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Abstract

The recent development of high-resolution DNA microarrays, in which hundreds of thousands of single nucleotide
polymorphisms (SNPs) are genotyped, enables the rapid identification of susceptibility genes for complex diseases. Clusters
of these SNPs may show runs of homozygosity (ROHs) that can be analyzed for association with disease. An analysis of
patients whose parents were first cousins enables the search for autozygous segments in their offspring. Here, using the
AffymetrixH Genome-Wide Human SNP Array 5.0 to determine ROHs, we genotyped 9 individuals with schizophrenia (SCZ)
whose parents were first cousins. We identified overlapping ROHs on chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17,
19, 20, and 21 in at least 3 individuals. Only the locus on chromosome 5 has been reported previously. The ROHs on
chromosome 5q23.3–q31.1 include the candidate genes histidine triad nucleotide binding protein 1 (HINT1) and acyl-CoA
synthetase long-chain family member 6 (ACSL6). Other overlapping ROHs may contain novel rare recessive variants that
affect SCZ specifically in our samples, given the highly heterozygous nature of SCZ. Analysis of patients whose parents are
first cousins may provide new insights for the genetic analysis of psychiatric diseases.
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Introduction

Schizophrenia (SCZ) is categorized as a severe chronic

debilitating psychosis that affects approximately 1% of the global

population. Although genetic factors are reported to contribute to

the disease and multiple responsible loci have been identified from

linkage analysis and case-control association studies, there have

been few reproducible results to date [1].

Morrow et al. (2008) [2] suggested that homozygosity mapping

is a powerful tool not only for investigating single gene defects but

also for rare genomic variants in complex traits. They observed

homozygous deletions in patients with autistic disorders and

concluded that genomic alterations might be a subset of disease-

causing mutations in chromosomal regions. The increased

susceptibility to SCZ observed in consanguineous families suggests

that genomic recessive variations may be involved in its etiology.

[3–5] Considering this and other results, we hypothesized that

homozygosity mapping, including identical by descent (IBD)

analysis, would be a highly constructive method for identifying

the loci responsible for SCZ.

We hypothesized that runs of homozygosity (ROHs) could

contribute to SCZ by a recessive effect. We use the term ‘‘ROH’’

[6] instead of loss of heterozygosity (LOH) for regions where

homozygous genotypes are contiguous because LOH implies

heterozygous deletions or hemizygosity, while ROH suggests consec-

utive homozygous regions. Recessive effects are obtained by genetic

variations including single nucleotide variations, small insertions/

deletions, structural variations, and chromosomal rearrangements.

These variations may affect amino acid sequences or the control of

gene expression, including small RNA expression.

Here, we describe a homozygosity mapping strategy that consisted

of 2 stages (Figure 1). The first stage aimed to find the appropriate size

threshold for autosomal ROHs that would distinguish ROHs

specifically existing in the offspring of first-cousin marriages from

those that commonly exist in the offspring of non-consanguineous

marriages. By comparing the size distribution of ROHs between the

offspring of first-cousin marriages and non-consanguineous marriag-

es, we concluded that ROHs .2.1 Mb in size in the offspring of

consanguineous marriages can be assumed to be IBD segments from

an individual 3 generations before. The second stage aimed to find

shared ROHs among patient with SCZ using 2 models. In Model I,

an autosomal ROH size threshold was applied to filter out smaller

ROHs. Larger ROHs were assessed to find overlaps among the

patients. In Model II, after filtering by the ROH size threshold,

ROHs shared by the siblings of patients and ROHs of other patients

were assessed to find overlaps. The overlapping ROHs we identified

potentially contain SCZ causative regions that are specific to our

samples because of the heterogeneous nature of SCZ.
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Materials and Methods

1. Samples
A total of 9 subjects with SCZ (3 males and 6 females, aged 31–

56 years) (SCZ individuals) were recruited to this study after being

diagnosed as having typical paranoid schizophrenia by a certified

psychiatrist (N.K.) using the Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and the

Structured Clinical Interview for DSM-IV Axis I Disorders (SCID). The

study received ethics approval from the Committee for Ethical

Issues on Human Genome and Gene Analysis at Nagasaki

University, Japan. All of the patients were from the main islands of

Japan, excluding Okinawa. We obtained written informed consent

from all participants. The consanguineous patients were from 8

first-cousin marriages. Seven individuals (patients a to g) were

unrelated and 2 were siblings (patients h-1 and h-2). We also

recruited 92 healthy individuals from non-consanguineous mar-

riages (non-CJ individuals) from the main islands of Japan,

excluding Okinawa. We confirmed consanguinity by interview.

We did not match for gender in the SCZ and non-CJ individuals

because we only intended to analyze autosomal chromosomes.

After obtaining written informed consent, genomic DNA was

isolated from peripheral blood. We did not collect blood samples

from the patients’ parents, except for 1 patient, or siblings;

however, we confirmed that they had no history of psychiatric

illness, with the exception of the older brother of patient g, by

direct interview or from the medical records of the other related

individuals.

Furthermore, we also assessed the International HapMap Project

[7] phase 3 data of the Japanese in Tokyo (HapMap3 JPT) to

evaluate the non-CJ individuals. Raw signal intensity files (CEL files)

obtained using Affymetrix Genome-Wide Human SNP Array 6.0

(Affy6.0) were downloaded from http://www.hapmap.org/.

2. Microarray analysis
We performed genome-wide SNP genotyping of 9 SCZ samples

and 92 non-CJ samples using the Affymetrix Genome-Wide

Human SNP Array 5.0 (Affy5.0) according to the manufacturer’s

instructions. Our microarray data is MIAME compliant and the

raw data has been deposited in the CIBEX database (CIBEX

accession number: CBX141).

3. ROH detection
We generated the CHP genotype files from the CEL signal

intensity files using the BRLMM-P genotype calling program

[8,9]. For the detection of ROHs, we analyzed the CHP files with

a hidden Markov model (HMM)-based ROH detection function of

the PartekH Genomics Suite (Partek GS) software version 6.5 build

6.11.0207 (Partek, St. Louis, MO, USA). We applied the following

default HMM parameters: max probability = 0.99, genomic

decay = 0 (disabled), genotype error = 0.01, and default frequen-

cy = 0.3. We did not adopt the baseline files.

Detected ROHs were statistically analyzed and visualized

(Figures 2 and 3; Tables 1 and 2) by using in-house scripts written

in the R language [10]. The optimization of histogram bandwidths

and the estimation of the probability density distributions were

performed using the ‘‘KernSmooth’’ package of R [11].

Furthermore, to validate the data quality of our non-CJ

samples, we also compared our data to HapMap3 JPT. Affy6.0

raw signal intensity data in CEL files were subjected to allele

calling using Birdseed software version 2 [12]. SNP genotypes of

shared loci between Affy6.0 and Affy5.0 were extracted and

processed as well as the non-CJ and SCZ datasets to detect ROHs.

4. Detection of potential genetic loci for SCZ by
overlapping ROHs

To detect the overlapping ROHs among the SCZ dataset, the

identified ROHs were filtered by a size threshold on Partek GS,

Figure 1. Two-stage design of this study. A, the first stage was to
find an appropriate autosomal run of homozygosity (ROH) size
threshold to distinguish specific ROHs from the offspring of first-cousin
marriages from ROHs in the offspring of non-consanguineous
marriages. The size distribution of ROHs in our non-consanguineous
Japanese (non-CJ) and schizophrenia (SCZ) samples was compared.
Non-CJ samples are the offspring of non-consanguineous marriages
that were validated by interview. Here, SCZ samples were used as the
offspring of first-cousin marriages regardless of phenotype. Samples
from parents were not used in this study (dashed squares and circles).
To confirm our strategy, we also assessed HapMap3 JPT samples, which
do not have information for phenotypes or family consanguinity
(dashed and solid lines between parents). B, the second stage was to
find shared ROHs among the SCZ samples as patients with
schizophrenia. In Model I, an autosomal ROH size threshold was
applied to filter out smaller ROHs (dashed open boxes). Larger ROHs
(solid open boxes) were assessed to find overlaps among patients (solid
boxes). In Model II, after filtering by the ROH size threshold, ROHs
shared by the siblings of patients and ROHs of other patients were
assessed to find overlaps. In this study, the gender of the samples was
not matched (diamonds) because we only evaluated autosomal ROHs.
doi:10.1371/journal.pone.0020589.g001
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analyzed using an in-house Ruby script (available on request) to

generate a table of overlapping ROHs, and visualized with Partek

GS. Then, we extracted the loci shared among more than 3

unrelated individuals (Model I) (Table S1). Furthermore, on the

basis of the hypothesis that concordant sibling cases share causal

loci, we detected the loci shared among 2 sibling cases (h-1 and h-

2) (Model II) and found the ROHs that were shared by 1 or more

of the unrelated samples (Table 3).

Results

1. Determination of the ROH size threshold
discriminating the offspring from non-consanguineous
and first-cousin marriages

We genotyped 440 794 SNPs in each individual. Genotype

calling rates for each sample ranged from 97.23–98.83% and their

call rates were high and accurate enough for their subsequent

evaluation. We utilized the data from 92 non-CJ and 91

HapMap3 JPT samples in addition to the data from 9 SCZ

individuals.

Our homozygosity mapping strategy utilized differences in the

length distribution of ROHs between offspring from consanguin-

eous and non-consanguineous marriages. Individuals from con-

sanguineous families are expected to have an increased number of

longer ROHs containing autozygous segments. These segments

were also expected to be discriminated by their length from ROHs

containing homozygous segments by chance or by linkage

disequilibrium (LD). To demonstrate the strategy, we performed

detailed comparisons of the length distribution of ROHs between

the non-CJ, HapMap3 JPT, and SCZ datasets.

We initially plotted the total number and size of ROHs in the

non-CJ, HapMap3 JPT, and SCZ datasets (Figure 2). The non-CJ

and HapMap3 JPT datasets clustered together, except for 3

individuals in HapMap JPT. These 3 outlier individuals,

NA18987, NA18992 [13], and NA19012 [14], have been assumed

to be from consanguineous families; indeed, the distribution of

these samples was similar to that of our offspring from first-cousin

marriages (Figure 2).

We then analyzed the length distribution of ROHs in the non-

CJ and SCZ datasets. Bar plot histograms of the length of ROHs

were obtained and the probability density curves were estimated

by the ‘‘KernSmooth’’ package in R (Figure 3A–D). Descriptive

statistics of these plots are also shown in Table 1. Both datasets

produced bell curve-like distributions in the log10 scale on the x-

axis to indicate the length of each ROH; however, the SCZ

dataset showed a secondary peak in the larger ROH region. We

expected that the autozygous region from the founders of the third

ancestral generation (great-grandparents) would be larger in the

SCZ dataset than in the non-CJ dataset, in whom LD may

encompass ROHs by chance. The proportion of larger ROHs in

the SCZ dataset was clearly higher than in the non-CJ dataset. As

we can expect that 1/16 of the whole genome in the offspring of

first-cousin marriages would be autozygous regions from their

great-grandparents, we highlighted the graphs in Figure 3B and

Figure 2. Distribution of the size and number of individual autosomal runs of homozygosity (ROHs). Sums and total numbers of
individual ROHs are shown by circles and triangles indicating unrelated Japanese individuals (non-CJ: 92 samples) and the offspring of first-cousin
marriages with schizophrenia (SCZ: 9 samples), respectively.
doi:10.1371/journal.pone.0020589.g002
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Figure 3. Size distribution of autosomal runs of homozygosity (ROHs). In the size distribution plot of non-consanguineous Japanese (non-
CJ; A and B) and schizophrenia (SCZ; C and D) samples, the x-axis indicates the ROH size (log10 scale). A and C, individual average frequency of the
ROHs as histograms. B and D, estimated probability density corresponding to each histogram. Black areas shows 1/16 (6.25%) of autosomes, which is
equivalent to the expected sum of autozygous regions in the offspring of a first-cousin marriage. E, enlarged overlap of B (gray) and D (hatched). F,
SCZ/non-CJ odds ratio plot. X-axis indicates the size of the ROHs (log10 scale). Y-axis (log10 scale) indicates the ratio of areas exceeding the given ROH
size threshold in the estimated probability distributions of the SCZ and non-CJ datasets.
doi:10.1371/journal.pone.0020589.g003
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3D at the point where the total sum of length in the upper tail of

the ROH distribution reaches 179.2 Mb, which is 1/16 of the

2 867 732 772 bases total size of the autosomal haploid genome,

according to the statistics from the NCBI Build 36.1 assembly

(2006) [16]. This analysis suggested that it is highly probable that

the longer ROHs would be inherited from the great-grandparents;

however, it should be mentioned that genomic regions with less

recombination tend to have longer ROHs.

To show further differences in the probability density

distribution of the SCZ and non-CJ individuals, we also plotted

an SCZ/non-CJ odds ratio (OR) plot (Figure 3F and Table 2),

which indicates the ratio of probability for the existence of ROHs

in each dataset over a given threshold length. To determine the

overlapping ROH regions shared among the SCZ dataset, we

adopted OR = 3.0 and the corresponding threshold of 2 137 962

bases to ensure practical power and to detect smaller IBD regions

by recombination.

2. Determination of potential SCZ genetic loci by
overlapping ROHs

The sum lengths of the overlapping regions among 0–7

independent family patients are shown in Figure 4, and the

calculated percentage sum length among a given number of

patients and more in the autosomal genome were as follows:

100%, 51.7%, 13.6%, 6.0%, 1.9%, 1.3%, and 0.6%. Considering

the statistics, we adopted a minimum of 3 patients for identifying

candidate loci. Figure 5 shows a schema of the overlapping ROHs

within autosomes and their positions are summarized in Table S1.

Overlapping ROHs found in 3 or more SCZ individuals on

chromosomes 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20,

and 21 (Figure 5A) suggested that many loci are potentially

associated with SCZ in our patients. Only the locus on

chromosome 5 has been reported in a previous linkage analysis

of SCZ [16]. The ROHs were expanded by the analysis of 4

additional individuals; however, no additional loci were detected

(data not shown). The locus on chromosome 5q23.3–q31.1

included the regions containing the histidine triad nucleotide

binding protein 1 (HINT1) and acyl-CoA synthetase long-chain

family member 6 (ACSL6) genes. Our results suggest that recessive

variants of these candidate genes could be involved in the

pathogenesis of SCZ in our patients.

In the analysis of 2 siblings (h-1 and h-2) from a first-cousin

marriage, we searched for the ROH regions shared by the siblings

as a single gene defect. The detection of loci shared by the siblings

and 1 or more unrelated individuals demonstrated ROHs on

chromosomes 1, 5, 7, 8, 10, 12, 13, 16, 17, 19, and 21 that might

be causative for SCZ (Figure 5B). Those loci did not include any

previously reported candidate genes. Interestingly, among the loci

detected in Figure 5A and 5B, there were no overlapping loci

identified in this study.

Table 1. Autosomal runs of homozygosity (ROHs) size distribution, where descriptive statistics of ROH sizes were detected with
Partek GS.

Dataset N Minimuma Modeb Maximumc Average sumd

HM3JPTe 88 19 750 (14) 256 499 (27) 32 000 000 (1252) 831 159 144

non-CJf 92 18 160 (14) 248 288 (27) 32 250 000 (1921) 859 784 793

SCZg 9 27 380 (14) 258 488 (38) 57 810 000 (9896) 956 266 858

aMinimum ROH size in all individuals from each dataset.
bMode ROH size in all individuals from each dataset.
cMaximum ROH size in all individuals from each dataset.
dAverage sum is the average total ROH size per individual from each dataset.
eThe International HapMap Project phase 3 Japanese in Tokyo. Three samples, NA18987, NA18992, and NA19012, of 91 samples are omitted because they are
potentially the offspring of a consanguineous marriage.

fNon-consanguineous Japanese.
gSchizophrenia.
Numbers are in bases, and the numbers in parentheses are the included probe sets.
doi:10.1371/journal.pone.0020589.t001

Table 2. Thresholds, individual average sums of runs of homozygosity (ROHs), its ratio in the autosomal genome, and the
individual average encompassed number of ROHs corresponding to the odds ratios.

Odds ratio Threshold (base) Non-CJa dataset SCZb dataset

sum (base)
Autosomal
ratio (%)

# of
ROHs sum (base)

Autosomal
ratio (%) # of ROHs

1.3 1 000 000 185 411 092 6.5 93.2 420 200 807 14.7 123.6

2.0
00

1 548 817 110 468 918 3.9 30.6 341 258 405 11.9 52.7

3.0 2 137 962 81 383 855 2.8 13.8 309 296 125 10.8 33.8

4.0 3 630 781 65 633 075 2.3 7.6 288 028 919 10.0 25.4

5.0 5 128 614 53 423 627 1.9 4.7 263 695 116 9.2 19.8

10.0 24 547 089 7 925 263 0.3 0.3 85 167 811 3.0 2.7

aNon-consanguineous Japanese.
bSchizophrenia.
doi:10.1371/journal.pone.0020589.t002

Identification of Novel Schizophrenia Loci

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e20589



Discussion

1. Samples
We recruited 9 offspring from first-cousin marriages (SCZ) and 92

from non-consanguineous marriages (non-CJ). As shown in Figure 2,

our non-CJ dataset and publicly available HapMap3 JPT datasets

showed a common cluster, except for the presence of 3 outliers that

have been reported to be potentially from consanguineous families

[14,15]. This concordance suggests that our experimental quality

and data processing approaches were appropriate. In this study, we

analyzed a limited number of samples; however, homozygosity

mapping was a reasonable strategy to adopt because it requires

relatively smaller number of samples than case-control studies. We

did not use samples from the parents of patients in this study because

these are not very informative in our strategy. On the other hand,

affected and unaffected siblings in single families are strongly

informative in homozygosity mapping, and we are continuously

recruiting additional siblings for future study.

2. ROH analysis
Most of the previous homozygosity mapping studies were based

on genotypes derived from microsatellites or simple tandem-repeat

polymorphisms (STRP). The highly polymorphic nature of multi-

allelic STRP markers is suitable to cover the whole genome with a

fewer numbers of markers. However, recent DNA microarray

technologies have enabled massive genome-wide SNP genotyping

to be performed in a short time. The problem with homozygosity

mapping based on SNPs is the accurate detection of regions with

ROHs. As SNPs have a less informative biallelic nature, using the

naı̈ve definition of an ROH as just a contiguous homozygous region

may skew the detection of ROHs because of the frequency of low

minor allele SNPs, genotyping errors, and ‘‘no-call’’ SNPs.

The solution to this problem using the Affymetrix Human

Genotyping 500K arrays and Illumina Infinium HumanHap300v2

arrays was the application of ROH detection bins sliding through

each chromosome to filter out low SNP density bins and to allow the

small number of heterozygous SNPs and no-call SNPs to be placed in

a bin [6,17]. An alternative method to detect ROHs is to adopt an

HMM. Partek GS software implements the HMM-based ‘‘LOH

detection’’ algorithm. A similar algorithm is also implemented in the

Affymetrix GeneChip Chromosome Copy Number Analysis Tool

(CNAT), as described in the CNAT user guide [18]. The HMM-

based algorithm of these tools takes not only the information of

adjacent SNP genotypes but also the heterozygosity of SNPs as a

reference baseline calculated from the genotyping results in the

reference samples or the a priori default frequency. This method is

expected to more accurately detect ROH regions that reflect actual

recombination.

Selection of the reference population for the baseline data is

crucial for the HMM-based detection of ROHs. If the reference

population is carefully selected to match the background of the

case population, the baseline generated from the observation of

actual SNPs in the reference population can omit ROHs resulting

from LD and regions with low SNP density, such as centromeres.

However, if strict matching of the used population background is

difficult, use of the fixed default heterozygous frequency, whose

Table 3. Novel loci identified in this study that are different from those in Table S1, for the segments overlapping in more than 1
unrelated individual and the common regions between the 2 siblings (cases h-1 and h-2).

Chromosome Start End Samples # Samplesa Length Cytoband

1 146258078 148749860 h-1, h-2, a 3 2491783 1q21.1-q21.2

5 45437574 49631829 h-1, h-2, d 3 4194256 5p12-q11.1

5 117360252 120214932 h-1, h-2, f 3 2854681 5q23.1

5 120214932 122586267 h-1, h-2, f, g 4 2371336 5q23.1-23.2

7 57594442 62282881 h-1, h-2, b, f 4 4688440 7p11.2-q11.21

8 129121122 131617749 h-1, h-2, b 3 2496628 8q24.21-q24.22

8 132434559 139244531 h-1, h-2, b 3 6809973 8q24.22-24.23

10 37363792 37599485 h-1, h-2, e 3 235694 10p11.21

10 37599485 37874740 h-1, h-2, e, g 4 275256 10p11.21

10 37874740 42217616 h-1, h-2, c, e, g 5 4342877 10p11.21-q11.21

12 33982292 36255461 h-1, h-2, a, d 4 2273170 12p11.1-q11

13 35366458 43580724 h-1, h-2, g 3 8214267 13q13.3-14.11

16 28924029 29606107 h-1, h-2, c 3 682079 16p11.2

16 29606107 29657036 h-1, h-2, c, f 4 50930 16p11.2

16 29657036 29680943 h-1, h-2, c, d, f 5 23908 16p11.2

16 29680943 31277953 h-1, h-2, b, c, d, f 6 1597011 16p11.2

16 34467305 34647935 h-1, h-2, a, b, c, d, f, g 8 180631 16p11.1

16 34647935 45122807 h-1, h-2, a, c, d, f, g 7 10474873 16p11.1-q11.2

16 45122807 47094922 h-1, h-2, a, b, c, d, f, g 8 1972116 16q11.2-q12.1

17 29659797 32811528 h-1, h-2, a 3 3151732 17q12

19 37676724 40349191 h-1, h-2, a 3 2672468 19q13.11-13.12

21 19821557 20188026 h-1, h-2, g 3 366470 21q21.2

aNumber of individuals (including h-1 and h-2) who shared the region; for example, 5 indicates that 3 other individuals shared the common region of the 2 siblings.
doi:10.1371/journal.pone.0020589.t003
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default value is 0.3, still has the advantage of minimizing false-

negatives in the detection of ROHs.

To determine the optimal length threshold of ROHs to extract

autozygous segments from whole ROHs, we adopted OR = 3 for

the analysis. This approach may work well when a large enough

reference sample is available. When a reference population is not

available, a threshold where the sum of the ROH length in the

upper tail of its distribution is equal to the theoretical autozygous

length of a genome, that is, 1/16 of a genome in the offspring of a

first-cousin marriage, could be another option. In our SCZ

dataset, the threshold using this approach was approximately

10.6 Mb.

Our results demonstrated obvious differences in the proportion

of the length distribution of ROHs between the non-CJ and SCZ

datasets. A recent report on European populations, including

endogamy subpopulations, has shown that a higher proportion of

individuals in endogamy subpopulations have ROHs longer than

1.5 Mb compared with other subpopulations [6]. Our scatter plot

of the individual total number and size of ROHs (Figure 2) is not

fully in agreement with this previous report, although the non-CJ

dataset made a cluster and showed a positive correlation (Pearson

product-moment correlation coefficient r = 0.773), and the SCZ

dataset was scattered and showed a weak positive correlation

(r = 0.432). This may be explained by the fact that the previous

report excluded ROHs ,500 kb to ignore ROHs that potentially

resulted from LD and removed hemizygous deletions of ROHs. In

this study, we did not adopt a strategy to filter ROHs by their size

before the analyses because the discrimination of autozygous

regions and LD simply by size is essentially impossible. Adopting a

baseline file derived from a strictly matched population in the

HMM-based detection of ROHs can be used instead. Addition-

ally, differences in genotyping platforms with different SNP

densities may affect the size distribution of ROHs. Although our

data from the sparser Affymetrix Genotyping 10k SNP panel

produced a similar bell curve-like ROH size distribution, the

whole curve was shifted to the right (data not shown).

The size distribution of ROHs for a given population is affected

by its inbreeding coefficient (F). Studies of consanguineous

marriages in subpopulations from Japan during the 1980s

compared the F values for Japan (F = 0.00134) to those in Kuwait

(F = 0.0219), India (F = 0.02313), England (F = 0.00017), and the

United States (F = 0.00003) [19,20]. These reports have also

shown that despite the decrease in consanguineous marriages in

Japan, local subpopulations have higher F-values. The same

tendency has also been shown by a genealogical study that

estimated inbreeding rates in large and semi-isolated populations

on the basis of historical changes in population size [21]. Recently,

the importance of studying endogamous populations has been

stressed [22]; however, populations with intermediate F-values

have advantages for our homozygosity mapping approach. This

approach uses the differences in the size distribution of ROHs in a

case population consisting of offspring from consanguineous

marriages and a control population consisting of offspring from

non-consanguineous marriages. A high F-value population may

not have clear distribution differences between cases and controls.

On the other hand, finding a sufficient number of cases in low F-

value populations may not be easy. From this standpoint, an

intermediate F-value population, such as the Japanese population,

Figure 4. Sum of run of homozygosity (ROH) lengths and number of overlapping patients, excluding patient siblings. Y-axis indicates
the sum of ROH lengths shared by a given number of patients. The zero column indicates the sum of ROHs not shared by any of the samples.
doi:10.1371/journal.pone.0020589.g004
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represents an interesting dataset for our homozygosity mapping

approach, as was shown previously in the Costa Rican population

[23,24].

We presented here some threshold lengths of ROHs to detect

IBD regions from great-grandparents. As recombination will, of

course, occur everywhere by chance, small autozygous regions

could be overlooked with the threshold shown here. However, no

systematic analyses have so far identified IBD regions in

consanguineous marriages by whole-genome SNP typing. Our

method shown here, which 1) detects longer ROHs in each

individual and 2) aligns ROHs and identifies overlapping regions,

will be helpful for autosomal recessive disorders and also for

complex disorders resulting from rare variants. If collecting

patients in geographically and historically isolated areas is possible,

this homozygosity mapping approach is likely to be successful.

Nonetheless, the effectiveness of homozygosity mapping for

complex disorders remains controversial [4]. We believe that we

can uncover new candidate loci through the application of whole-

genome SNP typing to homozygosity mapping because of its high

density genomic coverage and high-throughput ability.

3. Possible novel loci for schizophrenia
We identified several putative SCZ loci that are presented in

Figure 5 and Tables S1 and 3. In our study, we assumed the 2

models outlined in the Methods section. Model I was designed to

find shared causal loci among unrelated individuals. For the other

model, we hypothesized that the siblings shared the same causal

loci; thus, Model II was designed to find the common loci between

the siblings and unrelated individuals.

For Model I (Table S1), from the analysis of 7 unrelated

individuals, the loci included the 5q23.3–q31.1 region that was

previously identified by linkage analysis in the Irish population

[16]. Among the genes that mapped to 5q23.3–q31.1, HINT1

[25,26] and ACSL6 [27] were previously reported to be possibly

associated with SCZ. In patients from consanguineous families we

analyzed, homozygous genomic variations may be causative for

the disease (Figure 5 and Tables S1 and 3). However, small sample

size in our study may be a limiting factor to generalize such

conclusions. In common diseases such as psychiatric disorders,

including SCZ and bipolar disorders, especially in familial cases or

in cases from relatively isolated areas, rare variants possibly

contribute more than common variants to the disease phenotype

[28–30].

On the basis of the rare variant-common disease hypothesis, it is

appropriate that the genetic etiology between sibling cases and

other unrelated cases may be various. In addition, our results

suggested that multiple loci influenced the susceptibility to SCZ, as

other reports have suggested [31].

We presented here the systematic analyses of the homozygosity

mapping method using whole genome SNP typing, and we

identified ROHs that potentially contain SCZ causative recessive

regions that are shared among our samples. When we explain SCZ

as a result of the homozygous state of rare variant mutations, the

number of overlapping individuals may be challenging, as it is

possible that each individual has a different variation. The

heterogeneity of SCZ may explain the lack of overlap for our

results with previously reported regions [32,33]; moreover, our

methodology has a limitation for detecting causative genes that are

included in shorter ROHs by chance. We have shown that the

Affymetrix Genome-Wide Human SNP Array 5.0 or 6.0 could be

applied to special cases including first-cousin marriages to identify

genomic variations. Increasing number of samples obtained from

patients from consanguineous families with SCZ is important to

make our results more meaningful. Furthermore, we plan to

analyze genetic variants in updated ROHs by the next-generation

sequencing technologies.

Supporting Information

Table S1 Novel loci identified in this study.
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