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PAPER

A Backlog Evaluation Formula for Admission Control Based on the
Stochastic Network Calculus with Many Flows∗

Kazutomo KOBAYASHI†a), Yukio TAKAHASHI††, and Hiroyuki TAKADA†b), Members

SUMMARY Admission control is a procedure to guarantee a given
level of Quality of Service (QoS) by accepting or rejecting arrival con-
nection requests. There are many studies on backlog or loss rate evaluation
formulas for admission control at a single node. However, there are few
studies on end-to-end evaluation formulas suitable for admission control.
In a previous paper, the authors proposed a new stochastic network calculus
for many flows using an approach taken from large deviations techniques
and obtained asymptotic end-to-end evaluation formulas for output bursti-
ness and backlog. In this paper, we apply this stochastic network calculus
to a heterogeneous tandem network with many forwarding flows and cross
traffic flows constrained by leaky buckets, and obtain a simple evaluation
formula for the end-to-end backlog. In this formula, the end-to-end back-
log can be evaluated by the traffic load at the bottle neck node. This result
leads us to a natural extension of the evaluation formula for a single node.
key words: admission control, quality-of-service (QoS), stochastic network
calculus

1. Introduction

Admission control is a procedure to guarantee a given level
of Quality of Service (QoS) by accepting or rejecting arrival
connection requests. To judge whether an arriving connec-
tion request is accepted or rejected, some simple evaluation
formula is needed, which can evaluate QoS under given traf-
fic loads including that of the new connection. There are
many studies on evaluation formulas for backlog or loss rate
at a single node [1], however, studies on end-to-end evalua-
tion have been almost limited to ones by network calculus.

Network calculus is a deterministic methodology for
a worst-case evaluation of packet networks [2]. It allows
us to estimate the end-to-end backlog and delay bounds,
and it has been used to calculate the end-to-end quality-of-
service guarantees [3]. A merit of the network calculus is
in its extendability, where performance bound formulas for
a single node can be easily extended to those for end-to-
end links by using min-plus algebra [4], [5]. More specifi-
cally, if we let S i(t) be a service curve, or a service guaran-
tee, at node i along the route of a flow with n nodes, then
S (t) = S 1 ∗ S 2 ∗ · · · ∗ S n(t) provides a service curve for the
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entire route of the flow, where ∗ is an operator called convo-
lution.

On the other hand, a drawback of the deterministic
worst-case evaluation is in the overestimation for necessary
network resources, especially when traffic load is low, the
number of flows is large, and the number of nodes is large.
It is because the effect of statistical multiplexing is disre-
garded.

To overcome this weak point, stochastic network cal-
culus has been discussed [4], [6]–[13]. Importing statistical
evaluation methods to the network calculus, it takes account
of the effect of statistical multiplexing. However, they are
still complicated for admission control. We note that [12]
provides a comprehensive summary of the stochastic net-
work calculus literature by 2008.

There also exists another approach that does not use the
stochastic calculus. In [14], [15], an evaluation formula was
obtained for a loop-free network by assuming that all nodes
in the network have so small buffers that overflow proba-
bility asymptotics depend only on instantaneous rates of the
traffic. However, this assumption of small buffers makes us
difficult to capture the burstiness character of the network
traffic.

In [16], [17], the authors proposed a new stochastic net-
work calculus for many flows from an approach like large
deviations techniques [18]–[20], and obtained asymptotic
end-to-end evaluation formulas for output burstiness, back-
log and delay. In this paper, we apply this stochastic network
calculus to a heterogeneous tandem network with many for-
warding flows and cross traffic flows constrained by leaky
buckets and obtain a simple evaluation formula for the end-
to-end backlog without the assumption of small buffers.
This result leads us to a natural extension of the evaluation
formula for a single node.

The tandem network considered here consists of m
nodes with J types of flows. Type j flows for j = 1, 2, . . . ,K
are forwarding flows, and type j flows for j = K + 1,K +
2, . . . , J are cross traffic flows. We assume that a flow of
type j is limited by a leaky bucket with token rate ρ j and to-
ken bucket size σ j, all flows are mutually independent, and
the cross traffic flows are served with higher priority than
the forwarding flows. Let nj, j = 1, 2, . . . ,K, be the num-
ber of forwarding flows of type j and ncross

i j , i = 1, 2, . . . ,m,
j = K + 1,K + 2, . . . , J, be the number of cross traffic flows
of type j at note i. The service rate (link capacity) at node
i is constant in time and equal to Ci for i = 1, 2, . . . ,m. We
denote by Q(t) the total backlog in the network at time t. As-
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suming that the numbers of flows nj’s and ncross
i j ’s are large

except for ncross
i j ’s being equal to 0 and that time t is also

large, the tail probability that Q(t) is larger than a threshold
B is evaluated as follows.

Evaluation formula for the backlog: If

K∑
j=1

nj
ρ j

θ̂σ j

(
eθ̂σ j − 1

)
+

J∑
j=K+1

ncross
i j

ρ j

θ̂σ j

(
eθ̂σ j − 1

)
≤ Ci

for any i = 1, 2, . . . ,m with

θ̂ = − log ε
B

,

then

P(Q(t) > B) <∼ ε.

The remainder of the paper is constructed as follows.
In Sect. 2, we describe the outline of the stochastic network
calculus with many flows as preliminaries. In Sect. 3, we
apply the stochastic network calculus with many flows to a
tandem network with many forwarding flows and cross traf-
fic flows constrained by leaky buckets. In Sect. 4, we obtain
a formula for admission control and give numerical exam-
ples. In Appendix, we present some proofs of the properties
used in Sect. 3.

2. Preliminaries

We consider a discrete-time tandem network with m nodes
and L flows, as illustrated in Fig. 1. (Note that L is the num-
ber of forwarding flows and there are no cross traffic flows,
here.) Time t takes discrete values 0, 1, 2, . . .. For time t ≥ 0,
let AL(t) and S L

i (t), i = 1, 2, . . . ,m, be random variables rep-
resenting the total arrivals to the network and the total of-
fered services at node i, respectively, during time interval
(0, t] for L flows, with a convention AL(0) = S L

i (0) = 0. Fur-
ther, let QL(t) be the total backlog of L flows in the whole
network at time t. In this paper, an arrival means an arrival
of one packet, and packets are assumed to be of the same
size. So, all flows seem like discrete-time fluid flows.

For a pair of times s and t such that 0 ≤ s ≤ t, we let

A
L
(s, t) = AL(t)−AL(s) and S

L
i (s, t) = S L

i (t)−S L
i (s). (Notice

that notations of these bi-variate functions are changed from
the previous paper [16] to match with the definitions in other
works [4], [10], [12], [13].) We define a convolution opera-
tor ∗ and a deconvolution operator � for functions f (s, t) and
g(s, t) of two variables t, s such that 0 ≤ s ≤ t as

Fig. 1 Tandem network with m nodes and L flows.

f ∗ g(s, t) = min
s≤τ≤t
{ f (s, τ) + g(τ, t)} and (1)

f � g(s, t) = max
0≤τ≤s
{ f (τ, t) − g(τ, s)}. (2)

Then, as is shown in the previous works [4], [10], [13], [16],
the backlog QL(t) is given as

QL(t) = A
L � S

L,m
(t, t) (3)

with probability one, where

S
L,m

(s, t) = S
L
1 ∗ S

L
2 ∗ · · · ∗ S

L
m(s, t). (4)

We discuss the limits of the cumulant generating func-

tions of A
L
(s, t), S

L
i (s, t), i = 1, 2, . . . ,m, and QL(t), defined

by

Aθ
(s, t) = lim

L→∞ L−1 log E[eθA
L
(s,t)], (5)

Sθi (s, t) = − lim
L→∞ L−1 log E[e−θS

L
i (s,t)], (6)

i = 1, 2, . . . ,m, and

Qθ(t) = lim
L→∞ L−1 log E[eθQL(t)], (7)

for 0 ≤ s ≤ t, assuming their existence. Note that log E[eθX]
is called as the cumulant generating function (cgf) of ran-
dom variable X.

We assume that for arbitrarily fixed t > 0 and any

s0, s1, · · · , sm such that 0 ≤ s0 ≤ s1 ≤ · · · ≤ sm = t, A
L
(s0, t)

and S
L
i (si−1, si), i = 1, 2, . . . ,m, are mutually independent,

and there exists δ > 0 such that, for θ ∈ (0, δ), Aθ
(s0, t) and

Sθi (si−1, si), i = 1, 2, . . . ,m, are finite. Under this assump-
tion, in [16], it was proved that

Qθ(t) = Aθ � Sθ,m(t, t) (8)

where

Sθ,m(s, t) = Sθ1 ∗ S
θ

2 ∗ · · · ∗ S
θ

m(s, t), (9)

and for b > 0,

lim sup
L→∞

L−1 log P(QL(t) > Lb)

≤− sup
θ∈(0,δ)

{θb −Aθ � Sθ,m(t, t)}. (10)

From the definitions (1) and (2), the right hand side of
(10) is rewritten as

inf
θ∈(0,δ)

{
−θb + max

0≤s0≤···≤sm=t

{
Aθ

(s0, t)

−Sθ1(s0, s1) − · · · − Sθm(sm−1, sm)
} }

.

(11)

Now we consider a tandem network with cross traffic
depicted in Fig. 2, in which cross traffic is served with higher
priority than forwarding one at each node. We assume that
the cross traffic at one node is independent of the others as
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Fig. 2 Tandem network with cross traffic.

well as of the forward traffic. We let the link capacity, i.e.,
the offered services per unit time, at node i be constant in
time and equal to Lci. Namely, ci is the link capacity per
one forwarding flow at node i. When we move L as in (5),
(6) and (7), ci is kept constant.

For the tandem network with cross traffic, which is
served with higher priority than forwarding one at each
node, it was shown in [16] that (11) can be evaluated as

inf
θ∈(0,δ)

{
−θb + max

0≤s0≤···≤sm=t

{
Aθ

(s0, t)

−
[
c1θ(s1 − s0) −Aθ,cross

1 (s0, s1)
]+
− · · ·

−
[
cmθ(sm − sm−1) −Aθ,cross

m (sm−1, sm)
]+} }

, (12)

where Aθ,cross
i (s, t) is the limit of the cumulant generating

function of the cross traffic arrivals at node i during (s, t]
defined similarly to (5) and [X]+ = max{0, X}.

Remark 1: Strictly speaking, in [16], the evaluation (12)
was derived under a more strict conditions that all flows
were independent and subjecting to a common probabilis-
tic law. However, by scrutinizing the proof, we can easily
find that the evaluation is valid under the condition described
here, namely, under the assumption of independence among
forwarding traffic and cross traffics and the assumption of

existence of the limitsAθ
(s, t) andAθ,cross

i (s, t)’s with a suit-
able interval (0, δ) of θ in which these limits of cumulant
generating functions are finite.

3. A Tandem Network with Input Flows Limited by
Leaky Buckets

We consider a tandem network consisting of m nodes with
cross traffic flows depicted in Fig. 2. There are K types of
forwarding flows and K̃ types of cross traffic flows. Let the
flows of type 1 to type K be the forwarding flows and those
of type K + 1 to type J = K + K̃ be the cross traffic ones.
Let the number of forwarding flows of type j be Lα j, j =
1, 2, . . . ,K, and the number of cross traffic flows of type j
at node i be Lβi j, j = K + 1,K + 2, . . . , J, i = 1, 2, . . . ,m.
If there exist no cross traffic flows of type j at node i, then
we consider βi j = 0. To meet the notations in the previous
section, here L is set to the total number of forwarding flows,
and hence we assume that

∑K
j=1 α j = 1. The total number of

cross traffic flows at node i is given by Mi = L
∑J

j=K+1 βi j.

We assume that the link capacity at node i, i.e., the offered
services per unit time at node i, is constant in time and equal
to Lci, i = 1, 2, . . . ,m. When we move L (and Mi’s), α j’s,
βi j’s, and ci’s are kept constant.

We let the forwarding flows of type j be {Aj,1(t)},
{Aj,2(t)}, · · · , {Aj,Lα j (t)}, j = 1, 2, . . . ,K, and the cross traf-
fic flows of type j at node i be {Across

i, j,1 (t)}, {Across
i, j,2 (t)}, · · ·,

{Across
i, j,Lα j
}, j = K + 1,K + 2, . . . , J. We assume that all flows

(both forwarding flows and cross traffic flows) are mutually
independent, and type j flows are subjecting to a common
probabilistic law† Further we make the following assump-
tions denoting by {Aj(t)} the arrival process of a typical flow
of type j:

C1. The arrival process {Aj(t)} is nondecreasing with prob-
ability one and has stationary increments.

C2. The arrival process {Aj(t)} is limited by a leaky bucket
with the token rate ρ j and the token bucket size σ j.
Namely, the following inequality holds with probabil-
ity one for any t, s such that 0 ≤ s ≤ t

A j(s, t) ≡ Aj(t) − Aj(s) ≤ ρ j(t − s) + σ j.

This inequality implies that the average rate and the burst
size of Aj(t) are limitted by the token rate ρ j and the token
bucket size σ j, respectivily.

It is shown in [1] that, if we put

η j(t, θ) = log

[
1 +

ρ jt

ρ jt + σ j
(eθ(ρ j t+σ j) − 1)

]
, (13)

then, under the assumptions C1 and C2, the cumulant gen-

erating function Aθ

j(s, t) = log E[eθAj(s,t)] of Aj(s, t) can be
evaluated as

Aθ

j(s, t) = Aθ

j(t−s, 0) ≤ η j(t−s, θ) for θ ∈ (0,∞).(14)

We denote the increment of arrivals in the forwarding

traffic during (s, t] as A
L
(s, t) = AL(t)−AL(s). Then we have

A
L
(s, t) =

K∑
j=1

Lα j∑
k=1

{Aj,k(t) − Aj,k(s)},

and denoting by Aθ

j,k(s, t) the cgf of Aj,k(s, t) = Aj,k(t) −
Aj,k(s), its cgf is given by

∑K
j=1

∑Lα j

k=1A
θ

j,k(s, t). Since

Aθ

j,k(s, t) is evaluated as in (14), the limit (5) is evaluated
as

Aθ
(s, t) ≤

K∑
j=1

α jη j(t − s, θ). (15)

Similarly, we denote the increment of arrivals in the cross

traffic at node i during (s, t] as A
Mi,cross
i (s, t) = AMi ,cross

i (t) −
†This assumption for type j flows to be subjecting to a com-

mon probabilistic law is too restrictive. We can relax somehow

this assumption by assuming the existence of the limits Aθ
(s, t)

andAθ,cross

i (s, t)’s.
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AMi ,cross
i (s). Then we have

A
Mi,cross
i (s, t) =

J∑
j=K+1

Lβi j∑
k=1

{Across
i, j,k (t) − Across

i, j,k (s)}

and its cgf is given by
∑J

j=K+1
∑Lβi j

k=1 A
θ,cross
i, j,k (s, t), where

Aθ,cross
i, j,k (s, t) is the cgf of A

cross
i, j,k (s, t) = Across

i, j,k (t) − Across
i, j,k (s).

SinceAθ,cross
i, j,k (s, t) is evaluated as in (14), the limit functions

Aθ,cross
i (s, t) ≡ lim

L→∞ L−1 log E[eθA
Mi ,cross
i (s,t)],

are evaluated as

Aθ,cross
i (s, t) ≤

J∑
j=K+1

βi jη j(t − s, θ), (16)

for i = 1, 2, . . . ,m.
Since, from (16),[
cθ(si − si−1) −Aθ,cross

i (si−1, si)

]+

≥
⎡⎢⎢⎢⎢⎢⎢⎣cθ(si − si−1) −

J∑
j=K+1

βi jη j(si − si−1)

⎤⎥⎥⎥⎥⎥⎥⎦
+

,

(12) can be reevaluated from above by using η j(t, θ)’s in-

stead ofAθ
(s, t) andAθ,cross

(s, t)’s as

inf
θ∈(0,∞)

⎧⎪⎪⎪⎨⎪⎪⎪⎩−θb + max
0≤s0≤···≤sm=t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑

j=1

α jη j(t − s0, θ)

−
⎡⎢⎢⎢⎢⎢⎢⎣c1θ(s1 − s0) −

J∑
j=K+1

β1 jη j(s1 − s0)

⎤⎥⎥⎥⎥⎥⎥⎦
+

− · · ·

−
⎡⎢⎢⎢⎢⎢⎢⎢⎣cmθ(sm−sm−1)−

J∑
j=K+1

βm jη j(sm−sm−1)

⎤⎥⎥⎥⎥⎥⎥⎦
+
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (17)

Here, we set δ = ∞ in (12) since η j(t, θ) is finite for any t
and θ ∈ (−∞,∞).

As will be proved in Appendix, the function η j(t, θ) is
increasing and concave on t for each fixed θ. Furthermore,
η j(t, θ) satisfies the inequality

η j(t, θ) ≤ θt · φ j(θ) (18)

for t ≥ 0, where

φ j(θ) =
ρ j

θσ j

(
eθσ j − 1

)
> 0 (19)

for θ > 0. We put

ξ(θ) =
K∑

j=1

α jφ j(θ), and (20)

ψi(θ) =
J∑

j=K+1

βi jφ j(θ), i = 1, 2, . . . ,m. (21)

Then, (17) is reevaluated from above as

inf
θ∈(0,∞)

{
−θb + max

0≤s0≤···≤sm=t

{
θ(t−s0) · ξ(θ)

−θ(s1−s0) · [c1 − ψ1(θ)
]+− · · ·

−θ(sm−sm−1) · [cm − ψm(θ)
]+} }

. (22)

So far we have evaluated the right hand side of (10)
for the tandem network in Fig. 2 with flows constrained by
leaky buckets. Thus now we know

lim sup
L→∞

L−1 log P(QL(t) > Lb)

is bounded from above by (22). Then we have the following
theorem.

Theorem 1: If

K∑
j=1

α jρ j +

J∑
j=K+1

βi jρ j < ci, (23)

for any i = 1, 2, . . . ,m, then for any b > 0 there exists T (b)
such that for any t > T (b)

lim sup
L→∞

L−1 log P(QL(t) > Lb) ≤ −θ∗b, (24)

where θ∗ is the largest θ > 0 satisfying ξ(θ) + ψi(θ) ≤ ci, or
equivalently

K∑
j=1

α j
ρ j

θσ j

(
eθσ j − 1

)
+

J∑
j=K+1

βi j
ρ j

θσ j

(
eθσ j − 1

)
≤ ci,(25)

for any i = 1, 2, . . . ,m.

Proof. We note that the function φ j(θ) is strictly
increasing and convex, and limθ↓0 φ j(θ) = ρ j and
limθ→∞ φ j(θ) = ∞, as will be proved in Appendix. Hence,
under the condition (23), there exists some θ > 0 satisfying
(25), and θ∗ is well defined. The condition (25) implies that
ξ(θ) + ψi(θ) − ci ≤ 0 for any i and θ ≤ θ∗. Also there exists
an i0 such that ξ(θ∗) + ψi0 (θ∗) − ci0 = 0.

The right hand side of (22) is rewritten as

inf
θ∈(0,∞)

⎧⎪⎪⎨⎪⎪⎩ − θb + max
0≤s0≤···≤sm=t

⎧⎪⎪⎨⎪⎪⎩θ(s1−s0) ·min{ξ(θ)

+ψ1(θ) − c1, ξ(θ)} + · · · + θ(sm−sm−1)

· min {ξ(θ) + ψm(θ) − cm, ξ(θ)}
} }

. (26)

When 0 < θ ≤ θ∗, as stated above, ξ(θ) + ψi(θ) − ci is less
than or equal to 0, and hence

min{ξ(θ) + ψi(θ) − ci, ξ(θ)} ≤ 0.

So the maximum in (26) is attained at s0 = s1 = · · · =
sm = t, and the maximum value is equal to zero. Thus the
infimum of the quantity in the outermost braces of (26) on
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the restricted interval (0, θ∗] of θ is attained at θ = θ∗, and
the infimum value is equal to −θ∗b.

On the other hand, when θ > θ∗, the value of ξ(θ) +
ψi(θ) − ci may be positive. However, the function ξ(θ) +
ψi(θ) − ci is increasing and convex since φ j(θ) is increasing
and convex. So, especially for i = i0, we have

ξ(θ) + ψi0 (θ) − ci0 ≥ {ξ′(θ∗) + ψ′i0 (θ∗)} (θ − θ∗) > 0,

where ξ′(θ) and ψ′i0 (θ) are derivatives of ξ(θ) and ψi0 (θ), re-
spectively. Thus the maximum in (26) is larger than or equal
to

θt {ξ′(θ∗) + ψ′i0 (θ∗)} (θ − θ∗).
Then we see that the quantity in the outermost braces in (26),
for which the infimum is taken on θ, is larger than −θ∗b for
sufficiently large t, because

−θb + θt {ξ′(θ∗) + ψ′i0 (θ∗)} (θ − θ∗) − (−θ∗b)

≥
{
{ξ′(θ∗) + ψ′i0 (θ∗)} θt − b

}
(θ − θ∗) > 0

for t larger than

T (b) =
b

{ξ′(θ∗) + ψ′i0 (θ∗)} θ∗ .

Combining the above results for 0 < θ ≤ θ∗ and for
θ > θ∗, we see that, if t > T (b), the infimum in (26) over
θ ∈ (0,∞) is attained by θ = θ∗ and the value is equal to
−θ∗b. This completes the proof. �

Remark 2: For a single node case m = 1 with J types of
flows, [1] and [19] obtained a similar result

lim
L→∞ L−1 log P(Q̂L > Lb)

= sup
τ≥0

inf
θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j

α jη j(τ, θ) − θ(b + cτ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for the backlog Q̂L in the steady state by applying the large
deviations techniques. Here cross traffic was not taken into
consideration.

Using the inequality supx infy f (x, y) ≤ infy supx f (x, y)
and the evaluation (18), we can easily derive a correspond-
ing result as

lim
L→∞ L−1 log P(Q̂L > Lb)

≤ inf
θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩−θb + sup
τ≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J∑

j=1

α j
ρ j

σ j

(
eθσ j − 1

)
τ − cθτ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

A similar discussion to the proof of the theorem reveals that
the right hand side can be reduced to (24).

Remark 3: The parameter value θ∗ defined in the theorem
satisfies the equality ξ(θ∗)+ψi0 (θ∗) = ci0 for some i0, and for
other i � i0 it satisfies the inequality ξ(θ∗)+ψi(θ∗) ≤ ci. This
implies that node i0 is a bottle neck node of the network.
Then the theorem says that the asymptotic tail probability

of the end-to-end backlog can be determined by the traffic
load at the bottle neck node. Furthermore, it can be done by
the total traffic load of the forwarding flows and the cross
ones.

4. A Formula for Admission Control and Numerical
Examples

Theorem 1 in the preceding section says that, if L are t are
large enough, L−1 log P(QL(t) > Lb) is less than or equal to
−θb for any positive θ satisfying (25). We will write this as

P(QL(t) > Lb) <∼ e−Lθb. (27)

For an application to an admission control, it is convenient
to rewrite this result without using L. Let us denote the
backlog threshold as B = Lb, the link capacity at node i as
Ci = Lci, the number forwarding flows of type j as nj = Lα j

and the number of cross traffic flows of type j at node i as
ncross

i j = Lβi j. Then, for a given tail probability bound ε, we
obtain the following backlog evaluation formula for admis-
sion control.

A formula for admission control: If n j’s, ncross
i j ’s and

t are large enough (except for cross traffic flows such that
ncross

i j = 0) and if

θ̂ = − log ε
B

(28)

satisfies the inequality

K∑
j=1

nj
ρ j

θ̂σ j

(
eθ̂σ j−1

)
+

J∑
j=K+1

ncross
i j

ρ j

θ̂σ j

(
eθ̂σ j−1

)
≤Ci (29)

for any i = 1, 2, . . . ,m, then

P(QL(t) > B) <∼ ε. (30)

From (29), we see that the quantity corresponding to
the effective bandwidth [1] of a flow of type j, is given by

ρ j

θ̂σ j

(
eθ̂σ j − 1

)
. (31)

Also (29) for i = i0, namely the inequality at a bottle neck
node, gives us an admissible region for the numbers nj’s and
ncross

i0 j ’s of type j flows, j = 1, 2, . . . , J.
Numerical examples: From Remark 3, we can eval-

uate the end-to-end backlog by the total traffic load of the
forwarding flows and the cross ones at a bottle neck node.
So, here we consider a bottle neck node having two types of
flows, type 1 flows and type 2 flows. We set the token rate
and the token bucket size of type 1 flows as ρ1 = 40 Mbps
andσ1 = 4 Mbits, and those of type 2 flows as ρ2 = 20 Mbps
and σ2 = 10 Mbits. We calculate effective bandwidths of
type 1 and type 2 using (31) and admissible region from
(29). Figure 3 shows the effective bandwidths of type 1
and type 2 with the buffer thresholds B = 100 Mbits and
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Fig. 3 Effective bandwidths of type 1 and type 2.

Fig. 4 Admissible region with C = 10 Gbps.

B = 500 Mbits. As ε decrease, the effective bandwidths in-
crease. However, when the buffer threshold B is 500 Mbits,
50 times the token bucket size of type 2, they don’t increase
so much. Figure 4 shows the admissible region with the link
capacity C = 10 Gbps. As ε decrease, the admission region
becomes smaller, but in case of B = 500 Mbits, it doesn’t so
small.

5. Conclusion

For a heterogeneous tandem network with many forwarding
flows and cross traffic flows constrained by leaky buckets,
we obtained a simple evaluation formula for the end-to-end
backlog using the proposed stochastic network calculus for
many flows. In this formula, the end-to-end backlog can be
evaluated by the total traffic load at the bottle neck node.
This result leads us to a natural extension of the evaluation
formula for a single node.
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Appendix

Here we give a proof for the concavity of the function η j(t, θ)
given in (13) and the convexity of the function φ j(θ) given
in (19).

Proof of the concavity of η(t, θ) in (13): For brevity of
exposition, we omit the subscripts j used in (13). Then the
function η(t, θ) is rewritten as

η(t, θ)=θ(ρt+σ)−log
[
ρt+σ

]
+log

[
ρt+σe−θ(ρt+σ)

]
.

Then it is easily checked that

η(0, θ) = 0 and lim
t→∞ {η(t, θ) − θ(ρt + σ)} = 0.
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So, roughly speaking, the function η(t, θ) grows along a
straight line θ(ρt + σ) as t → ∞. Its first and second deriva-
tives on t are given as

∂

∂t
η(t, θ) = θρ − ρ

ρt + σ
+
ρ − σθρe−θ(ρt+σ)

ρt + σe−θ(ρt+σ)
, and

∂2

∂2t
η(t, θ) = − ρ2

(ρt + σ)2(ρt + σe−θ(ρt+σ))2

·
[
σ2

{
1 − 2θ(ρt + σ)e−θ(ρt+σ) − e−2θ(ρt+σ)

}

+2σρt
{
1 − e−θ(ρt+σ) − θ(ρt + σ)e−θ(ρt+σ)

−1
2
θ2(ρt + σ)2e−θ(ρt+σ)

}]
.

It is easily checked that the first derivative is positive and
the second derivative is negative for t > 0, because h1(x) ≡
1 − 2xe−x − e−2x > 0 and h2(x) ≡ ex − 1 − x − 1

2 x2 > 0 for
x > 0. Hence, as a function of t, η(t, θ) is increasing and
concave.

At t = 0, the first derivative reduces to φ(θ) defined
in (19). Hence the line in the right hand side of (18) is the
tangential line of η(t, θ) at t = 0, and from the concavity of
η(t, θ), the inequality (18) holds. �

Proof of the convexity of φ j(θ) in (19): For brevity of no-
tation, here we omit the subscripts j used in (19) as

φ(θ) =
ρ

θσ

(
eθσ − 1

)
.

Its first and second derivatives are given as

d
dθ
φ(θ) =

ρ

θ2σ
eθσ

{
e−θσ − 1 + θσ

}
and

d2

d2θ
φ(θ) = − 2ρ

θ3σ
eθσ

{
e−θσ − 1 + θσ − 1

2
θ2σ2

}
.

It is easily checked that both derivative are positive for θ >
0, since g1(x) ≡ e−x−1+x > 0 and g2(x) ≡ e−x−1+x− 1

2 x2 <
0 for x > 0. Hence, φ(θ) is increasing and convex.

It is clear that limθ↓0 φ(θ) = ρ and that limθ→∞ φ(θ) =
∞. �
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