Fjoh_2005-hypothetical protein	0.0099 1.6E-	22 Fjoh_3911 Fjoh_3911-FKBP-type peptidyl-prolyl cis-trans isomerase	0.0036	б. 1					
jon_1000	Figh 1781-hypothetical protein	0.0103 1.89E-	23 Fjoh_3903 Fjoh_3903-hydrogenase expression/synthesis, hypA 24 Fioh 4835 Fioh 4835-urease subunit alpha	0.0030	1					
ioh 4838	Fich 4838-hypothetical protein	0.0111 3.15E-	25 Figh 4058 Figh 4058-anaerobic ribonucleoside triphosphate reductase	0.0039	0					
joh_1618	Fjoh_1618-hypothetical protein	0.0119 1.06E-	26 Fjoh 2542 Fjoh 2542-coproporphyrinogen III oxidase	0.0040	1.					
joh_1780	Fjoh_1780-hypothetical protein	0.0127 3.93E-	27 Fjoh_1618 Fjoh_1618-hypothetical protein	0.0044	9.					
joh_4053	Fjoh_4053-CRP/FNR family transcriptional regulator	0.0127 0.0002	28 Fjoh_1353 Fjoh_1353-outer membrane efflux protein	0.0045	0.					
on_1582	Fjon_1982-hypothetical protein	0.0129 4.22E-	29 Fjon_4498 Fjoh_4498-hypothetical protein	0.0045						
ioh 2416	Figh 2416-electron transport protein SCO1/SepC	0.0144 3.76E=	31 Figh 3908 Figh 3908-Ni/Fe-bydrogenase hittine cytochrome subunit	0.0045	8. n					
ioh 2419	Figh 2418-nitrite reductase	0.0159 514E-	32 Figh 1581 Figh 1581-globin	0.0045	1					
joh_2417	Fjoh_2417-hypothetical protein	0.0164 0.0001	33 Fjoh 3442 Fjoh 3442-hypothetical protein	0.0046	0					
oh_2414	Fjoh_2414-hemerythrin HHE cation binding domain-containing protein	0.0167 6.49E-	34 Fjoh 3913 Fjoh 3913-high-affinity nickel-transporter	0.0046	2.					
joh_4832	Fjoh_4832-urease accessory protein UreG	0.0173 8.19E-	35 Fjoh_1355 Fjoh_1355-major facilitator transporter	0.0048	0					
oh_0903	Fjoh_0903-peptidase U32	0.0176 7.09E-	36 Fjoh_4060 Fjoh_4060-anaerobic ribonucleoside-triphosphate reductase activating protein	0.0049	2.					
joh_1581	Fjoh_1581-globin	0.0181 1.54E-	37 Fjoh_3906 Fjoh_3906-hydrogenase (NiFe) small subunit HydA	0.0049	2.					
jon_0433	Fjon_0435-nypotnetical protein	0.0190 0.89E-	38 Fjon_1334 Fjon_1334-secretion protein HiyD family protein	0.0049	4.					
ioh 1440	Figh 1440-hypothetical protein	0.0133 2.13E	40 Figh 4497 Figh 4497-hypothetical protein	0.0055	2.					
ioh 4831	Figh 4831-urease accessory protein UreD	0.0202 0.07E	41 Figh 3909 Figh 3909-hydrogenase maturation protease	0.0057	4.					
joh_4054	Fjoh_4054-hypothetical protein	0.0221 4.68E-	42 Fjoh_4061 Fjoh_4061-hypothetical protein	0.0061	2.					
joh_1778	Fjoh_1778-hypothetical protein	0.0223 2.69E-	43 Fjoh_4834 Fjoh_4834-urease accessory protein UreE	0.0062	1.					
joh_1619	Fjoh_1619-hypothetical protein	0.0229 2.42E-	44 Fjoh_2338 Fjoh_2338-hypothetical protein	0.0064	0					
joh_3905	Fjoh_3905-hydrogenase expression/synthesis, HypA	0.0230 1.62E-	45 Fjoh_3912 Fjoh_3912-hydrogenase expression/formation protein HypD	0.0064	2.					
jon_4828	Fjon_4828-nypotnetical protein	0.0233 3.04E-	40 Fjon_0004 Fjon_0004-hypothetical protein 47 Fish 2002 Fish 2002-hydrogenese accombly shanayona HypC /HypE	0.0008	4.					
ioh 3910	Figh 3910-(NiFe) hydrogenase maturation protein HynF	0.0235 0.031	48 Figh 3835 Figh 3835-amine oxidase	0.0070	6					
joh_0434	Fjoh_0434-hypothetical protein	0.0253 5.12E-	49 Fjoh 3836 Fjoh 3836-thiamine pyrophosphate binding domain-containing protein	0.0074	2.					
joh_3904	Fjoh_3904-hydrogenase nickel incorporation protein HypB	0.0255 1.03E-	50 Fjoh 2004 Fjoh 2004-beta-lactamase domain-containing protein	0.0075						
joh_1309	Fjoh_1309-short-chain dehydrogenase/reductase SDR	0.0260 1.29E-	51 Fjoh_0902 Fjoh_0902-4Fe-4S ferredoxin	0.0078	3.					
joh_4829	Fjoh_4829-Urea transporter	0.0262 0.0006	52 Fjoh_4838 Fjoh_4838-hypothetical protein	0.0078	2.					
joh_3217	Fjoh_3217-cyclic nucleotide-binding protein	0.0276 6.28E-	53 Fjoh_0903 Fjoh_0903-peptidase U32	0.0082	6.					
-jon_1915	Figh 2011-EKPD-tupe pertidul-probal sig-trans isomerses	0.0284 /.91E-	54 Fjon_4108 Fjon_4108-phosphatidylserine decarboxylase	0.0083	8. 6					
ioh 4407	Figh 4407-RND family efflux transporter MEP subunit	0.0233 0.74E	56 Figh 3902 Figh 3902-bydrogenase expression/formation protein HypE	0.0080	0.					
ioh 1622	Pioh 1622-hypothetical protein	0.0322 4.54E-	57 Figh 2290 Figh 2290-hypothetical protein	0.0104	4.					
joh_3913	Fjoh_3913-high-affinity nickel-transporter	0.0327 3.24E-	58 Fjoh 2005 Fjoh 2005-hypothetical protein	0.0116	1.					
joh_4408	Fjoh_4408-hydrophobe/amphiphile efflux-1 (HAE1) family protein	0.0332 0.000	59 Fjoh_4054 Fjoh_4054-hypothetical protein	0.0118	4.					
joh_3903	Fjoh_3903-hydrogenase assembly chaperone HypC/HupF	0.0336 7.36E-	60 Fjoh_1619 Fjoh_1619-hypothetical protein	0.0120	2.					
joh_4442	Pioh_4442-short-chain dehydrogenase/reductase SDR	0.0337 6.28E-	61 Fjoh_4833 Fjoh_4833-urease accessory protein UreF	0.0121	0					
joh_2826	Fjoh_2826-FAD-binding monooxygenase	0.0345 0.0004	62 Fjoh_2414 Fjoh_2414-hemerythrin HHE cation binding domain-containing protein	0.0128	б. о					
ioh 1779	Figh 1779-hypothetical protein	0.0355 1.91E-	64 Figh 1440 Figh 1440-hypothetical protein	0.0105	0. 3					
joh_4056	Fjoh_4056-L-aspartate oxidase	0.0369 9.49E-	65 Fjoh 4831 Fjoh 4831-urease accessory protein UreD	0.0221	2					
joh_4403	Fjoh_4403-succinylglutamate desuccinylase/aspartoacylase	0.0376 3.82E-	66 Fjoh_0435 Fjoh_0435-hypothetical protein	0.0221	6.					
joh_3305	Fjoh_3305-hypothetical protein	0.0383 1.21E-	67 Fjoh_4828 Fjoh_4828-hypothetical protein	0.0264	3.					
joh_4443	Fjoh_4443-hypothetical protein	0.0393 3.25E-	68 Fjoh_3217 Fjoh_3217-cyclic nucleotide-binding protein	0.0276	6.					
joh_4055	Fjoh_4055-quinolinate synthetase complex subunit A	0.0394 8.88E-	69 Fjoh_1622 Fjoh_1622-hypothetical protein	0.0283	4					
jon_1134	Frjori_LL34-nypotnetical protein	0.039/ 3.4E-	70 Fjon_4630 Fjon_4630-nypothetical protein 71 Fich 2525 Fich 2525-PAS/PAC sensor protein	0.0287	В А					
ioh 3902	Figh 3902-hydrogenase expression/formation protein HypE	0.0425 0.0007	72 Figh 4829 Figh 4829-Urea transporter	0.0230	0					
joh_4409	Fjoh_4409-RND efflux system outer membrane lipoprotein	0.0436 0.0015	73 Fjoh_2536 Fjoh_2536-copper-exporting ATPase	0.0309	4					
joh_2841	Fjoh_2841-alcohol dehydrogenase	0.0437 9.35E-	74 Fjoh_2826 Fjoh_2826-FAD-binding monooxygenase	0.0312	0					
joh_3912	Fjoh_3912-hydrogenase expression/formation protein HypD	0.0456 4.92E-	75 Fjoh_1309 Fjoh_1309-short-chain dehydrogenase/reductase SDR	0.0328						
joh_3442	Fjoh_3442-hypothetical protein	0.0460 0.0004	76 Fjoh_0434 Fjoh_0434-hypothetical protein	0.0350	5					
joh_3907	Fjoh_3907-nickel-dependent hydrogenase, large subunit	0.0474 1.79E-	77 Fjoh_2413 Fjoh_2413-nitric oxide reductase large subunit-like protein	0.0376	0					
ion_1904	Fjori_reve-nypotnetical protein	0.0502 /.03E-	/o Fjori_zotti Fjori_zotti Falconol denydrogenase	0.0386	8					
ioh 4050	Fight 4059-hypothetical protein	0.0504 8.19E-	80 Figh 4407 Figh 4407-RND family efflux transporter MEP subunit	0.0388	1					
ioh 0641	Figh 0641-hypothetical protein	0.0578 2.28E-	81 Figh 1134 Figh 1134-hypothetical protein	0.0434	. 1					
oh_4029	Fjoh_4029-oxidoreductase FAD-binding subunit	0.0593 4.72E-	82 Fjoh 3218 Fjoh 3218-dihydroxy-acid dehydratase	0.0435	2					
oh_2751	_Fjoh_2751-hypothetical protein	0.0593 1.98E-	83 Fjoh_4443 Fjoh_4443-hypothetical protein	0.0435	3					
joh_0997	Fjoh_0997-hypothetical protein	0.0593 3.31E-	84 Fjoh_3305 Fjoh_3305-hypothetical protein	0.0438	1					
ioh_2752	P Fjoh_2752-ECF subfamily RNA polymerase sigma-24 factor	0.0606 3.67E-	85 Fjoh_3245 Fjoh_3245-patatin	0.0451	6					
joh_2966	5 Fjoh_2966-hypothetical protein	0.0609 7.27E-	86 Fjoh_4408 Fjoh_4408-hydrophobe/amphiphile efflux-1 (HAE1) family protein	0.0457	0					
jon_4864	F rjon_4ou4-nypothetical protein	0.0012 3.27E-	o/ FJOR_4403 FJOR_4403 FKNU efflux system outer membrane lipoprotein	0.0468	0					
ioh 4510	Fight 4519-hypothetical protein	0.0013 0.0004	89 Figh 0997 Figh 0997-hypothetical protein	0.04/9	4					
jon_4519 joh_3909	Fight 3908-Ni/Fe-bydrogenase, b-type cytochrome subunit	0.0646 0.0003	90 Figh 1519 Figh 1519-5-methyltetrahydropterovitriglutamate/homocysteine S-methyltespere	0.0482 rase 0.0497	2					
joh_2750) Fjoh_2750-hypothetical protein	0.0649 0.0001	91 Fjoh 4864 Fjoh 4864-hypothetical protein	0.0526	2					
joh_1133	Fjoh_1133-ECF subfamily RNA polymerase sigma-24 factor	0.0654 9.12F-	92 Fjoh_0438 Fjoh_0438-hypothetical protein	0.0534	4					
joh_3906	Fjoh_3906-hydrogenase (NiFe) small subunit HydA	0.0655 4.22E-	93 Fjoh_1904 Fjoh_1904-hypothetical protein	0.0535	7					
joh_4827	Fjoh_4827-TonB-dependent receptor, plug	0.0657 6.08E-	94 Fjoh_2337 Fjoh_2337-hypothetical protein	0.0543	8.					
joh_0643	Fjoh_0643-hypothetical protein	0.0664 1.43E-	95 Fjoh_4840 Fjoh_4840-hyaluronan synthase	0.0549	0					
joh_3909	Fjoh_3909-hydrogenase maturation protease	0.0682 1.09E-	96 Fjoh_3840 Fjoh_3840-hypothetical protein	0.0550	3.					
on_0519	Fjon_0019-hypothetical protein	0.0680 0.0003	9/ FJon_Z340 FJoh_Z340-helix-turn-helix domain-containing protein	0.0572	0					
jon_4038	Figh 0639-hypothetical protein	0.0009 0.0011	90 Figh 4029 Figh 4029-ovidoreductade FAD-hinding output	0.0036	4. F					
Job Inc.		111111111111111111111111111111111111111	33 FJOIL TOLD FJOIL TOLD FOR TOLD FOR TOLD FINDING SUDURIL	0.0041	- :)					

Fig. S1

TMHMM posterior probabilities for WEBSEQUENCE