1	Running head: A novel surface layer protein from Archaea
2	
3	A novel carbohydrate-binding surface layer protein from the hyperthermophilic
4	archaeon Pyrococcus horikoshii
5	
6	Shuichiro Goda [*] , Tomoyuki Koga, Kenichiro Yamashita, Ryo Kuriura, and Toshifumi
7	Ueda
8	
9	Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki
10	University, Bunkyo-machi 1–14, Nagasaki 852-8521, Japan
11	
12	
13	
14	
15	*Email: sgoda@nagasaki-u.ac.jp
16	
17	Abbreviations: GlcNAc, N-acetylglucosamine; ITC, isothermal titration calorimetry; S-
18	layer protein, surface-layer protein; TBS, Tris-buffered saline.

19 Abstract

20	In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope
21	and are involved in cell protection. In the present study, a putative S-layer protein was
22	purified from the crude extract of Pyrococcus horikoshii using affinity chromatography.
23	The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration
24	calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and
25	induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The
26	protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as
27	determined using small-angle X-ray scattering. This protein showed high thermal
28	stability, with a midpoint of thermal denaturation of 79°C in dynamic light scattering
29	experiments. This is the first description of the carbohydrate-binding archaeal S-layer
30	protein and its characteristics.

31

Key words: Archaea, carbohydrate binding, *Pyrococcus horikoshii*, surface-layer
protein

35	Surface layer (S-layer) protein is a component of the cell envelope in Bacteria
36	and Archaea [1,2]. The protein covers the cell surface and acts as protective coat,
37	maintaining the cell shape, trapping molecules and ions, and participating in direct cell
38	division, cell adhesion, and surface recognition [3-5]. The molecular mass of S-layer
39	proteins ranges from approximately 40 to 200 kDa, and thickness of S-layer ranges
40	from 5 to 20 nm [6]. The S-layer lattices can have oblique (p1 or p2), square (p4), or
41	hexagonal (p3 or p6) symmetry with pores (generally in the 2- to 8-nm range) [6]. In
42	Archaea, many species thrive in extreme conditions of temperature, salt concentration,
43	and pH [7]. Especially in thermophiles, S-layer protein is directly exposed to the outer
44	environment, and it is important for cell survival in extreme conditions [8]. Therefore,
45	S-layer proteins from hyperthermophiles have high thermal stability [8]. Furthermore,
46	there is a wide variety of structural features and chemical components in cell envelopes
47	and S-layer proteins of Archaea and Bacteria [9]. Genome analyses have shown that S-
48	layer gene sequences have low homology at the sequence level [5]. Therefore, archaeal
49	S-layer proteins are poorly characterized, and their function and structure remain
50	unknown.
51	In this study, S-layer protein was purified from crude extracts of the

52 hyperthermophilic archaeon *Pyrococcus horikoshii* using affinity chromatography.

53	Although S-layer proteins are found in numerous archaeal species, they have mostly
54	been studied in methanogens, halophiles, Sulfolobales and Desulfurococcales [10].
55	There is less information about S-layer proteins from Thermococcales including <i>P</i> .
56	horikoshii. The proteins from P. horikoshii are expected to be highly thermostable. We
57	cloned and expressed the gene encoding S-layer protein in Escherichia coli and
58	characterized the recombinant protein. The results showed that the novel 21-mer S-layer
59	protein could bind N-acetylglucosamine and induce agglutination of a gram-positive
60	bacterium with high thermal stability. These findings revealed the existence of a
61	carbohydrate-binding S-layer protein in a hyperthermophilic archaeon.
62	
63	Materials and Methods
64	Materials. E. coli strains JM109 and BL21-CodonPlus(DE3)-RIPL were
65	purchased from Promega (Madison, WI, USA) and Agilent Technologies (Santa Clara,
66	CA, USA), respectively. The plasmid pGFPd was kindly provided by Dr. Drew at
67	Stockholm University [11]. The plasmid pET-3a was purchased from Merck Millipore
68	(Darmstadt, Germany).
69	

Isolation of S-layer proteins from crude extracts of P. horikoshii. 70

71	Hyperthermophilic archaeon <i>P. horikoshii</i> OT-3 (JCM 9975) cells were obtained from
72	the Japanese Collection of Microorganisms (JCM), Wako, Saitama, Japan, and were
73	cultured in medium as reported previously [12]. After culture for 24 h, cells were
74	collected by centrifugation at 8,000 \times g for 15 min at 4°C and suspended in Tris-
75	buffered saline (TBS) containing 10 mM Tris-HCl (pH 7.5), 0.15 M NaCl, and 10 mM
76	CaCl ₂ . Carbohydrate-binding proteins were purified using affinity chromatography with
77	glucose-Cellufine columns. Glucose-Cellufine was prepared using divinyl-sufone as
78	described by Teichberg et al. [13] with slight modification. Cellufine (JNC Corp.,
79	Tokyo, Japan) was used instead of Sepharose 4B and glucose was used as the
80	carbohydrate. The eluates from glucose-Cellufine column were separated by SDS-
81	PAGE and stained with Coomassie Brilliant Blue R-250. The protein bands were cut
82	from the gel and destained with 30% CH ₃ CN and 25 mM NH ₄ HCO ₃ . The destained gels
83	were reduced using 10 mM DTT and 25 mM NH4HCO3, and then alkylated using 55
84	mM ICH ₂ CONH ₂ and 25 mM NH ₄ HCO ₃ . The protein in the gel was digested using 10
85	μ g/mL lysyl endopeptidase in 5 mM Tris-HCl (pH 8.5) and 4 mM NH ₄ HCO ₃ . The
86	peptides were extracted from the gel in 50% CH ₃ CN and 5% CF ₃ COOH. The extracted
87	peptides were analyzed using mass spectrometry (Voyager DE PRO; Applied
88	Biosystems, Waltham, MA, USA) and peptide mass fingerprinting according to Mascot

 $\mathbf{5}$

89 database search results (Matrix Science, London, UK).

91	Cloning and expression of the gene encoding the S-layer protein. The genome
92	of <i>P. horikoshii</i> was used as a template for amplification of the gene encoding the
93	putative S-layer protein PH1395.1 using polymerase chain reaction (PCR). The first
94	primer (5'-CATATGCCTTCAGTTCCGAAGGA-3') had an NdeI restriction site
95	overlapping the 5' initiation codon, whereas the second primer (5'-
96	GGATCCTCAGAGCTTTGAGATGTACTC-3') had a unique BamHI restriction site
97	proximal to the 3' end of the termination codon. Because the first 29 residues of the
98	protein were considered a signal peptide by TMHMM [14], we amplified DNA
99	encoding the 30th amino acid (aa) residue onwards. The resulting DNA fragment was
100	cloned into E. coli JM109 cells using the pGEM-T vector pGEM-T/PH1395.1
101	(Promega). One NdeI site within the original sequence was mutated using the
102	QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies) with the primers 5'-
103	GTTCCAACCACATGACGAGTGGAA-3' and 5'-
104	TTCCACTCGTCATGTGTGGTTGGAAC-3'. The inserted DNA fragment (1.7 kb) was
105	digested with NdeI and BamHI and ligated with the expression vector pET-3a after
106	linearization with NdeI and BamHI to generate pET3a/PH1395.1. To express a green

107	fluorescent protein (GFP)-conjugated PH1395.1, the following set of oligonucleotide
108	primers was used to PCR-amplify a PH1395.1 gene fragment lacking a stop codon: 5'-
109	CATATGCCTTCAGTTCCGAAGGA-3', which introduced a NdeI restriction site
110	overlapping the 5' initiation codon, and 5'- <u>GGATCC</u> GAGCTTTGAGATGTACT-3',
111	which introduced a unique BamHI restriction site proximal to the 3' end of the
112	termination codon. The plasmid pGEM-T/PH1395.1 was used as a template for
113	amplification, and the resulting DNA fragment was cloned into E. coli JM109 cells
114	using the pGFPd vector pGFPd/PH1395.1. Cells of the E. coli strain BL21-
115	CodonPlus(DE3)-RIPL were transformed with pGFPd/PH1395.1 or pET3a/PH1395.1
116	and were incubated at 27°C in 200 mL of Luria-Bertani (LB) broth containing 50
117	μ g/mL kanamycin to select pGFPd/PH1395.1 transformants or 50 μ g/mL ampicillin to
118	select pET3a/PH1395.1 transformants. Subsequently, transgenes were induced in cells
119	at an optical density (OD) of 0.6 at 600 nm by culturing in the presence of 0.4 mM
120	isopropyl-β-D-thiogalactopyranoside for 16 h.
121	
122	Purification of the S-layer protein. Collected E. coli cells were suspended in
123	TBS containing 10 mM CaCl2 and were disrupted by sonication (Vibra-Cell Processor

124 VC505, Sonics & Materials, Newtown, CT, USA). The sonication time was 40 sec for

125	pellets with 2 grams of wet weight. Crude extracts of cell lysates were obtained by
126	centrifugation at 15,000 × g for 20 min at 4°C. The supernatant solution containing the
127	GFP-conjugated protein with a C-terminal His-tag was purified using the COSMOGEL
128	His-Accept column (Nacalai Tesque, Kyoto, Japan). E. coli supernatants containing
129	pET-3a/PH1395.1 were applied to an N-acetylglucosamine (GlcNAc)-Cellufine column
130	equilibrated with TBS [13]. The column was washed with the same buffer, and the
131	adsorbed proteins were eluted with TBS containing 50 mM GlcNAc (GlcNAc-TBS).
132	
133	Protein determination. Protein concentrations were determined using the
134	Bradford method with bovine serum albumin as a standard [15].
135	
136	Carbohydrate-binding assays using isothermal titration calorimetry (ITC).
137	Carbohydrate-binding parameters of the S-layer protein and GFP-conjugated S-layer
138	protein (GFP/S-layer protein) were determined using ITC (iTC200; GE Healthcare,
139	Buckinghamshire, UK) at 30°C in the presence of GlcNAc, N-acetylmuramic acid
140	(MurNAc), glucose, N-acetylgalactosamine (GalNAc), glucosamine, and cellobiose.
141	Briefly, protein solutions were dialyzed with 0.1 M 4-(2-hydroxyethyl)-1-
142	piperazineethanesulfonic acid (HEPES) buffer (pH 7.5) containing 10 mM CaCl ₂ , and

binding isotherms were fitted to a one-site binding model using the ORIGIN version 7.0 143144software (OriginLab, Northampton, MA, USA). 145146 Bacterial agglutination assays. Bacterial agglutination assays were performed using microscopy (Carton NSZT, Tokyo, Japan) and by assessing changes in OD. In 147148these experiments, the gram-positive bacterium Micrococcus lysodeikticus was 149suspended in TBS solution at a concentration of 0.01 mg/mL, and the S-layer protein was added to 500-µL bacterial suspensions to final concentrations of 2.5, 0.25, 0.025, 150151and 0.0025 mg/mL. The mixtures were incubated at 25°C for approximately 1 h, and cells were observed using a bright-field microscope (Carton NSZT, Tokyo, Japan) at a 152magnification of 400X. 153To investigate inhibition of agglutination by carbohydrates, changes in OD at 550 154nm were determined in M. lysodeikticus cell suspensions containing the S-layer protein 155156in the presence and absence of 10 mM GlcNAc using previously reported procedures [16]. Absorbance was measured using a UV-1640 UV/visible spectrophotometer 157(Shimadzu, Kyoto, Japan). 158159

160 Small-angle X-ray scattering (SAXS) analyses. SAXS measurements were

161	performed using a Beamline 10C at the Photon Factory, Tsukuba, Japan. The
162	wavelength (λ) and distance between sample detectors were 1.488 Å and approximately
163	90 cm, respectively. Raw data from $Q = 1.3 \times 10^{-1}$ to 4.1×10^{-1} Å ⁻¹ (the Bragg spacing
164	equivalent to $dB = 483 - 15.3$ Å; $Q = 4\pi \sin \theta / \lambda$, where 2θ is the scattering angle) were
165	measured using a 2-dimensional imaging detector (PILATUS3-300KW; Dectris,
166	Banden-Daettwil, Switzerland). SAXS measurements were performed as reported
167	previously [17], and molecular weights were determined with reference to forward
168	scattered intensities normalized to protein concentrations $(J(0)/C)$ of ovalbumin, bovine
169	serum albumin, catalase, and thyroglobulin. Measurements were conducted with 40 - μ L
170	aliquots of 3.2 mg/mL protein solutions in TBS, and 10 mM GlcNAc was added to
171	determine the effects on the S-layer protein structure.
172	
173	Dynamic light scattering (DLS) analyses. DLS measurements were performed using
174	the Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) instrument. Z-average size
175	values were measured from 40°C to 90°C, using trend measurements to determine
176	protein denaturation points at a protein concentration of 1.0 mg/mL.
177	

Results and Discussion

1	7	9	

Isolation of the S-layer protein from crude extracts of P. horikoshii

180	We found the putative S-layer protein in crude extracts of <i>P. horikoshii</i> when we
181	tried to find thermostable carbohydrate-binding proteins using affinity chromatography.
182	The S-layer protein was eluted with 20 mM ethylenediaminetetra acetate (EDTA)-TBS
183	from the glucose-Cellufine column and peptide mass fingerprinting analyses were
184	performed for the column eluates after separation by SDS-PAGE and in-gel digestion by
185	lysyl endopeptidase (Fig. 1A and 1B). Multiple proteins were observed from the eluates.
186	The protein was identified as open reading frame (ORF) ID PH1394 from the mascot
187	search (Fig. 1C). Whereas, other proteins except the PH1394 were not identified by the
188	mascot search. The top score of PH1394 was 41 and the significance threshold (p $\!<\!$
189	0.05) was 66. This indicated that the identification of PH1394 was not significant.
190	However, the ORFs PH1394 and PH1395 were annotated as N- and C-terminals of this
191	S-layer protein, respectively, at that time. Subsequently, re-annotation of the entire
192	genome of <i>P. horikoshii</i> by the National Institute of Technology and Evaluation (NITE)
193	in Tokyo was performed in March 2007, and PH1394 and PH1395 were redesignated as
194	a single protein with the ORF ID PH1395.1. This difference of annotation may have
195	caused the low significance in the mascot search. In contrast, peptides originating from
196	PH1395 were not detected in this mass spectrometry analysis. The amino acid sequence

197	of PH1395.1 had homology with S-layer proteins from Methanocaldococcus voltae
198	(45% homology with amino acid positions 12-88 and 36% homology with amino acid
199	498-601) [18] and Methanocaldococcu jannaschii (43% homology with aa 1-98 and
200	34% homology with aa 452–604). Additionally, the amino acid sequence of PH1395.1
201	showed high homology to other putative or uncharacterized S-layer proteins from
202	Pyrococcus abyssi (75%), Pyrococcus kukulkanii (59%), and Pyrococcus furiosus
203	(57%). Therefore, PH1395.1 protein may have characteristics that differ from those of
204	S-layer proteins from Methanococci. The existence of the S-layer protein in P.
205	horikoshii was already reported, as the cell envelope of P. horikoshii consists of a
206	complete S-layer enclosing a periplasmic space around the cytoplasmic membrane [19].
207	Therefore, it is reasonable to suppose that this carbohydrate protein designated as
208	PH1395.1 is the S-layer protein of P. horikoshii.
209	
210	Expression and purification of the S-layer protein
211	To measure the amount of produced protein in <i>E. coli</i> cells and purify the protein
212	using metal chelate affinity chromatography, the S-layer protein was expressed as a
213	GFP-conjugated and His-tagged protein using the pGFPd vector in E. coli. However, the
214	recombinant GFP-conjugated PH1395.1 (GFP/PH1395.1) protein did not bind the

215	glucose-Cellufine column. Thus, we determined the carbohydrate-binding specificity of
216	the GFP/PH1395.1 protein using ITC analyses of the partially purified protein. These
217	analyses showed that the GFP/PH1395.1 protein bound GlcNAc (Fig. 2). In further
218	experiments, the PH1395.1 protein without GFP was expressed in E. coli using the same
219	procedure, purified using a GlcNAc-Cellufine column, and eluted with GlcNAc-TBS.
220	The purity of PH1395.1 was confirmed using sodium dodecyl sulfate-polyacrylamide
221	gel electrophoresis (Fig. 3) [20].
222	
223	Carbohydrate-binding affinity of PH1395.1
224	ITC measurements of GFP/PH1395.1 showed that the S-layer protein bound to
225	GlcNAc. Therefore, the S-layer protein was purified using a GlcNAc-Cellufine column.
226	The carbohydrate specificity of this protein was analyzed using ITC with the
227	carbohydrates GlcNAc, MurNAc, glucose, GalNAc, glucosamine, and cellobiose.
228	Although the S-layer protein was purified from a crude extract of <i>P. horikoshii</i> using
229	glucose affinity chromatography, thermal change was detected only between the protein
230	and GlcNAc and not with the other carbohydrates, including glucose (Fig. 4). The
231	results of affinity chromatography using raffinose cellufine resin showed that the band
232	patterns of SDS-PAGE were similar to those for glucose (data not shown). In addition,

233	the support matrix of Cellufine is cellulose and a small amount of crystalline cellulose
234	remains in Cellufine. Therefore, the S-layer protein may bind to this crystalline
235	cellulose by hydrophobic interactions during purification. The stoichiometry (N)
236	between the S-layer protein and GlcNAc was 1.04 ± 0.101 , indicating that one protein
237	molecule bound to one GlcNAc molecule. In addition, the association constant (K_a) and
238	enthalpy change were $1.24\times10^5\pm5.21\times10^4M^{-1}$ and -45 ± 7.52 kJ/mol, respectively,
239	and were similar to those reported for lectin and carbohydrate [21]. Some S-layer
240	proteins of gram-positive bacteria bind to peptidoglycan, which contains GlcNAc and
241	MurNAc [22]. Moreover, the S-layer protein of the thermophilic bacterium
242	Thermoanaerobacter kivui binds to peptidoglycan targets via its surface layer homology
243	domain [23]. Archaea have various types of cell wall including pseudomurein [24].
244	However, the cell envelope of <i>P. horikoshii</i> resembles that of <i>P. furiosus</i> [19], which
245	has no pseudomurein layer and consists of only S-layer protein in the cell envelope [24].
246	Thus, the S-layer protein from <i>P. horikoshii</i> is supposed to bind to GlcNAc that exists
247	out of the cell. During the exponential phase of growth, cells of <i>P. horikoshii</i> are often
248	seen in pairs, and they aggregate increasingly as the culture ages [19]. Therefore, S-
249	layer protein may bind to the carbohydrated S-layer protein of other cells, and this leads
250	to the aggregation of the cells.

Bacterial agglutination assays

253	Because the S-layer protein showed binding affinity for GlcNAc, it may useful
254	for the detection of bacteria by a highly thermostable protein. Therefore, we
255	investigated associations between the S-layer protein and the gram-positive bacterium
256	M. lysodeikticus. In bright-field microscopy experiments (Fig. 5), the S-layer protein
257	agglutinated M. lysodeikticus in a concentration-dependent manner. In addition, to
258	determine whether the S-layer protein recognized GlcNAc on the surface of M.
259	lysodeikticus, we measured the inhibition of agglutination using a spectrophotometer. In
260	these experiments, the OD of the mixture of the S-layer protein and M. lysodeikticus
261	gradually decreased by 10% over 150 min (Fig. 6). Moreover, in the presence of 10 mM
262	GlcNAc, the OD of the mixture was similar to that in the absence of the protein (Fig. 6),
263	suggesting that the S-layer protein bound to GlcNAc on the surface of <i>M. lysodeikticus</i> .
264	However, multiple binding sites were assumed to be required for agglutination,
265	suggesting that the S-layer protein formed oligomers.
266	
267	SAXS
268	SAXS analyses of the S-layer protein revealed radius of gyration (Rg) and

269	maximum particle (D_{max}) values of 67.8 ± 0.45 and 237 ± 9.0 Å, respectively, as
270	indicated by Guinier plots and $p(r)$ functions, which were Hankel transformations of the
271	scattering curve (Fig. 7A) [25,26]. The molecular mass of the S-layer protein was
272	estimated at 1,344 ± 17 kDa, according to forward scattering intensities ($J(0)$)
273	normalized to protein concentrations $C(J(0)/C)$ [26,27]. The molecular mass of the
274	monomeric recombinant S-layer protein is 63.5 kDa. These data indicated that the S-
275	layer protein formed a 21-mer. The ensuing Kratky plot of the S-layer protein showed
276	three peaks (Fig. 7B), typical of oligomeric proteins [17,28]. Moreover, these analyses
277	were impervious to the presence of GlcNAc. S-layer proteins form oligomeric structures
278	with oblique (p1 or p2), square (p4), or hexagonal (p3 or p6) lattice symmetry [6], and
279	hexagonal symmetry is predominant among archaeal S-layer proteins [29]. SAXS
280	analyses of the S-layer protein showed the formation of a 21-mer, suggesting that the
281	small unit of the S-layer protein was further assembled into larger 21-mer oligomers.
282	
283	Thermal stability of the S-layer protein
284	To determine the thermal stability of the S-layer protein from P. horikoshii, we
285	performed DLS experiments between 40°C and 90°C. Two peak sizes in the radius of
286	the S-layer protein were observed at 40°C. Scattering was mainly from 7-nm particles

287	and a few particles were observed around 100 nm. After heating, the amount of
288	scattering from 7-nm particles decreased and the other peak was observed around 200
289	nm (data not shown). To analyze the change in the number and size of the S-layer
290	protein, Z-average size was plotted (Fig. 8). The Z-average size is an overall average
291	size of all the intensities based on a specific fit to the raw correlation function data. This
292	value aids in determination of the average particle size of a population and is insensitive
293	to experimental noise. The Z-average size of the S-layer protein increased between
294	75°C and 85°C, reflecting the denaturation of the protein (Fig. 8). As a result, the
295	middle point temperature of thermal denaturation was 79 ± 0.5 °C, indicating that the S-
296	layer protein from P. horikoshii was a highly thermostable S-layer protein. However,
297	79°C is lower than the optimum growth temperature (98°C) of <i>P. horikoshii</i> . S-layer
298	proteins form the cell envelope and interact with the cell surface. The interaction
299	between the S-layer protein and cell surface may strengthen thermal stability. In
300	addition, the protein produced in E. coli has no glycosylation and an extra methionine
301	remains on the N-terminus of the protein. These aspects differ from those of the native
302	protein. Some S-layer proteins from archaea are known as glycosylated proteins [30].
303	The S-layer protein may be glycosylated in its native form. Glycosylation and the
304	additional methionine at the N-terminus position may affect the thermal stability of this

305 protein.

306	In conclusion, we identified and characterized the highly thermostable
307	carbohydrate-binding protein PH1395.1 from P. horikoshii. PH1395.1 was annotated as
308	a putative S-layer protein in whole genome analyses after isolation from crude extracts of
309	P. horikoshii using a glucose-Cellufine column. Moreover, ITC analyses showed that the
310	S-layer protein bound GlcNAc with a stoichiometry of 1.04 ± 0.101 , indicating one-to-
311	one binding. We demonstrated that the S-layer protein formed 21-mers with multiple
312	carbohydrate-binding sites and caused agglutination of gram-positive bacteria. However,
313	it is unclear what binds to the S-layer protein in nature.
314	S-layer proteins have regular lattices with pores of identical morphology on
315	solid supports and liquid-surface interfaces [6]. Therefore, they are used in
316	biotechnological applications such as the production of isoporous ultrafiltration
317	membranes, the construction of supporting structures for the controlled immobilization,
318	and incorporation of functional molecules (antigens, antibodies, ligand, and enzymes)
319	required for biosensors [31]. Thermostable and GlcNAc-binding S-layer protein may be
320	a useful tool for biotechnology and biomedical applications.
321	
322	Author contributions

323 S.G. designed research; T.K., K.Y., R.K. and T.U. performed the experiments. S.G.

324	analyzed	data;	S.G.	wrote	the	article.
-----	----------	-------	------	-------	-----	----------

326	Acknowledgements
327	This study was performed under the approval of the Photon Factory Advisory
328	Committee (Proposal 2013G027, 2013G706, 2015G015, and 2015G613). We would
329	like to thank Editage (www.editage.jp) for English language editing.
330	
331	Funding
332	This work was supported by the Japan Society for the Promotion of Science
333	under a Grant-in-aid for Scientific Research [(C) 25450133] to S. G.
334	
335	References
336	[1] Messner P, Sleytr UB. Crystalline bacterial cell-surface layers. Adv Microbiol
337	Physiol. 1992;33:213–275.
338	[2] Sleytr UB, Messner P. Crystalline surface layers on bacteria. Annu Rev Microbiol.
339	1983;37:311–339.
340	[3] Beveridge TJ, Pouwels PH, Sára M, et al. Functions of S-layers. FEMS Microbiol
341	Rev. 1997;20:99–149.
342	[4] Sleytr UB, Beveridge TJ. Bacterial S-layers. Trends Microbiol. 1999;7:253-260.

- 343 [5] Sara M, Sleytr UB. S-Layer proteins. J Bacteriol. 2000;182:859–868.
- [6] Sleytr UB, Huber C, Ilk N, et al. S-layers as a tool kit for nanobiotechnological
- applications. FEMS Microbiol Lett. 2007; 267:131–144.
- 346 [7] Cowan DA. Biotechnology of archaea. Trends Biotechnol. 1992;10:315–323.
- 347 [8] Eichler J. Facing extremes: archaeal surface-layer (plyco)proteins. Microbiology.
- 348 2003;149:3347–3351.
- [9] Beveridge TJ. Ultrastructure, chemistry, and function of the bacterial wall. Int Rev
- 350 Cytol. 1981;12:229–317.
- 351 [10] Rodrigues-Oliveira T, Belmok A, Vasconcellos D, et al. Archaeal S-layers:
- 352 Overview and current state of the art. Front Microbiol. 2017;8:2597.
- 353 [11] Drew D, Lerch M, Kunji E, et al. Optimization of membrane protein
- overexpression and purification using GFP fusions. Nat Methods. 2006;4:303–313.
- 355 [12] Kawakami R, Sakuraba H, Kamohara S, et al. Oxidative stress response in an
- anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in
- 357 Pyrococcus horikoshii. J Biochem. 2004;136:541–547.
- 358 [13] Teichberg VI, Aberdam D, Erez U, et al. Affinity-repulsion chromatography.
- Principle and application to lectins. J Biol Chem. 1988;263:14086–14092.
- 360 [14] Krogh A, Larsson B, von Heijne G, et al. Prediction transmembrane protein

topology with a hidden Markov model: application to complete genomes. J Mol Biol.
2001;305:567–580.

- 363 [15] Bradford MM. A rapid and sensitive method for the quantitation of microgram
- 364 quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.
- 365 1976;72:248–254.
- 366 [16] Shimotahira N, Oogai Y, Kawada-Matsuo M, et al. The surface layer of Tannerella
- 367 forsythia contributes to serum resistance and oral bacterial coaggregation. Infect
- 368 Immun. 2013;81:1198–1206.
- 369 [17] Hiragi Y, Seki Y, Ichimura K, et al. Direct detection of the protein quaternary
- structure and denatured entity by small-angle scattering: guanidine hydrochloride
- denaturation of chaperonin protein GroEL. J Appl Crystallogr. 2002;35:1–7.
- [18] Konisky J, Lynn D, Hoppert M, et al. Identification of the Methanococcus voltae
- 373 S-layer structural gene. J Bacteriol. 1994;176:1790–1792.
- 374 [19] Gonzalez JM, Masuchi Y, Robb FT, et al. Pyrococcus horikoshii sp. nov., a
- 375 hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough.
- 376 Extremophiles. 1998;2:123–130.
- 377 [20] Laemmli UK. Cleavage of structural proteins during the assembly of the
- 378 bacteriophage T4. Nature. 1970;227:680–685.

[21] Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions

- by isothermal titration calorimetry. Chem Rev. 2002;102:387–429.
- 381 [22] Engelhardt H, Peters J. Structural research on surface layers: a focus on stability,
- surface layer homology domains, and surface layer-cell wall interactions. J Struct Biol.
 1998;124:276–302.
- [23] Lupas A, Engelhardt H, Peters J, et al. Domain structure of the Acetogenium kivui
- surface layer revealed by electron crystallography and sequence analysis. J Bacteriol.
- 386 1994;176:1224–1233.
- 387 [24] Klingl A. S-layer and cytoplasmic membrane exceptions from the typical
- archaeal cell wall with a focus on double membranes. Front. Microbiol. 2014;5:624.
- 389 [25] Guinier A, Fournet G. Small-angle scattering of X-rays. New York: Chapman &
- 390 Hall; 1955.
- 391 [26] Kratky O, Porod G, Kahovec L. Einige Neuerungen in der Technik und
- Auswertung von Röntgen-Kleinwinkelmessungen. Z Elektrochem. 1951;55:53–59.
- 393 [27] Glatter O, Kratky O. Small-angle X-ray scattering. New York: Academic Press;

394 1982.

- 395 [28] Higurashi T, Hiragi Y, Ichimura K, et al. Structural stability and solution structure
- 396 of chaperonin GroES heptamer studied by synchrotron small-angle X-ray scattering. J

- 397 Mol Biol. 2003;333:605–620.
- 398 [29] Howorka S. Rationally engineering natural protein assemblies in
- anobiotechnology. Curr Opin Biotechnol. 2011;22:485–491.
- 400 [30] Yurist-Doutsch S, Chaban B, VanDyke DJ, et al. Sweet to the extreme: protein
- 401 glycosylation in archaea. Mol Microbiol. 2008;68:1079–1084.
- 402 [31] Raff J, Matys S, Suhr M, et al. S-layer-based nanocomposites for industrial
- 403 applications. Adv Exp Med Biol. 2016;940:245–279.

404 Figure Legends

405 Fig. 1. Isolation and identification of the S-layer protein from the crude extracts of

- 406 Pyrococcus horikoshii.
- 407 (A) SDS-PAGE of the two fractions at the peak position of eluates from the glucose-
- 408 Cellufine column. The arrow indicates the protein band used for peptide mass
- 409 fingerprinting. (B) Peptide mass spectra of glucose column eluates were digested with
- 410 lysyl endopeptidase. (C) Amino acid sequence of PH1394; matched peptides are shown
- in bold and are underlined. Triangles represent cleavage sites observed by the mass
- 412 spectrometry.
- 413 Fig. 2. Isothermal titration calorimetry of green fluorescent protein (GFP)-labeled
- 414 surface (S)-layer protein in the presence of *N*-acetylglucosamine (GlcNAc).
- 415 S-layer protein was conjugated with GFP and titrated with GlcNAc at 25°C.
- 416 Titration kinetics and integrated binding isotherms are presented in upper and lower
- 417 panels, respectively.
- 418 Fig. 3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of recombinant
- 419 surface (S)-layer protein after N-acetylglucosamine (GlcNAc)-Cellufine affinity

420 chromatography.

421 Lanes: 1, molecular weight marker; 2, flow-through of the column; 3–8, eluates

422	following addition of 50 mM GlcNAc-Tris-buffered saline (TBS).
423	Fig. 4. Isothermal titration calorimetry of S-layer protein in the presence of N-
424	acetylglucosamine (GlcNAc).
425	Surface (S)-layer protein was titrated with GlcNAc at 25°C. Titration kinetics and
426	integrated binding isotherms are presented in upper and lower panels, respectively. The
427	molar ratio refers to the protein monomer. Changes in binding enthalpy (ΔH) and
428	association constants (Ka) were determined using non-linear regression analyses of
429	integrated data with a one-site binding model.
430	Fig. 5. Agglutination of Micrococcus lysodeikticus by surface (S)-layer protein.
431	Bacterial agglutination with indicated S-layer protein concentrations was visualized
432	using bright-light microscopy at a magnification of 400X.
433	Fig. 6. Agglutination of surface (S)-layer protein with Micrococcus lysodeikticus.
434	M. lysodeikticus concentrations were adjusted to an optical density (OD) of 1.0 at
435	550 nm. The concentration of S-layer protein was 2.5 mg/mL, and agglutination was
436	indicated by decreased absorbance. Agglutination of M. lysodeikticus by S-layer protein
437	is indicated by squares, and the densities of <i>M. lysodeikticus</i> controls without S-layer
438	protein are indicated by circles. Agglutination was inhibited using 10 mM N-
439	acetylglucosamine (GlcNAc) (triangles).

440 Fig. 7. Small-angle X-ray scattering of the surface (S)-layer protein.

441	The size and molecular mass of S-layer protein were measured using small-angle X-
442	ray scattering. Guinier (A) and Kratky (B) plots for S-layer protein were generated in
443	the absence (solid line) and presence of <i>N</i> -acetylglucosamine (GlcNAc) (broken line).
444	Fig. 8. Effect of temperature on the size of the surface (S)-layer protein.
445	Z-average values of the S-layer protein were measured using dynamic light

446 scattering between 40° C and 90° C.

Fig. 2

Fig. 4

Fig. 8

