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Abstract 

The effects of an active vitamin D analog, eldecalcitol (ELD), on bone mineral density 

(BMD), bone geometry, and biomechanical properties of the proximal femur were 

investigated by using clinical CT. The subjects—a subgroup of a recent randomized, 

double-blind study comparing anti-fracture efficacy of ELD with alfacalcidol 

(ALF)—constituted 193 ambulatory patients with osteoporosis (189 postmenopausal women 

and 4 men aged 52–85 years, average±SD: 70.9±6.92 years) enrolled at 11 institutions. 

Multidetector-row CT data was acquired at baseline and at completion of 144 weeks’ 

treatment. Cross-sectional densitometric and geometric parameters of the femoral neck were 
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derived from three-dimensional CT data. Biomechanical properties including cross-sectional 

moment of inertia (CSMI), section modulus (SM) and buckling ratio (BR) of the femoral neck, 

and CSMI of the femoral shaft were also calculated. We found that, 1) with respect to the 

femoral neck cross-sectional parameters (total bone), in the ALF group, volumetric BMD 

(vBMD) decreased but bone mass was maintained and cross-sectional area (CSA) increased. 

In contrast, ELD maintained vBMD with a significant increase in bone mass and a trend 

toward increased CSA. 2) With respect to the femoral neck cross-sectional parameters 

(cortex), cortical thickness decreased in the ALF group, but was maintained in the ELD group. 

In the ALF group, vBMD and bone mass increased, and CSA was maintained. In the ELD 

group, vBMD, CSA, and bone mass increased. 3) With respect to the biomechanical 

properties of the femoral neck, ELD improved CSMI and SM to a greater extent than did ALF. 

BR increased in both the ALF and ELD groups. 4) With respect to the femoral shaft 

parameters, overall the results of bone geometry and CSMI of the femoral shaft were very 

consistent with the results for the femoral neck; however, cortical vBMD of the femoral shaft 

decreased significantly in both the ELD and ALF groups. In conclusion, our longitudinal 

analysis of hip geometry by clinical CT revealed the unexpected potential of ELD to increase 

cortical CSA, vBMD, and bone mass, and to maintain cortical thickness, probably through the 

more potent effect of ELD in mitigating endocortical bone resorption than ALF. By improving 

the biomechanical properties of the proximal femur, ELD may have the potential to reduce the 

risk of hip fractures. 

Key words: vitamin D, eldecalcitol, hip geometry, structure, computed tomography 
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1.  Introduction 

The incidence of vertebral fracture increases linearly with aging and is significantly correlated 

with declining bone mineral density (BMD). The incidence of hip fracture, on the other hand, 

rises exponentially with aging, suggesting that age-related factors other than BMD contribute 

greatly to the fragility of the proximal femur. Hip fractures cause substantial disability and are 

associated with a high rate of death among elderly women [1]. Because vertebral fracture is 

the most common of osteoporotic fractures, the efficacy of anti-osteoporotic agents is judged 

in clinical trials by evaluating the incidence of vertebral fracture. 

The incidence of hip fracture is much lower than that of vertebral fracture, especially in 

elderly Japanese, and in clinical trials of anti-osteoporotic agents hip fracture is assessed as a 

secondary endpoint or as one of the non-vertebral fractures. However, in view of the 

increasing incidence of hip fracture in the Japanese population [2] and its consequences of 

seriously reducing quality of life (QOL) [3], measures to prevent hip fracture are of 

paramount importance. 

Recently, various imaging techniques have been used to non-invasively estimate the 

effects of intervention on the biomechanical properties of the proximal femur [4]. Both the 

structural and biomechanical properties of the proximal femur are critically determined by the 

bone geometry, which refers to the distribution and alignment of bone tissue [5]. However, the 

complex structure and bone density distribution in this region make three-dimensional (3D) 

analysis of the proximal femur difficult. 

One clinically useful approach for assessing BMD and bone geometry is hip structure 

analysis (HSA) [6] based on dual-energy X-ray absorptiometry (DXA) data and 

biomechanical indices [7]. However, because most of the geometrical parameters of HSA 

depend on assumptions about the shape of the cross-section and on fixed percentages of 

cortical bone, and because all of the geometrical parameters are derived from bone density [8], 

DXA-based HSA does not provide the actual 3D information. Nevertheless, several studies 
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have employed HSA to examine the longitudinal effects of anti-osteoporotic agents [9-12]. 

Furthermore, poor accuracy and precision of hip DXA measurement is inevitable in cases 

where the femoral neck is short and in cases where it is difficult to maintain the inner rotation 

of the hip joint [13]. Computed tomography (CT) measurement, on the other hand, is 

convenient and useful in that the femoral dimensions can be adjusted during image 

processing. 

Quantitative computed tomography (QCT) has become an increasingly useful clinical 

research tool for measuring volumetric BMD (vBMD) and analyzing hip geometry [14-17]. 

CT-based HSA provides geometrical parameters independent of BMD, and has the advantage 

of being able to evaluate the cortex separately. However, only one study has employed CT to 

examine the effects of drugs on the 3D geometrical parameters of the proximal hip [18]. 

Eldecalcitol (ELD) is a vitamin D analog that has a hydroxypropoxy substituent at the 

2β-position of 1,25-dihydroxyvitamin D3. In a phase II randomized, placebo-controlled, 

double-blind clinical trial for osteoporotic subjects with sufficient vitamin D supply, ELD 

treatment for 12 months significantly increased BMD of the lumbar spine and hip in a 

dose-dependent manner [19]. Further, a recent phase III randomized, active comparator, 

double blind study to compare the effects of 144 weeks’ ELD treatment and 144 weeks’ 

alfacalcidol (ALF) treatment on osteoporotic fracture has demonstrated the superior 

anti-fracture efficacy of ELD [20]. The clinical effect of ALF in preventing vertebral fractures 

has been reported [21]. Although the effects of ALF on bone geometry and strength of the 

proximal femur have not been established in humans, the effects of ALF on cortical bone 

have been reported in animal studies using ovariectomized or aged rats [22,23]. 

The purpose of the present study is to evaluate the effects of ELD versus ALF on BMD, 

bone geometry, and biomechanical properties of the proximal femur by using clinical 

multidetector-row CT (MDCT) in a subgroup of the phase III randomized clinical trial, and to 

identify structural features peculiar to ELD action. 
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2.  SUBJECTS AND METHODS 

2.1  Subjects 

The subjects were 193 ambulatory patients with osteoporosis (189 postmenopausal women 

and 4 men; age range: 52–85 years, average±SD: 70.9±6.92 years), who represent a subgroup 

of a randomized, active comparator, double-blind study to compare the anti-fracture efficacy 

of ELD with that of ALF in 1054 subjects (1030 women and 24 men, aged from 46 to 92 

years, mean age: 72.1 years) enrolled at 52 medical centers in Japan [20]. In that study, 

subjects were randomly assigned to receive either 0.75 µg ELD [19] or 1.0 µg ALF once daily 

for 144 weeks. This trial is registered with ClinicalTrials.gov, number NCT00144456. The 

protocol was approved by the internal human studies review board at each center, and written 

informed consent was obtained from each patient. 

The proximal femur of the 193 subjects was scanned with MDCT at 11 institutions to 

measure hip BMD, bone geometry, and biomechanical indices. We did not intentionally select 

the subjects. Since not all institutes had an MDCT scanner, the 193 subjects were those 

examined and treated in hospitals which had MDCT scanners. All subjects in this study fulfilled 

the inclusion criteria of the original study. In brief, in the original study, subjects without 

vertebral fractures were enrolled if their lumbar spine or total hip BMD T-score was below 

–2.6 and they were over 70 years, or if their T-score was below –3.4 and they were below 70 

years. Patients with lumbar spine or total hip BMD T-score of below –1.7 were enrolled if 

they had between one and five vertebral fractures. Prevalent vertebral fractures at enrolment 

were assessed by lateral spine X-ray examination of the thoracic and lumbar vertebrae, and 

were diagnosed quantitatively according to the criteria of the Japanese Society for Bone and 

Mineral Research (JSBMR) [24]. Women were at least 3 years after menopause or more than 

60 years of age, and men were over 60 years. Patients were excluded if they had primary 

hyperparathyroidism, Cushing’s syndrome, premature menopause due to hypothalamic, 

pituitary or gonadal insufficiency, poorly controlled diabetes mellitus (HbA1c over 9%) or 
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other causes of secondary osteoporosis, or had a history of urolithiasis. Patients were also 

excluded if they had taken any oral bisphosphonates within 6 months before entry or for more 

than 2 weeks during the period 6 to 12 months before entry, or intravenous bisphosphonates at 

any time; had taken glucocorticoids, calcitonin, vitamin K, active vitamin D compounds, 

raloxifene, or hormone replacement therapy within the previous 2 months; had serum Ca 

levels of above 10.4 mg/dL (2.6 mmol/L) or urinary Ca excretion of over 0.4 mg/dL 

glomerular filtrate (GF)(0.1 mmol/L GF); had serum creatinine above 1.3 mg/dL (115 

µmol/L); or had clinically significant hepatic or cardiac disorders. 

3.  Methods 

3.1  CT data acquisition 

CT data was acquired at baseline and at completion of 144 weeks of treatment, using the 

following scanning and reconstruction protocol. 

The scanning conditions (X-ray energy: 120–140 kV; X-ray current: 200–300 mA; 

rotation speed: 0.8–1.0 sec/rot; beam pitch: 0.5625–0.9375) and reconstruction parameters 

were predefined for each type of CT scanner (see Appendix). Beam pitch is defined as the 

ratio of table feed per rotation to the collimation, where collimation is the product of 

slice-thickness and the number of slices in each rotation. Beam pitch was kept under 1.0 

except for one CT scanner (Somatom Plus 4 Volume Zoom). Field of View (FOV) was 

defined as 350 mm to cover both hip regions. In-plane spatial resolution of 0.625–0.652 mm 

and reconstructed slice thickness of 0.500–0.625 mm was adjusted according to CT scanner 

type (see Appendix). The CT values were converted to bone mineral scale by using a solid 

reference phantom, B-MAS200 (Fujirebio Inc., Tokyo, Japan), containing hydroxyapatite 

(HA) at 0, 50, 100, 150, and 200 mg/cm3. For all of the CT data, a constant threshold value of 

350 mg/cm3 was used to define the cortical bone. 

The MDCT scanners used in this study originally included four Asteion 4 scanners, one 

Aquilion 4 scanner, and three Aquilion 16 scanners (Toshiba Medical Systems 
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Corporation,Tochigi, Japan); one LightSpeed Ultra_8 scanner, and one LightSpeed Plus_4 

scanner (GE-Yokogawa Medical,Tokyo,Japan); and one Somatom Plus 4 Volume Zoom 

scanner (Siemens, AG, Berlin and Munich, Germany). In two institutions, CT scanners were 

changed during the trial period (from Aquilion 16 to Aquilion 64, and from LightSpeed 

Plus_4 to LightSpeed Ultra_16); therefore, the pairs of CT data in 26 patients were obtained 

using different CT scanners. However, because the results of all patients did not differ from 

results excluding the 26 patients (data not shown), the results of all patients are presented in 

this article. 

Good linear correlations between the CT values and HA concentrations were 

demonstrated (r = 0.996–0.999; p < 0.0002–0.05) in all CT scanners. Differences in CT 

values according to X-ray energy were corrected by using the reference phantom to convert 

CT values to HA equivalent values. However, it was necessary to confirm the longitudinal 

stability of the CT values of the threshold value used to define the cortical bone. For the rod 

containing 200 mg/cm3 HA equivalent, which was used as the threshold value to define the 

cortical region, there was less than 0.01% difference between the baseline CT value and CT 

value at 144 weeks. 

3.2  Positioning of patients for CT scanning 

The subjects were scanned in the supine position, with the reference phantom beneath the 

patient and placed so as to cover a region from the top of the acetabulum to 5 cm below the 

bottom of the lesser trochanter in each hip joint (average slice number was 298). Bolus bags 

were placed between the subject and the CT calibration phantom. Both feet were fixed using a 

custom-made adjuster for hip DXA, which kept the subject’s knees flat and the toes pointed 

inward. The subject’s hands and arms were placed over the subject’s head or as high on the 

chest as was comfortable to avoid interfering with the scan area. The CT scanner table height 

was set to the center of the greater trochanter. 
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3.3  Analysis of BMD, bone geometry, and biomechanical properties obtained by CT 

3.3.1  Analysis of CT data  

Patient data were evaluated with QCT-Pro software v4.1.3 with the QCT-Pro Bone 

Investigational Toolkit v2.0 (BIT) (Mindways Software,Austin,USA) and also with Real 

Intage visualization software (KGT,Tokyo,Japan) based on 3D DICOM data to provide fusion 

functions and several geometrical measurements. All measurements were analyzed by a 

radiologist (M. Ito) blinded to treatment group assignment. 

3.3.1.1  QCT-Pro CTXA hip exam analysis 

The exact 3D rotation of the femur and the threshold setting for defining the bone contours 

appeared to be the two most critical steps for achieving accuracy and reproducibility in the 

automated procedures performed by QCT-Pro. The outer cortical BMD thresholds had to be 

adapted individually for each scan. 

The femoral neck axis was identified visually and also automatically with the “Optimize 

FN Axis” algorithm. QCT-Pro BIT processing was then performed with a fixed bone 

threshold for cortical separation set to 350 mg/cm3 for all patients and visits. 

This application was used to measure hip axis length (HAL), femoral neck angle (FNA), 

and neck width. vBMD, cross-sectional area (CSA), and cross-sectional bone mass of the 

femoral neck (total, cortical, and trabecular region), as well as cortical thickness and cortical 

perimeter were also measured. Trabecular parameters in each subject were calculated based 

on the total and cortical parameters. Biomechanical properties were also derived from the 

cross-sectional parameters of the femoral neck. 

3.3.1.2  Real Intage analysis 

This comprehensive image data visualization software based on 3D DICOM data provides 

fusion functions and several geometrical measurements. For bone analysis of the femoral 

shaft, this software was used for fusion of 3D images from baseline and images at 144 weeks 



 
 

10

to define the same regions of interest. The software was then used to measure the outer 

perimeter, inner perimeter, bone area, cortical bone density, and cross-sectional moment of 

inertia (CSMI) of the femoral shaft. 

3.3.2  Analysis of cross-sectional volumetric BMD and bone geometry of the femoral neck 

The cross-sectional femoral neck data were derived on the basis of the geometrical axis to 

calculate volumetric total BMD (total vBMD; mg/cm3), cortical BMD (cortical vBMD; 

mg/cm3), trabecular BMD (trabecular vBMD; mg/cm3), total CSA (cm2), cortical CSA (cm2), 

trabecular CSA (cm2), total bone mass (g), cortical bone mass (g), and trabecular bone mass 

(g). Cortical thickness (mm) and cortical perimeter (mm) were also derived. 

These parameters were all calculated with QCT-Pro. 

3.3.3  Biomechanical parameters of the femoral neck 

Because biomechanical parameters were determined on the principal axis, the cross-sectional 

moment of inertia (CSMI; mm4), the section modulus (SM; mm3), and buckling ratio (BR) 

were calculated from bone density and geometrical data. The CSMI is defined by the 

integration of products of incremental cross-sectional area and the square of their distance 

from the center of mass (centroid). The SM is the ratio of CSMI to the maximal distance of 

the material from the centroid, which is directly related to the strength with respect to a 

corresponding bending stress. For very thin-walled bones, failure occurs on the compressive 

surface due to local buckling, which is estimated as BR; this was calculated in this study as 

the average distance from the centroid divided by the average cortical thickness. 

These parameters were calculated with QCT-Pro. 

3.3.4  Analysis of vBMD, bone geometry, and biomechanical properties of the femoral shaft 

Using the Real Intage program, image fusion was performed between the baseline image and 

image at 144 weeks to adjust the regions for analyses. vBMD and geometry were calculated 
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in the region of the femoral shaft from 2 to 4 cm below the bottom of the lesser trochanter. 

The threshold value to discriminate the cortical region was defined as the CT value 

corresponding to 200 mg/cm3 HA in the reference phantom. In the femoral shaft, average 

cortical density (Co.vBMD; mg/cm3), total area (T.AR; mm2), bone area (B.AR; mm2), 

cortical outer perimeter (OUT.PERI; mm), cortical inner perimeter (INN.PERI; mm), and 

cross-sectional moment of inertia (CSMI; mm4) were measured. 

Reproducibility of the analysis by the QCT-Pro program was calculated by using five 

repeated measurements with visual matching each time from CT data sets without visible 

artifacts from seven healthy subjects. The coefficient of variation (%), as determined by the 

root mean square standard deviation divided by the mean, was 1.49% for total vBMD, 2.63% 

for cortical vBMD, 1.12% for total mass, 1.71% for total area, 2.11% for cortical area, 2.11% 

for cortical perimeter, and 3.58% for cortical thickness in the femoral neck [25]. In the 

analysis of the femoral shaft using Real Intage, the coefficient of variation was 0.53% for 

cortical vBMD, 0.52% for total area, 0.80% for bone area, 1.52% for outer perimeter, and 

2.22% for inner perimeter. Since the %CVs of the others were similar, we did not present 

them all. 

 

3.4  Statistics 

All randomized patients who had been administered one of the drugs and who had been 

assessed both at baseline and at 144 weeks were included in the analysis. 

Student’s t-tests were used to determine the significance of differences between the ALF 

and ELD groups. Paired t-tests were used to determine the significance of difference from the 

baseline. 

All p values calculated in the analysis were two-sided and were not adjusted for multiple 

testing. A p value of less than 0.05 was considered to indicate statistical significance. 
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Statistical analyses were done with SAS version 8.2 (SAS Institute,Cary USA). 

4.  RESULTS 

Table shows the demographic and bone characteristics of the subjects at baseline. None of the 

parameters differed significantly between the ALF and ELD groups. 

4.1  Cross-sectional geometry and vBMD of the femoral neck 

In the femoral neck, we measured cross-sectional cortical thickness and perimeter, as well as 

the total, cortical, and trabecular vBMD, CSA, and bone mass (Fig. 1). Cortical thickness of 

the femoral neck decreased significantly from baseline in the ALF group (–4.54±7.72%, p < 

0.001), while it did not significantly change in the ELD group; as a result, the percentage 

change in cortical thickness differed significantly between the ELD and ALF groups (p = 

0.042). Cortical perimeter increased significantly from baseline in both the ELD group 

(2.63±7.52%, p = 0.008) and the ALF group (3.86±6.28%, p < 0.001). Thus, although there 

was no significant difference between the effects of the two drugs on the increased cortical 

perimeter, ELD prevented the decrease in cortical thickness. 

Cortical vBMD of the femoral neck increased significantly in both the ELD group 

(1.82±4.78%, p = 0.004) and the ALF group (2.21±4.98%, p < 0.001), with no difference 

between the two groups (Fig. 1). Trabecular vBMD of the femoral neck significantly 

decreased in both the ALF group (–7.49±8.82%, p < 0.001) and the ELD group (–3.99±7.83%, 

p < 0.001), and there was a significant difference between the two groups (p = 0.020). Total 

vBMD of the femoral neck decreased from baseline in the ALF group (–2.25±5.32%, p < 

0.001), whereas it was maintained in the ELD group. Accordingly, the percentage changes in 

total vBMD differed significantly between the ELD and ALF groups (p = 0.009). 

Regarding cortical CSA, the ELD group showed a non-significant trend for an increase 

(1.73±7.62%, p = 0.082) and the ALF group showed a non-significant trend for a decrease 

(–0.96±6.14%, p = 0.212) (Fig. 1). Thus, the percentage changes from the baseline in cortical 
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CSA showed a significant difference between the ELD and ALF groups (p = 0.031). 

Trabecular CSA of the femoral neck increased significantly in the ALF group (2.92±7.74, p = 

0.003), but not in the ELD group (1.92±7.61%, p = 0.054). Total CSA increased from the 

baseline in both the ELD group (1.69±6.78%, p = 0.056) and the ALF group (1.51±5.77%, 

p = 0.039), with no difference between the two groups. 

Cortical bone mass of the femoral neck increased significantly from baseline in both the 

ELD group (3.68±7.51%, p < 0.001) and the ALF group (2.45±9.64%, p = 0.045) (Fig. 1). 

Total bone mass of the femoral neck increased significantly only in the ELD group (1.93±5.89, 

p = 0.013). Trabecular bone mass significantly decreased in the ALF group (–3.96±9.39, p < 

0.001), whereas it did not change from baseline in the ELD group, and there was no 

significant difference between the two groups (p = 0.268). Thus, in the ELD group, both total 

and cortical bone mass increased from baseline, and trabecular bone mass was maintained. 

4.2  Biomechanical properties of the femoral neck 

Biomechanical properties (CSMI, SM, and BR) of the femoral neck were compared between 

the ELD group and the ALF group (Fig. 2). CSMI and SM improved significantly in the ELD 

group (5.30±11.56%, p < 0.001 for CSMI; 4.33±11.92%, p = 0.006 for SM), whereas these 

parameters did not change in the ALF group. Thus, there were significant differences between 

the ELD and ALF groups in the percentage changes of CSMI and SM from baseline (p = 

0.037 and p = 0.023, respectively). Although BR increased from the baseline in both treatment 

groups (3.76±11.33%, p = 0.012 in ELD; 7.44±9.43%, p < 0.001 in ALF), the increase was 

significantly less in the ELD group than in the ALF group (p = 0.049) (Fig. 2). Collectively, 

these results suggest that ELD maintained the biomechanical properties of the femoral neck 

more effectively. 

4.3  Geometry, vBMD, and biomechanical properties of the femoral shaft 

The percentage changes in BMD, bone geometry, and biomechanical properties in the femoral 

shaft were compared between the ELD group and the ALF group (Fig. 3). Cortical vBMD in 
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the shaft decreased significantly in both the ELD group (–10.13±4.54%, p < 0.001) and the 

ALF group (–11.85±4.58%, p < 0.001) (Fig. 3); however, the percentage decrease was 

significantly smaller in the ELD group than in the ALF group (p = 0.026). Although the total 

area increased significantly from baseline in both the ELD and ALF groups, the bone area of 

the femoral shaft increased significantly only in the ELD group (1.75±3.24%, p < 0.001). 

Outer perimeter increased significantly from baseline in both treatment groups 

(0.92±1.67%, p < 0.001 in ELD; 0.94±2.22%, p < 0.001 in ALF), with no difference between 

the two groups. Inner perimeter increased significantly in both groups (0.76±2.75%, p = 0.023 

in ELD; 1.85±3.52%, p < 0.001 in ALF); however, the percentage increase was significantly 

greater in the ALF group than in the ELD group (p = 0.042). CSMI in the femoral shaft 

increased significantly from baseline in both the ELD and ALF groups. Thus, although there 

was no difference between groups with respect to this biomechanical parameter, the increase 

in inner perimeter, presumably due to accelerated resorption, was more effectively prevented 

by ELD. 

5.  DISCUSSION 

A recent randomized, double-blind study to compare the effects of ELD with ALF 

demonstrated the superiority of ELD over the active comparator, especially with respect to 

non-vertebral fractures [20]. In order to gain insight into the biomechanical basis underlying 

this clinically verified anti-fracture action of ELD, we took a subgroup of the randomized 

study and used clinical MDCT scanning to compare the effects of ELD and ALF on the 3D 

structure of the proximal femur, focusing particularly on the cortical component and 

biomechanical properties. Our study not only revealed the distinct action of ELD on the 

cortical compartment but also provided evidence for the improvement of biomechanical 

properties. 

In the femoral neck, whereas cross-sectional cortical thickness decreased in the ALF 

group, it was maintained in the ELD group. Taken together with the results that the cortical 
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perimeter increased in both the ALF and ELD groups, it is suggested that ELD was more 

effective than ALF in countering endocortical bone resorption, thereby maintaining cortical 

thickness. This is also consistent with the trend for increased CSA by ELD. Figure 4 

schematically illustrates the distinct actions of ELD and ALF on the cortical geometry and 

density of the femoral neck and shaft. 

As bone resorption accelerates with aging, especially from the inner surface of the cortex, 

the endocortical compartment tends to become trabeculated, and therefore represents an 

important target site for intervention. A possible mechanism of action of ELD is to reduce the 

number of pores opening through the endocortical surface, thereby maintaining cortical 

thickness and increasing cortical density. ALF treatment, on the other hand, failed to block the 

resorption of trabeculated endocortical bone, resulting in an expansion of the trabecular bone 

marrow cavity, decreased trabecular BMD, reduced cortical thickness, and increased cortical 

density. As a result of the ELD-specific effect on the endocortical surface, it is conceivable 

that ELD was more effective in increasing cortical bone mass than ALF. This observation is 

supported by the significantly higher reduction of bone resorption biomarkers observed with 

ELD treatment than with ALF treatment (data not shown). 

Regarding the increased cortical perimeter in both the ALF and ELD groups, it is difficult 

to determine whether this simply reflects the age-related increase in periosteal apposition or 

whether the drugs in fact had some positive effect in extending bone perimeter. A recent QCT 

study on 2 years’ treatment with teriparatide [18] failed to reveal increases in total CSA or 

periosteal apposition. Although direct comparison is not feasible, given the difference in the 

observation period (2 versus 3 years) and presumably also in the threshold value to define the 

cortical bone, the significant increases in cortical perimeter after 3 years’ treatment with ELD 

as well as ALF may imply that ELD and ALF have the potential to stimulate bone apposition 

at the periosteal surface. 

Along with these changes in the 3D geometry of the femoral neck, ELD, but not ALF, 

improved biomechanical properties, specifically CSMI and SM. In a previous study [26] we 
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compared the features of the femoral neck geometry in patients with hip or trochanteric 

fractures with their controls; patients with femoral neck fracture had a significantly longer 

HAL, lower CSMI, and higher BR, while those with trochanteric fracture had a smaller 

cortical CSA of the femoral neck. In view of the present findings that ELD increases CSMI 

and perhaps cortical CSA as well, ELD is expected to have the potential to reduce the risk of 

both femoral neck and trochanteric fractures. 

ALF and ELD failed to decrease BR. BR is a secondary parameter calculated by the 

average distance to the center of mass divided by average cortical thickness, and it is 

employed as a means to estimate the stability of the cortex in thin-walled regions subject to 

bending. Our previous study [26], in which BR was calculated according to the same formula, 

demonstrated that the BR in patients with hip fracture (12.22±1.69) was higher than that in the 

control group (8.32±2.13). In the present study, the percentage increase in BR during the 

3-year follow-up was smaller in the ELD group (0.48%/year; 8.92±2.18 at baseline and 

9.21±2.28 at 144 weeks) than in the ALF group (2.55%/year; 9.21±2.36 at baseline and 

9.90±2.71 at 144 weeks). In view of our previous results on BR [25], calculated by the same 

formula, that the longitudinal change in BR of healthy post-menopausal women younger than 

the subjects in this study was 1.48±4.81% per year, it is tempting to speculate that ELD may 

have countered the age-related increase in BR. 

The bone geometry and vBMD of the femoral shaft were examined using an analytical 

program different from that used to examine the femoral neck. Although it is difficult to 

compare values obtained using different software, we reasoned that comparison of the results 

by the percentage changes should be acceptable. T.AR and B.AR in the femoral shaft 

correspond respectively to total and cortical CSAs of the femoral neck, and OUT.PERI 

corresponds to cortical perimeter of the femoral neck. The results (Fig. 3) indicate that the 

changes in geometry of the femoral shaft were very consistent with the features in the femoral 

neck. Total CSA of the femoral neck increased in both the ALF and ELD groups (Fig. 1), as 

did T.AR of the femoral shaft (Fig. 3). B.AR of the femoral shaft increased significantly only 
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in the ELD group (Fig. 3), and cortical CSA of the femoral neck increased more in the ELD 

group (Fig. 1). OUT.PERI of the femoral shaft increased in both the ALF and ELD groups 

(Fig. 3), as did the cortical perimeter of the femoral neck (Fig. 1). 

Notably, the cortical vBMD of the femoral neck increased in both the ALF and ELD 

groups, whereas the cortical vBMD of the femoral shaft decreased in both groups. Since the 

cortex in the femoral neck is very thin compared to that in the shaft, the partial-volume effect 

should be taken into account when evaluating the cortical vBMD of the femoral neck. 

However, according to our previous study on age-related changes in the femoral neck and 

shaft in non-osteoporotic subjects [25], the rate of decrease in cortical vBMD was greater in 

the femoral shaft than in the femoral neck. It is possible, therefore, that ALF and ELD failed 

to prevent the rapid decline in cortical density of the femoral shaft. 

Finally, the present study has limitations. First, the study lacked a placebo group. Second, 

because our study included very few cases of hip fracture (only one in each group), the 

relationship of ALF or ELD treatment with the incidence of hip fracture has not been verified. 

In conclusion, our longitudinal analysis of hip geometry by clinical CT has revealed the 

advantage of ELD over ALF in maintaining cortical thickness and vBMD of the femoral neck 

and shaft, probably through mitigating endocortical bone resorption, thereby improving the 

biomechanical parameters. By maintaining the biomechanical properties of the proximal 

femur, ELD may have the potential to reduce the risk of hip fracture. 
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Figure legends 

 

Figure 1  Eldecalcitol maintains cortical thickness and increases volumetric BMD and 

bone mass in cortex of femoral neck 

Values are percentage changes from baseline (mean±SD) in cross-sectional bone geometry 

and vBMD in the femoral neck for groups treated with alfacalcidol (blue bars) and 

eldecalcitol (red bars). 

*p < 0.05, **p < 0.01, ***p < 0.001 

vBMD: volumetric bone mineral density 

CSA: cross-sectional area 
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Figure 2  Eldecalcitol improves biomechanical properties of the femoral neck 

Cross-sectional moment of inertia (CSMI), section modulus (SM), and buckling ratio (BR) 

were calculated in the femoral neck, and percentage changes from baseline (mean±SD) are 

shown for the alfacalcidol group (blue bars) and the eldecalcitol group (red bars). 

*p < 0.05, **p < 0.01, ***p < 0.001 
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Figure 3  Effects of eldecalcitol on bone geometry and biomechanical properties of the 

femoral shaft 

Percentage changes from baseline (mean±SD) in vBMD, bone geometry, and biomechanical 

properties in the femoral shaft are shown for the alfacalcidol group (blue bars) and the 

eldecalcitol group (red bars). 

Co.vBMD: cortical volumetric bone mineral density; T.AR: total area; B.AR: bone area; 

OUT.PERI: outer perimeter; INN.PERI: inner perimeter; CSMI: cross-sectional moment of 

inertia. 

*p < 0.05, **p < 0.01, ***p < 0.001 
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Figure 4  Schematic illustration of the effects of eldecalcitol (ELD) vs. alfacalcidol 

(ALF) on the cortical geometry and density of the femoral neck and shaft 

In the femoral neck, compared with baseline, the effects of ALF and ELD on the cortical 

perimeter (i.e., periosteal apposition) are similar. However, ELD counters endocortical 

resorption more effectively than ALF, which is reflected by the increased cortical thickness, 

thereby leading to improved biomechanical properties, represented by section modulus (SM). 

In the femoral shaft, ALF and ELD have similar effects, except that ELD decreases cortical 

density less than ALF, and increases inner cortical perimeter less than ALF. 

SM: section modulus; BR: buckling ratio; CSMI: cross-sectional moment of inert
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� A new vitamin D analog, Eldecalcitol, on hip geometry and biomechanical 

properties by clinical CT, in comparison with Alfacalcidol 

� Eldecalcitol increases cortical area, mineral density, and bone mass, and 

maintains cortical thickness  

� Eldecalcitol is also more potent in mitigating endocortical bone resorption 

than Alfacalcidol 

� By improving the biomechanical properties of proximal femur, Eldecalcitol 

may have the potential to reduce the risk of hip fractures 


