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ABSTRACT 

Several human genetic variants, HLA antigens and alleles are reportedly linked to post-schistosomal 

hepatic disorder (PSHD), but the results from these reports are highly inconclusive. In order to estimate 

overall associations between human genetic variants, HLA antigens, HLA alleles and PSHD, we 

systematically reviewed and performed a meta-analysis of relevant studies in both post-schistosomal 

hepatic disorder and post-schistosomal non-hepatic disorder patients. PubMed, Scopus, Google Scholar, 

The HuGE Published Literature database, Cochrane Library, and manual search of reference lists of 

articles published before July 2009 were used to retrieve relevant studies. Two reviewers independently 

selected articles and extracted data on study characteristics and data regarding the association between 

genetic variants, HLA antigens, HLA alleles and PSHD in the form of 2×2 tables. A meta-analysis using 

fixed-effects or random-effects models to pooled odds ratios (OR) with corresponding 95% confidence 

intervals were calculated only if more than one study had investigated particular variation. We found 17 

articles that met our eligibility criteria. Schistosoma mansoni and Schistosoma japonicum were reported 

as the species causing PSHD. Since human genetic variants were only investigated in one study, these 

markers were not assessed by meta-analysis. Thus, only HLA-genes (a total of 66 HLA markers) were 

conducted in the meta-analysis. Our meta-analysis showed that human leucocyte antigens 

HLA-DQB1*0201 (OR = 2.64, P = 0.018), DQB1*0303 (OR = 1.93, P = 0.008), and DRB1*0901 (OR = 

2.14, P = 0.002) alleles and HLA-A1 (OR = 5.10, P = 0.001), A2 (OR = 2.17, P = 0.005), B5 (OR = 4.63, 

P = 0.001), B8 (OR = 2.99, P = 0.02), and B12 (OR = 5.49, P = 0.005) serotypes enhanced susceptibility 

to PSHD, whereas HLA-DQA1*0501 (OR = 0.29, P = <0.001) and DQB1*0301 (OR = 0.58, P = 0.007) 
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were protective factors against the disease. We further suggested that the DRB1*0901-DQB1*0201, 

DRB1*0901-DQB1*0303 and A1-B8 haplotypes enhanced susceptibility to PSHD, whereas 

DQA1*0501-DQB1*0301 linkage decreased the risk of PSHD. The result improved our understanding of 

the association between the HLA loci and PSHD with regard to pathogenic or protective T-cells and 

provided novel evidence that HLA alleles may influence disease severity. 

 

.
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1. Introduction 

Schistosomiasis is well established as a major health problem in Africa, Asia, and South America [1]. 

Each year, more than 250,000 deaths are reported from an estimated 200 million individual sufferers [2,3] 

due to complications of chronic schistosomiasis-related liver disease [4]. Chronic schistosomiasis-related 

liver disease is caused by Schistosoma mansoni and Schistosoma japonicum. The disease is characterized 

by periodic activation of the host immune system against fluke eggs that were deposited in the intestinal 

wall veins and then delivered to the liver by the blood flow, resulting in granuloma formation and 

peri-portal fibrosis [5]. Peri-portal fibrosis can cause portal blood hypertension, venous obstruction, 

splenomegaly, esophageal varices, ascites, hematemesis, and congestive heart failure resulting in death in 

the absence of proper treatment [5]. 

Schistosomicides are generally administered with the aim of killing the parasite and preventing 

against re-infections, while waiting the excretion of tissue-dwelling eggs. However, only one 

schistosomicide, praziquantel, has been used in large-scale controlled programs, raising concerns about 

the development of drug resistance [6]. Therefore, it is necessary to study the molecular, biochemical, and 

immunological aspects of schistosomiasis to develop vaccines and new treatments. 

The pathogenesis of peri-portal fibrosis is not yet completely understood. Host immunity, including 

suppressed Th1/predominant Th2 profiles [7,8], changes in cytokine production [9,10], T-cell responses 

[11,12], and B-cell responses [13], has been extensively analyzed as a factor that is potentially responsible 

for fibrotic development. In addition, host genetic background is considered a potential risk factor 
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contributing to disease development [14-16]. Although associations between post-schistosomal hepatic 

disorder (PSHD) and HLA antigens, HLA alleles, and genetic variations have been reported in individual 

studies, the associations are not observed consistently across studies. Therefore, the present study was 

conducted to estimate overall associations between human genetic variants, HLA antigens, HLA alleles 

and PSHD by systemic review and meta-analysis of relevant studies in both post-schistosomal hepatic 

disorder and post-schistosomal non-hepatic disorder patients.
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2. Methods 

2.1. Search strategy and study selection 

A protocol was designed before this study was performed as recommended by the PRISMA statement 

(http://www.prisma-statement.org/statement.htm). In July 2009, five electronic databases: PubMed 

(http://www.ncbi.nlm.nih.gov/sites/entrez), Scopus (http://www.scopus.com/scopus/home.url), Google 

Scholar (http://scholar.google.com/), The HuGE Published Literature database 

(http://hugenavigator.net/HuGENavigator/startPagePubLit.do), and the Cochrane Library 

(http://www.cochrane.org) were searched for suitable studies. The search terms used for PubMed and 

Scopus were as follows: “("gene variant" OR polymorphism OR SNP OR genotyp* OR "Case control 

study" OR Haplotype OR "linkage disequilibrium" OR "genetic risk") AND schistosom*” (OR was used 

in the literature search as a connect word). We used “schistosoma OR schistosomiasis OR schistosome” 

to search in Cochrane Library and The HuGE Published Literature database. For the “Advanced Scholar 

Search”, we used “schistosoma OR schistosomiasis OR schistosome” to fill in the field “with all of the 

words”, “genetic polymorphism variant SNP genotype Haplotype disequilibrium” to fill in the field “with 

at least one of the words”, and “where my words occur” in the field “title of article”. We further 

supplemented these searches with a manual search of reference lists and citation list using the Scopus 

databases. For each identified gene, we performed gene-specific searches by replacing the genetic terms 

with gene name terms. 

We sought only articles that evaluated the association between post-schistosomal hepatic disorder 

(PSHD) and human genetic variants, HLA antigens, or HLA alleles. No restrictions were made with 
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respect to language, patient age (children or adult), gender, or study design (family-based association 

studies or population designs that use un-related individuals). Since a number of zero event were found in 

several variants from included studies, and a meta-analysis method of adding 0.5 to cells with zero event 

creates estimation problems if the sample size is too small. We excluded studies with fewer than 20 

participants (at least 10 cases and 10 controls were required for inclusion) to limit selection bias [17]  

and reduce the effect of adding 0.5 to cells with zero event on the result less than 5%. Furthermore, 

studies were also excluded for any of the following reasons: (1) studies that were reported as animal 

studies, case reports, scientific correspondence, or reviews; (2) studies from which data could not be 

reliably extracted; (3) studies that used healthy individuals or other severe forms of schistosomiasis as the 

control group. 

Initially, two independent reviewers (Huy and Hamada) scanned primary titles and abstracts (when 

available) to select potential full text articles for further scrutiny. When the title and abstract could not be 

rejected by any reviewer, the full text of the article was obtained and carefully reviewed for inclusion by 

the two reviewers. Inclusion or exclusion of each study was determined by discussion and consensus 

between the two reviewers. 

 

2.2. Data management 

Full-text versions of all papers eligible for inclusion were obtained and, after the inclusion was 

confirmed, data were extracted by two independent investigators (Huy and Hamada). The data extracted 

included the first author, year of publication, study design (family-based or case-control), country of 
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origin, source of the samples (clinic-, hospital-, or community-based), number of included individuals, 

gender ratio, and age at examination of included individuals. 

In cases where genotype or allele distributions were not provided or data contained obvious errors in 

the original publication (such as typographical errors, switched allele frequencies, or incorrect allele 

designations), we attempted to clarify the discrepancy directly with study authors, generally by contacting 

the first and last authors twice via e-mail. Studies for which we could not obtain clarification or genotype 

information (after at least two attempts by e-mail) are listed as “no data available”. 

 

2.3. Duplicate publications 

Papers published by same research group and studying the same genetic variation or HLA types were 

checked for potential duplicate data. Whenever data overlap was suspected, authors were contacted via 

e-mail and asked for clarification. If no clarification could be obtained (for example, if we received no 

answer after at least two attempts by e-mail), data sets were considered as overlapping, and the largest 

data set was used for meta-analysis. 

 

2.4. Meta-analysis 

Meta-analyses for population designs and for family studies were performed separately [18,19] using 

Comprehensive Meta-analysis software version 2.0 (http://www.meta-analysis.com). For each genetic 

variation or HLA types, 22 tables were generated, and the odds ratio (OR) for particular allele was 
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computed. Heterogeneity between studies was evaluated using the Q statistic and I2-test. Heterogeneity 

was considered statistically significant if P was less than 0.10 [20]. I2 values >25%, 50%, or 75% are 

considered as low, moderate, or high heterogeneity, respectively [21]. Pooled OR with the corresponding 

95% confidence intervals (95%CI) was calculated only if more than one study had investigated a 

particular allele. A fixed-effects model with weighting of the studies was used when there was a lack of 

significant heterogeneity (P > 0.10), while a random-effects model with weighting of the studies was used 

when there was heterogeneity between studies (P  0.10) [22]. Adjustment of P value for multiple 

comparisons was not conducted because it may increase the likelihood of type II errors [23,24]. In order 

to reduce the false discovery rate, a confidence interval and interpretation of across studies are proposed 

to give complement information to P value. Therefore, in the present study, statistical significance was 

defined as P value was <0.05 (two-tailed test) and the 95%CI of OR did not overlap 0.9-1.1, in 

combination with replicated direction in results across studies.  

Finally, to assess the presence of publication bias statistically, we performed Egger’s regression test 

where there were three or more studies assessing the effect of a particular allele on the development of 

PSHD [25,26]. Publication bias was considered significant when the P value was <0.1. Publication bias 

was further evaluated by Begg’s modified funnel plot where there were five or more studies assessing the 

effect of a particular allele [27]. 
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3. Results 

3.1. Study characteristics 

Our literature searches identified 395, 578, 303, and 33 publications in the initial searches of PubMed, 

Scopus, Google Scholar, and HuGE Published Literature, respectively (Fig. 1). After screening the title 

and/or abstract, 79 articles were selected for full text reading. We further identified additional studies by 

searching reference lists and tracking articles citing relevant publications using the Scopus databases from 

the selected full text studies, review articles, and textbook chapters. A total of 62 articles were excluded 

from the 79 articles that were read in full for one of the following reasons: (1) Leishmaniasis association 

(n=1), (2) review/conference/book/thesis (n=15), (3) genetic studies of parasite (n=6), (4) no genetic 

association (n=2), (5) animal research (n=1), (6) no patient with hepatic disorder (n=25), (7) negative 

control was intestinal or cerebral schistosomiasis (n=2), (8) negative control was healthy group or 

non-schistosomiasis (n=2), (9) co-infection with hepatitis C or HIV (n=2), (10) unable to extract data and 

no response after contacting the authors via email (n=3) [28-30], and (11) overlapping studies (n=3) 

[31-33]. Finally, 17 studies were selected for final analysis [16,34-49]. 

The characteristics of the studies in this meta-analysis are outlined in Table 1. Most of the studies were 

case-control studies of un-related individuals (n=16); only one was a family-based study. More studies 

were performed among Africans (n=9) and Asians (n=7) than among South Americans (n=1). Ten studies 

investigated S. mansoni, while other 7 studies did on S. japonicum. Ten studies did not stated the gender 

information of subjects, all remained studies (n=7) showed dominant male in both PSHD and control 
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groups. Nine studies included adults [16,35-37,40-43,48], three studies enrolled children subjects 

[44,46,49], one study recruited both adults and children [34], and four studies did not mention this 

information [38,39,45,47]. A total of three different methods for PSHD diagnosis (ultrasound: n = 10, 

biopsy: n = 2, clinical diagnosis n = 4) were performed in 16 of 17 studies. One study did not mention the 

method for PSHD diagnosis [35]. Concerning the ultrasound for PSHD diagnosis, one study did not 

describe in detail [16], while the remaining studies used the WHO ultrasound criteria [50]. Only two 

studies took in consideration the prevalence of each variant in the general population [34,36]. The human 

leucocyte antigens (HLA) loci were investigated in 11 studies, while cytokines and other signal protein 

genes were investigated in six studies. 

 

3.2. Meta-analysis 

Since only one study investigated cytokine and other related protein genes, these markers were not 

assessed by meta-analysis. Thus, only HLA-types (a total of 66 HLA markers) were included in the 

meta-analysis as shown in Table 2. Pooled ORs showed that eight HLA variants—DQB1*0201, 

DQB1*0303, DRB1*0901, A1, A2, B5, B8, and B12—were associated with a significant increase in risk 

for PSHD, while DQA1*0501 and DQB1*0301 were associated with a significant decrease in risk for 

PSHD (P < 0.05) (Fig. 2). The negative association of DQA1*0501 and PSHD was consistent among two 

studies (P value for heterogeneity = 0.48, I2 = 0) (Table 2 and Fig. 2A), whereas A1 and B5 were found 

associated with PSHD among two and three of five studies, respectively (Table 2 and Fig. 2B). The 

positive association DQB1*0201 and DRB1*0901 with PSHD were found to be significant in one study 
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but not significant in another study with no evidence of significant heterogeneity between two studies 

(Table 2 and Fig. 2A). Similarly, DQB1*0301, DQB1*0303, A2, B8, and B12 were found to be 

significant in one study but not in two or three other studies. Significant heterogeneity among studies of 

the A1 and B5 antigens was found; however, based on the results of analysis using the random effect 

model, the risk of PSHD was significantly higher in carriers of these variants. 

We further evaluate the effect of different schistosomal species on the significant association between 

HLA types and PSHD. All HLA variants—DQB1*0201, DQB1*0303, and DRB1*0901 were associated 

with S. japonicum-induced PSHD in all studies, while HLA antigens-A1, A2, B5, B8, and B12 were 

correlated with S. mansoni-induced PSHD in all studies except one study by Wang et al. (Table 1 and Fig. 

2). Removing the study by Wang et al. had little effect on the significant association (P < 0.05), pooled 

ORs and 95%CIs (data not shown).  
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4. Discussion 

Our pooled results suggested that HLA-A1, -B8, DQB1*0201 are associated with increased risk of 

PSHD (Table 2 and Fig. 2B). Furthermore, these alleles are reportedly associated with the severity of 

other granulomatous diseases [51-53], suggesting that the mechanism of PSHD development shares some 

similar part of other granulomatous diseases. 

The frequency of the HLA-DQB1*0201 allele was higher in PSHD patients in Zhang’s study (OR 

= 5.83, P = 0.009) and Hirayama’s study (OR = 1.68, P = 0.31) when compared to the control patients 

(Fig. 2A). This trend was also observed in the study by Secor et al. [29], which was not included in this 

analysis due to un-extractable data, further supporting this association. The DQB1*0201 allele has been 

also linked to the progression of cirrhosis due to hepatitis C virus (HCV) [54], the elevation of alanine 

aminotransferase levels in serum (a marker of the hepatic damage) [55], the risk of anti-tuberculosis 

drugs-hepatotoxicity [56], the severity of the intestinal mucosal damage [57], and the risk of several 

autoimmune disorders [58,59]. Furthermore, autoimmunity has also been proposed as a factor in the 

development of schistosomiasis-associated hepatic disease [60]. It has also been shown that human 

papillomavirus-16 E7 (aa 71-85) peptide presented to some pathogenic T cells resulted in dysplastic 

cervical lesions in individuals carrying HLA-DQB1*0201 [61]. Therefore, HLA-DQB1*0201 may play a 

role in the antigen presentation to some pathogenic T-cells that could enhance the development of PSHD. 

Another HLA-DQB1 allele, DQB1*0303, has also been associated with PSHD (OR = 1.93, 95%CI = 

1.19-3.14, P = 0.008). There may be a closely linked variant (possibly in the HLA-DRB1 locus) that is 

primarily responsible for the PSHD susceptibility and associated with these DQB1 alleles. A number of 
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studies have demonstrated DRB1*0901-DQB1*0201 [62-64] and DRB1*0901-DQB1*0303 linkage 

[41,65] are common in African and Asian populations. The DRB1*0901 allele was also associated with 

susceptibility to PSHD (OR = 2.14, 95%CI = 1.31-3.48, P = 0.002). The possibility that the 

HLA-DRB1*0901 allele is primarily responsible for PSHD susceptibility is an interesting point to be 

considered because IgG4 elevation has been found in individuals with the HLA-DRB1*0901 allele [66] 

and is positively linked to several systemic fibrosis conditions [67] and schistosomiasis peri-portal 

fibrosis [68]. It is probable that patients with HLA-DRB1*0901 are prone to produce B cells for specific 

IgG4 and Th2 cells that are reactive to schistosomal antigens. 

The HLA-DQA1*0501 (OR = 0.29, 95%CI = 0.17-0.50, P < 0.001) allele was identified as a resistant 

allele for PSHD in two studies [37,42]. Furthermore, Trypanosoma cruzi B13 protein was reportedly 

recognized by T-cells in individuals bearing HLA-DQA1*0501 [69], suggesting that individual with 

HLA-DQA1*0501 may clear the parasite better than those without this allele. Another allele, 

HLA-DQB1*0301, correlated with PSHD resistance (OR = 0.58, 95%CI = 0.39-0.86, P = 0.007), but 

results on this allele were inconsistent. Two studies indicated that DQB1*0301 had a protective effect 

against PSHD [42,43], while other two studies did not find a significant association [37,41]. The 

DQA1*0501-DQB1*0301 linkage is also a common haplotype in several studied populations [42,55,70] 

and may enhance resistance to PSHD development. 

In class I, HLA- A1, -A2, -B5, -B8, and -B12 serotypes were significantly associated with an 

increased risk for PSHD. There was significant linkage disequilibrium of the A1-B8 haplotype in many 

prior studies of autoimmune disease risk (http://www.absoluteastronomy.com/topics/HLA-A1), further 
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supporting the hypothesis that autoimmunity is an important mechanism in the pathogenesis of PSHD. 

   The results of our pooled OR suggested that DQA1*0101/4 was possibly associated with increased 

risk of PSHD after pooling analysis (OR = 2.59, 95%CI = 0.87-7.72, P = 0.087) (Table 2), though the two 

separate studies of DQA1*0101/4 did not identify an increased risk of PSHD. Similarly, DQA1*0103 had 

a pooled OR of 1.76 with a 95%CI of 0.95-3.25 and P value of 0.073 even though it was not found to be 

significantly associated with PSHD in three separate studies. Therefore, further studies are required to 

clarify these variants.  

DQA1*0601, DRB1*1202, and DRB1*1302 were determined to have conflicting effects on PSHD in 

previous studies, and we found no significant association between these alleles and PSHD in our 

meta-analyses (Fig. 2C). Other HLA markers, including DQB1*0503.1, DQB1*0601, and DRB1*1101, 

were found to have a significant association with PSHD in at least one study, but we did not identify a 

significant relationships between any of these alleles and PSHD after pooling the data for our 

meta-analysis (Table 2). This variation can be attributed to low statistical power and variability in study 

designs, diagnoses, population selection, and phenotype definitions. 

Table 2 also summarizes the results of Egger’s test for publication bias. No evidence of publication bias 

was found for the following significant alleles, DQB1*0303, A1, A2, B5, B8, and B12 (P > 0.1). The 

funnel plot analysis was further performed to detect publication bias of each study for HLA-A1 and 

HLA-B5, respectively. The shape of the funnel plot seemed to be symmetrical, further suggesting that no 

publication bias was found in studies of HLA-A1 and HLA-B5 (Fig. 3). There was some indication of 

publication bias for the studies of DQB1*0301 using Egger’s test (P = 0.048, Table 2). Removing either 
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the study by Zhang et al. or the one by McManus et al. resulted in a loss of the publication bias (P > 0.1), 

but it had little effect on the pooled ORs and 95%CIs; in contrast, removing either the study by Waine et 

al. or the one by Hirayama et al. led to an increased chance of publication bias (P = 0.038 and 0.022, 

respectively). One limitation of our study is that the publication bias could not be assessed for three 

significant alleles, DQA1*0501, DRB1*0901 and DQB1*0201, because there were fewer than three 

studies for each variant. Moreover, non-significant association must be interpreted with cautious for 

DPA1*0103, DPA1*0201, DQA1*0601, DQB1*0601, DRB1*1202, DRB1*1302, A9, B15 and BW40 

variants because of high Q and I-squared values. Therefore, more studies are required to validate on these 

variants. 

 

A limitation of many meta-analyses is that studies that reports of non-significant results are less likely 

to be accepted for publication, and missing data could cause potential bias. As with other complicated 

diseases, the development of PSHD is probably due to multiple factors, in which allelic variants in 

different genes may have either additive or conflicting effects. Moreover, other hepatitis diseases, alcohol 

intake, smoking, and praziquantel treatment doses can all affect the development of PSHD [2], and 

therefore may have affected our analysis. However, because meta-analyses use selected studies based on 

defined criteria, they can assess common and significant genetic factors that were not assessed in a 

systematic way in individual, primary studies. Similar meta-analyses of the genetic studies of 

pneumococcal and meningococcal infection [71], autoimmune diseases [72,73], and cancer [74] have 

been already reported. We found no effect of different schistosomal species on the outcome of PSHD; 
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however, the number of studies for each allele was small (less than 5), and further studies should focus on 

this issue. 

In conclusion, the association between post-schistosomal hepatic disorder and risk factors including 

eggs load, lack of treatment, repeated infection and HLA types has been reported in previous studies. 

However, to the knowledge of the authors this is the first systemic meta-analysis that combines individual 

studies to improve the strength of the evidence. This meta-analysis identified positive associations 

between eight HLA types—DQB1*0201, DQB1*0303, DRB1*0901, A1, A2, B5, B8, and B12—and 

post-schistosomal hepatic disorder and negative associations with two variants, DQA1*0501 and 

DQB1*0301. Moreover, we identified the possible existence of common antigenic moieties that would be 

presented to some pathogenic or protective T-cells that could affect the outcome of the disease. Though 

previous included studies identified a positive association of DRB1*0901 - DQB1*0303 linkage [41] and 

negative association of DQA1*0501 -DQB1*0301 haplotype [42] with PSHD, we further propose that 

individuals bearing the DRB1*0901 - DQB1*0201 and A1-B8 haplotypes may be at increased risk for the 

development of PSHD, but further studies are required to confirm our hypothesis. 
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Figure legends 

 

Fig. 1. Flow diagram of the search and review process. 

 

Fig. 2. Meta-analysis forest plot showing the pooled odd ratio (OR) for PSHD susceptibility with 95% 

confidence intervals (95% CI) of significant HLA alleles (A), significant HLA serotypes (B) and 

contrasting effective HLA alleles (C). The size of the plots represents the study size. All HLA 

variants—DQB1*0201, DQB1*0303, and DRB1*0901 were associated with S. japonicum-induced PSHD 

in all studies (A), while HLA antigens-A1, A2, B5, B8, and B12 were correlated with S. mansoni-induced 

PSHD in all studies except one study by Wang et al (B).  

 

Fig. 3. Funnel plots for evaluation of publication bias of HLA-A1 (A) and HLA-B5 (B) where there are at 

least five studies on the same genetic variation. Each circle represents each study in the meta-analysis. 
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Fig 2 (A) 
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Fig 2(B) 
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Fig 2(C) 
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Fig 3 
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Table 1. Characteristic of studies included in this analysis. 

Authors Year Country Strain Study design

PSHD Control 
Diagnostic 

method of 

PSHD 

Genetic 

method 

Number of 

alleles 

studied 

No.   Mean age No.   Mean age 

(female%)
(±SD or 

range) 
(female%)

(±SD or 

range) 

Elsammak 2008 Egypt S. mansoni Case control 22 (41) 53.7 (± 5.6) 22 (41) 48.5 (± 5.4) Ultrasound PCR-RFLP 1 (LA) 

Eriksson  2007 Uganda S. mansoni Case control 22 (ND) ND 274(ND) ND Ultrasound PCR-SSOP 1 (ECP) 

Cheng 2005 China S. japonicum Case control 45 (31) 54.9 (± 11) 44 (34) 51.6 (± 9.2) ND PCR-SSOP 16 (HLA) 

Blanton 2005 Egypt S. mansoni Family based 48 (25) 42.3 (± 15) 188(33) 39.1 (±13.2) Ultrasound UTSG 48(11genes) 

Zhang  2005 China S. japonicum Case control 46 (41) 51. 8 (± 10.) 43(30) 55. 3(± 7. 8) Ultrasound PCR-SSOP 41 (HLA) 

Chevillard 2003 Sudan S. mansoni Case control 29 (ND) ND 76 (ND) ND Ultrasound PCR-SSCP 5 (IFN-) 

Moukoko 2003 Sudan S. mansoni Case control 27 (ND) ND 71 (ND) ND Ultrasound PCR-RFLP 4 (TNF-) 

Hirayama 2002 China S. japonicum Case control 156 (ND) ND 36 (ND) ND Ultrasound ND 1 (IL-13) 

McManus 2001 China S. japonicum Case control 40 (ND) ND 44 (ND) ND Ultrasound PCR-SSOP 34 (HLA) 

Hirayama 1999 China S. japonicum Case control 186 (40) ND 44 (57) ND Ultrasound PCR-SSOP 104 (HLA) 

Waine 1998 China S. japonicum Case control 64 (ND) 59. 4 (± 8.8) 44 (ND) 54. 5(± 7. 1) Ultrasound PCR-SSOP 53 (HLA) 

Hafez 1991 Egypt S. mansoni Case control 19 (26) 11.2 (7-14) 20 (40) 9.9 (7-14) Biopsy CDM 29 (HLA) 

Cabello  1991 Brazil S. mansoni Case control 23 (ND) ND 41 (ND) ND Clinical CDM 38 (HLA) 

Salam 1986 Egypt S. mansoni Case control 88 (ND) 11. 8 (± 1.1) 46 (ND) 12. 8 (± 0.5) Biopsy CDM 32 (HLA) 

Wang 1984 China S. japonicum Case control 30 (ND) ND 30 (ND) ND Clinical CDM 24 (HLA) 

El-Tayeb 1982 Egypt S. mansoni Case control 17 (ND) 37.3 (14-60) 17 (ND) 33.9 (14-55) Clinical CDM 25 (HLA) 

Salam 1979 Egypt S. mansoni Case control 28 (32) ND 23 (26) ND Clinical  CDM 37 (HLA) 

ND, not described PCR-SSCP, PCR-single strand conformation polymorphism 

PCR-RFLP, PCR-restriction fragment length polymorphism CDM, complement-dependent microlymphocytotoxicity 

PCR-SSOP, PCR-sequence-specific oligonucleotides probes LA, lymphotoxin- 

UTSG, ultra-high throughput SNP genotyping ECP, Eosinophil Cationic Protein 
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Table 2. Summary of associations between HLA alleles and hepatic disorders, pooled odds ratios (OR) 

with corresponding 95% confidence intervals (95%CI) of the published results were calculated where 

more than one study had investigated the allele. 

HLA types No. of 

study 

Heterogeneity Model Association with hepatic disorders Egger's 

2-tailed bias 

P value 
Q value P value I-squared P value OR 95%CI 

DPA1*0103 2 6.06 0.014 83.5 Random 0.500 1.62 0.40-6.62 ND 

DPA1*0201 2 3.80 0.051 73.7 Random 0.893 1.22 0.06-22.99 ND 

DPA1*0401 2 0.002 0.97 0 Fixed 0.636 0.77 0.25-2.32 ND 

DQA1*0101 2 0.00 0.993 0.0 Fixed 0.280 0.46 0.11-1.88 ND 

DQA1*0101/4 2 0.83 0.362 0.0 Fixed 0.087 2.59 0.87-7.72 ND 

DQA1*0102 3 1.28 0.527 0.0 Fixed 0.670 0.89 0.51-1.54 0.205 

DQA1*0103 3 1.61 0.448 0.0 Fixed 0.073 1.76 0.95-3.25 0.21 

DQA1*0201 3 3.48 0.175 42.6 Fixed 0.948 1.03 0.44-2.40 0.584 

DQA1*0301 2 0.19 0.666 0.0 Fixed 0.389 1.43 0.64-3.21 ND 

DQA1*0401 3 3.21 0.201 37.7 Fixed 0.624 0.75 0.23-2.42 0.052 

DQA1*0501 2 0.50 0.480 0.0 Fixed <0.0001 0.29 0.17-0.50 ND 

DQA1*0601 3 16.57 0.000 87.9 Random 0.922 1.10 0.17-7.23 0.601 

DQB1*0201 2 2.14 0.144 53.2 Fixed 0.018 2.64 1.19-5.89 ND 

DQB1*0301 4 5.67 0.129 47.0 Fixed 0.007 0.58 0.39-0.86 0.048 

DQB1*0302 4 4.12 0.249 27.1 Fixed 0.425 0.83 0.52-1.32 073 

DQB1*0303 4 4.80 0.187 37.5 Fixed 0.008 1.93 1.19-3.14 0.91 

DQB1*0401 3 1.93 0.380 0.0 Fixed 0.80 1.10 0.53-2.30 0.71 

DQB1*0402 2 1.30 0.254 23.2 Fixed 0.29 0.32 0.04-2.64 ND 

DQB1*0501 4 3.26 0.353 8.0 Fixed 0.40 1.75 0.48-6.43 0.11 

DQB1*0502 4 1.54 0.672 0.0 Fixed 0.169 0.63 0.33-1.22 0.61 

DQB1*0503.1 3 4.47 0.107 55.2 Fixed 0.68 1.37 0.30-6.23 0.23 

DQB1*0601 4 13.20 0.004 77.3 Random 0.301 0.60 0.23-1.58 0.92 

DQB1*0602 4 4.37 0.224 31.4 Fixed 0.902 0.96 0.50-1.83 0.62 

DQB1*0603 3 2.53 0.283 20.9 Fixed 0.254 2.73 0.49-15.33 0.20 

DQB1*0604 3 2.45 0.294 18.3 Fixed 0.501 0.55 0.09-3.19 0.93 

DRB1*01 3 1.69 0.429 0.0 Fixed 0.848 0.85 0.16-4.48 0.33 

DRB1*0301 3 4.60 0.100 56.5 Random 0.32 2.33 0.44-12.34 0.19 

DRB1*0401 2 0.62 0.433 0.0 Fixed 0.95 1.06 0.18-6.21 ND 

DRB1*0403 3 2.08 0.353 3.8 Fixed 0.56 1.38 0.47-4.05 0.115 

DRB1*0404 3 1.38 0.502 0.0 Fixed 0.174 0.34 0.07-1.62 0.98 

DRB1*0405 3 0.97 0.614 0.0 Fixed 0.42 1.35 0.66-2.78 0.49 

DRB1*0406 3 1.99 0.370 0.0 Fixed 0.46 1.56 0.48-5.05 0.39 

DRB1*0701 3 2.35 0.309 14.8 Fixed 0.661 0.81 0.31-2.11 0.22 

DRB1*0901a 3 3.88 0.144 48.4 Fixed 0.49 1.18 0.75-1.86 0.85 
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DRB1*0901b 2 2.54 0.111 60.7 Fixed 0.002 2.39 1.31-3.48 ND 

DRB1*1001 4 2.52 0.472 0.0 Fixed 0.91 0.92 0.25-3.46 0.09 

DRB1*1101 3 4.77 0.092 58.1 Random 0.162 0.46 0.15-1.37 0.004 

DRB1*1104 2 1.34 0.247 25.4 Fixed 0.91 0.88 0.09-8.58 ND 

DRB1*1201 3 4.09 0.130 51.1 Fixed 0.87 1.08 0.45-2.62 0.31 

DRB1*1202 3 11.89 0.003 83.2 Random 0.76 0.78 0.15-4.06 0.90 

DRB1*1301 2 1.53 0.215 34.8 Fixed 0.42 2.42 0.28-20.94 ND 

DRB1*1302 3 6.82 0.033 70.7 Random 0.91 1.13 0.14-9.36 0.31 

DRB1*1401 3 1.06 0.589 0.0 Fixed 0.55 0.61 0.12-3.07 0.79 

DRB1*1403 2 0.04 0.843 0.0 Fixed 0.24 0.28 0.03-2.31 ND 

DRB1*1404 2 0.09 0.767 0.0 Fixed 0.69 1.43 0.24-8.65 ND 

DRB1*1405 3 2.46 0.293 18.6 Fixed 0.69 1.38 0.29-6.43 0.19 

DRB1*1407 2 1.69 0.194 40.7 Fixed 0.84 0.81 0.10-6.36 ND 

DRB1*1501 3 7.62 0.022 73.7 Random 0.76 0.83 0.24-2.89 0.62 

DRB1*1502 2 2.56 0.110 60.9 Fixed 0.80 1.31 0.16-10.58 ND 

DRB1*1602 3 1.31 0.518 0.0 Fixed 0.64 0.80 031-2.06 0.71 

A1 5 9.35 0.053 57.2 Random 0.001 5.10 1.95-13.33 0.44 

A2 4 5.33 0.149 43.7 Fixed 0.005 2.17 1.26-3.74 0.48 

A3 2 0.12 0.733 0.0 Fixed 0.45 0.52 0.10-2.75 ND 

A9 3 4.65 0.098 57.0 Random 0.72 1.45 0.26-1.38 0.002 

A11 2 1.80 0.180 44.5 Fixed 0.76 1.16 0.45-2.97 ND 

A28 2 0.26 0.608 0.0 Fixed 0.65 1.64 0.19-13.99 ND 

AW30+31 2 0.00 0.991 0.0 Fixed 0.33 3.14 0.31-31.39 ND 

B5 5 9.01 0.061 55.6 Random 0.001 4.63 1.85-11.62 0.99 

B7 2 0.81 0.369 0.0 Fixed 0.74 1.25 0.34-4.61 ND 

B8 3 2.65 0.266 24.5 Fixed 0.02 2.99 1.19-7.53 0.39 

B12 3 3.87 0.144 48.4 Fixed 0.005 5.49 1.67-18.03 0.82 

B13 2 1.61 0.205 37.7 Fixed 0.24 1.82 0.68-4.90 ND 

B15 2 4.21 0.040 76.2 Random 0.95 1.13 0.04-31.86 ND 

B17 2 1.33 0.249 24.7 Fixed 0.53 1.57 0.38-6.51 ND 

BW22 2 1.69 0.193 41.0 Fixed 0.59 0.68 0.17-2.77 ND 

BW40 2 2.71 0.100 63.1 Random 0.57 1.97 0.19-19.97 ND 
afibrosis FI-III  vs. F0 

bfibrosis FII-III  vs. F0-I 

OR, pooled odds ratio 

95%CI, 95% confidence interval 

ND, not performed when there is less than three studies 

Bold line indicates significant association 


