
Highlights:

Dietary alkylresorcinols prevent muscle atrophy.

Alkylresorcinols improve a disturbed energy metabolism caused by muscle atrophy.

Alkylresorcinols modify the disruption to fatty acid metabolism induced by lipid 

autophagy.
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19 Abstract 

20 It has been reported that phytoextracts, that contain alkylresorcinols (ARs) protect against 

21 severe myofibrillar degeneration found in isoproterenol-induced myocardial infarction. In this 

22 study, we examined the effect of dietary ARs derived from wheat bran extracts on muscle 

23 atrophy in denervated mice. The mice were divided into the following four groups: 1) sham-

24 operated (control) mice fed with normal diet (S-ND); 2) denervated mice fed with normal diet 

25 (D-ND); 3) control mice fed with ARs-supplemented diet (S-AR); and, 4) denervated mice 

26 fed with ARs-supplemented diet (D-AR). The intake of ARs prevented the denervation-

27 induced reduction of the weight of the hind limb muscles and the myofiber size. However, 

28 the expression of ubiquitin ligases and autophagy-related genes, which is associated with 

29 muscle proteolysis, was slightly higher in D-AR than in D-ND. Moreover, the abundance of 

30 the autophagy marker p62 was significantly higher in D-AR than in D-ND. Muscle atrophy 

31 has been known to be associated with a disturbed energy metabolism. The expression of 

32 pyruvate dehydrogenase kinase 4 (PDK4), which is related to fatty acid metabolism, was 

33 decreased in D-ND as compared with that in S-ND. In contrast, dietary supplementation with 

34 ARs inhibited the decrease of PDK4 expression caused by denervation. Furthermore, the 

35 abnormal expression pattern of genes related to the abundance of lipid droplets-coated 

36 proteins that was induced by denervation, was improved by ARs. These results raise the 
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37 possibility that dietary supplementation with ARs modifies the disruption of fatty acid 

38 metabolism induced by lipid autophagy, resulting in the prevention of muscle atrophy.

39 Key words: alkylresorcinols; muscle atrophy; fatty acid metabolism; lipid autophagy

40
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41 1. Introduction

42 A decline in muscle mass termed muscle atrophy, has been observed under the 

43 conditions of disuse (e.g., immobilization, denervation, muscle unloading), fasting, aging, 

44 and several disease states including cancer cachexia, sepsis, diabetes mellitus, and chronic 

45 renal failure [1, 2]. Muscle atrophy can be caused by decreased protein synthesis and/or 

46 increased proteolysis. We previously reported that an accumulation of ubiquitinated proteins 

47 was observed in the quadriceps femoris muscle of bedridden volunteers and the 

48 gastrocnemius (GA) muscle of spaceflight-exposed rats, indicating that the ubiquitin 

49 proteasome system plays an important role in the degradation of proteins in atrophied muscle 

50 [3, 4]. It is true that mice deficient in the muscle-specific ubiquitin ligases MuRF-1 and 

51 atrogin-1/MAFbx showed resistance against denervation-induced muscle loss [5, 6]. The 

52 expression of ubiquitin ligases and autophagy-related genes such as LC3 and Gabarap in 

53 muscle was reported to be induced by denervation or fasting [7]. Furthermore, it has been 

54 reported that denervation-induced protein loss in muscles involved proteolysis rather 

55 decreased protein synthesis [8, 9]. Thus, the inhibition of proteolysis is important in the 

56 prevention of muscle loss in some atrophy models.

57 Under the condition of disuse, muscle atrophy causes a switch in muscle fiber type. 

58 Previous studies have demonstrated that denervation induces the transformation of slow 

59 oxidative fibers to fast glycolytic fibers in rat soleus muscle [10, 11]. In addition, we have 
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60 previously reported that mitochondrial dislocation and dysfunction were found in disused 

61 muscle [12]. Furthermore, the results of gene ontology data showed that the expression of 

62 genes associated with “fatty acid catabolic process” had significantly decreased after 

63 denervation [13]. Thus, it appears that muscle atrophy induces a metabolic shift from 

64 oxidative to glycolytic metabolism.

65 Phenolic compounds derived from plants have several benefits to human health and 

66 reduce the risks of developing cardiovascular disease and cancer [14]. Whole grains contain 

67 various phenolic compounds and an increased intake of whole grains in patients with obesity, 

68 type II diabetes, and cardiovascular disease has been shown to lower blood pressure, increase 

69 insulin sensitivity, and improve glucose and lipid metabolism [15, 16, 17]. One of the major 

70 groups of phenolic compounds in whole-grain cereals is the 5-n-alkylresorcinols (ARs), 

71 which comprise approximately 0.015–0.3% of the dry weight of wheat and rye grains [18]. It 

72 has been reported that the intake of ARs suppressed obesity and glucose intolerance induced 

73 by a high-fat, high-sucrose diet, by increasing insulin sensitivity and cholesterol excretion in 

74 mice [19]. Meanwhile, phenolic compounds obtained from olive oil are known to have a 

75 protective effect against muscle atrophy and also improve high fat diet-induced insulin 

76 resistance in skeletal muscle [20, 21]. In the present study, we examined the effect of ARs, 

77 phenolic compounds derived from wheat bran extracts, on denervation-induced muscle 

78 atrophy. 
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79

80 2. Materials and Methods 

81 2.1 Isolation of ARs

82 ARs were isolated from wheat bran M (Nisshin seifun, Tokyo, Japan) as described in 

83 a previous report [19].

84

85 2.2 Animal model (denervation)

86 Male C57BL/6N mice (Kyudo, Kumamoto, Japan) aged 6 weeks were housed in a 

87 room maintained at 24 ± 1 °C on a 12-h light/dark cycle with food (Oriental Yeast Company, 

88 Tokyo, Japan) and water available ad libitum. The mice were divided into four groups: 1) 

89 sham-operated (control) mice fed with normal diet (S-ND, n=5); 2) denervated mice fed with 

90 normal diet (D-ND, n=6); 3) control mice fed with ARs diet (S-AR, n=5); and, 4) denervated 

91 mice fed the ARs diet (D-AR, n=6). Briefly, after acclimatization for 1 week, an ARs-

92 supplemented diet (0.4%, w/w) or normal diet was given to the mice for 4 weeks. After then, 

93 the sciatic nerve of the right leg was cut and a 5-mm piece was excised under anesthesia. 

94 During the development of disuse-induced muscle atrophy, the mice continued to receive the 

95 normal or ARs-supplemented diet until the termination of the experiment 6 days later. The α-

96 starch content of the ARs-supplemented diet was reduced to adjust for the composition of 

97 other nutrients and comprised the normal diet (based on AIN-93M) mixed with purified ARs 
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98 (0.4% w/w). The hind limb skeletal muscles [the tibialis anterior (TA), extensor digitorum 

99 longus (EDL), GA, and soleus (SO)] were isolated at the time of sacrifice. After measuring 

100 their wet weight, the skeletal muscles were immediately frozen in chilled isopentane and 

101 liquid nitrogen and were stored at −80 °C until analysis. All animal experiments involving 

102 denervation were approved by the Committee on Animal Experiments of Nagasaki 

103 University, and were performed according to the guidelines for the care and use of laboratory 

104 animals prescribed by the University.

105

106 2.3 Quantitative reverse transcription (RT)-polymerase chain reaction (PCR)

107 Total RNA was extracted from mouse GA muscle using an acid guanidinium 

108 thiocyanate-phenol-chloroform mixture (ISOGEN™; Nippon Gene, Tokyo, Japan). 

109 Quantitative RT-PCR was performed with the appropriate primers and SYBR® Green dye 

110 using a real-time PCR system (ABI Real-Time PCR Detection System; Applied Biosystems, 

111 Foster City, CA, USA), as described previously [22]. The oligonucleotide primers used for 

112 PCR are shown in Supplemental Table 1. We used 18S ribosomal RNA as an internal 

113 standard gene.

114

115 2.4 Immunoblotting 
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116 The mouse GA muscle was prepared in 50 mM Tris-HCl buffer, pH 7.5, containing 

117 150 mM NaCl, 1% Triton™ X-100, and a protease inhibitor cocktail containing 

118 ethylenediaminetetraacetic acid (Roche Diagnostics, Tokyo, Japan), and the samples were 

119 homogenized using a sonicator. The Pierce BCA assay (Pierce, Rockford, IL, USA) was used 

120 to quantify proteins. Protein samples were combined with 4× sample buffer (250 mM Tris-

121 HCl, 8% sodium dodecyl sulfate, 40% glycerol, 8% β-mercaptoethanol, and 0.02% 

122 bromophenol blue) and separated on a polyacrylamide gel. The proteins were transferred to a 

123 polyvinylidene difluoride membrane and then probed with the appropriate primary antibody 

124 according to the manufacturer’s instructions. The primary antibodies used in this study were 

125 anti-LC3b, anti-p62 (Sigma Aldrich, St. Louis, MO, USA), and anti-GAPDH (Santa Cruz 

126 Biotechnology, Dallas, TX, USA). The secondary antibody used was donkey anti-rabbit IgG 

127 at 1:5000 dilution (GE Healthcare, Little Chalfont, UK). Membranes were developed using 

128 Amersham™ ECL™ western blotting detection reagents (GE Healthcare).

129

130 2.5 Hematoxylin and eosin staining and measurement of cross-sectional area

131 The isolated GA muscle of mice was immediately frozen in chilled isopentane and 

132 liquid nitrogen and stored at −80 °C until analysis. Sections of the GA muscle (5 μm 

133 thickness) were fixed in ice-cold acetone. After fixation, the sections were stained with 

134 hematoxylin and eosin. Images were acquired with a BIOREVO BZ-X710 fluorescence 
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135 microscope (Keyence, Osaka, Japan) using a camera and processed using BZ-II analysis 

136 software (Keyence). At least 1000 cross-sectional areas (CSAs) of myofibers were measured 

137 per sample. The data were expressed as the fiber size distribution.

138 2.6 Statistical analysis

139 All data were analyzed using one-way analysis of variance (ANOVA) using the 

140 Excel-Toukei version 6.0 software (Statistics Survey System-development, Tokyo, Japan), 

141 followed by Tukey-Kramer (for unequal number) test to identify which treatments were 

142 significantly different. All data are expressed as mean ± SEM (n = 5–6). The p values < 0.05 

143 were considered significantly different.

144

145 Results

146 3.1 Effect of dietary ARs on muscle mass and myofiber size distribution in 

147 denervation-induced muscle atrophy.

148 It has been reported that extracts of Labisia pumila var. alata, which contain ARs, 

149 gallic acid, and flavonoids, protect against isoproterenol-induced myocardial infarction 

150 through the activation of anti-oxidant enzymes in rats [23]. To examine the potential 

151 inhibitory effect of ARs on skeletal muscle atrophy, we compared the wet weights of several 

152 muscles between sham-operated and denervated mice fed the normal or ARs-supplemented 

153 diet. Consistent with previous report [19], there was no significant difference in the food 
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154 intake of the normal and ARs-supplemented diet groups (Table 1). Meanwhile, the body 

155 weights and fasting blood glucose levels of non-denervated mice fed the AR diet were lower 

156 than that of non-denervated mice fed the normal diet (fasting blood glucose: normal diet 

157 group = 3.68 ± 0.13 mmol/l; ARs-supplemented diet group =3.34 ± 0.14 mmol/l). The 

158 percentage of white adipose tissue to body weight was 3.06 ± 0.17% in the normal diet group 

159 and 2.23 ± 0.21% in the ARs-supplemented diet group. As shown in Fig. 1, the wet weights 

160 of skeletal muscles such as TA, EDL, GA, and SO normalized to body weight in D-ND 

161 decreased by 78, 85, 73, and 84% compared to those in sham-operated mice, respectively 

162 (Fig. 1). In contrast, the wet weights of TA, EDL, GA, and SO in the D-AR were 96, 115, 90, 

163 and 92% higher compared to the sham-operated mice, respectively (Fig. 1). The weights of 

164 the TA, EDL, and GA in the D-AR were higher than those in the D-ND.

165 The CSA of myofibers stained with hematoxylin and eosin in the S-ND was similar 

166 to that observed in the S-AR (Fig. 2). Denervation induced a decrease in the average CSA of 

167 myofibers. The size distributions of myofibers in D-ND and D-AR indicated a decrease in the 

168 proportion of fibers in CSA of 1000–2000 m2, and an increase in the proportion of those in 

169 CSA of <1000 m2, as compared with those in S-ND and S-AR (Fig. 2). In S-AR, as 

170 compared with S-ND, there was an increase in the proportion of myofibers in CSA of >1000 

171 m2 and a decrease in the proportion of those in CSA of <1000 m2 (Fig. 2). Thus, the 

172 denervated mice that were fed the AR diet appeared to be resistant to muscle fiber atrophy. 
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173

174 3.2 Effect of dietary ARs on the proteolysis in muscle of denervated mice.

175 Muscle atrophy-associated ubiquitin ligases, such as MAFbx/Atrogin-1 and MuRF1, 

176 and autophagy contribute to skeletal muscle atrophy [5, 6]. It has been known that 

177 denervation is associated with an increase in the expression of the ubiquitin ligases 

178 MAFbx/Atrogin-1 and MuRF1 and the autophagy-related genes LC3b, Bnip3, Bnip3l, Beclin, 

179 and Gabarapl1 [24]. To investigate whether ARs suppress muscle atrophy through the 

180 activation of proteolysis, we examined the mRNA expression of the ubiquitin ligases and 

181 autophagy-related genes in the skeletal muscle of S-ND, D-ND, S-AR, and D-AR. The 

182 mRNA transcription of the ubiquitin ligases MAFbx/Atrogin-1 and MuRF1 in the skeletal 

183 muscle of denervated mice was significantly higher than that in the sham-operated mice (Fig. 

184 3). The analysis of the expression of autophagy-related genes revealed that the expression of 

185 Gabarapl1 and p62 mRNA showed the same pattern as the expression of the ubiquitin ligases 

186 (Fig. 3). 

187 Next, we investigated the effect of ARs on the activation of autophagy in muscle 

188 atrophy. The abundance of the active form of LC3 (LC3-II) in the skeletal muscle of 

189 denervated mice increased significantly, as compared with that in the sham-operated mice, 

190 whereas there was no difference between D-ND and D-AR in the abundance of LC3-II (Fig. 
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191 4). Interestingly, the abundance of the autophagy marker p62 was significantly higher in D-

192 AR than in D-ND (Fig. 4). 

193

194 3.3 Effect of dietary ARs on the expression of energy metabolism-related genes in 

195 denervated mice.

196 It has been known that the activation of autophagy contributes to energy balance by 

197 degrading lipids as well as proteins [25]. To determine whether ARs affect energy 

198 metabolism during muscle atrophy, we examined the mRNA expression of several energy 

199 metabolism-related genes in atrophied muscle. There was a significant decrease in the 

200 expression of peroxisome proliferator-activated receptor (PPAR)-α, which regulates the 

201 expression of genes involved in fatty acid oxidation, as well as that of PPAR-γ co-activator-

202 1α (PGC-1α) in the skeletal muscle of the denervated mice compared with that in the sham-

203 operated mice whereas there was no difference between D-ND and D-AR (Fig. 5). In contrast, 

204 there was a significant difference in the expression of PPARδ and pyruvate dehydrogenase 

205 kinase 4 (PDK4) in D-AR compared to that in D-ND (Fig. 5). 

206

207 3.4 Effect of dietary ARs on the expression of genes related to lipid droplets (LD) 

208 formation and the abundance of LD-coated proteins in denervated mice.
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209 An analysis of the expression of genes related to LD formation revealed that there 

210 was no difference among the four groups in the expression of phospholipase D1 (Pld1). 

211 Although the mRNA transcription of the RAS oncogene family member Rab 18 in the 

212 skeletal muscle of denervated mice was significantly higher than that in the sham-operated 

213 mice, there was no difference between D-ND and D-AR (Fig. 6). The analysis of the 

214 expression of genes related to the abundance of LD-coated proteins showed that the 

215 expression of perilipin (Plin) 2 in the skeletal muscle of denervated mice was significantly 

216 higher than that in the sham-operated mice. Moreover, the expression of Plin 2 was induced 

217 to a higher level in D-AR than in D-ND (Fig. 6). In contrast, the expression of Plin 4 and 5 in 

218 the skeletal muscle of denervated mice was significantly lower than that in the sham-operated 

219 mice. The expression of Plin 4 and 5 in D-AR was slightly higher than that in D-ND (Fig. 6). 

220

221 4. Discussion

222 In this study, we set the experiment 6 days after denervation which coincides to the early 

223 stage of atrophy development. This may be possible that the accumulation of AR in muscle 

224 could not be detected during this period. In our previous study, we reported that pre-intake of 

225 flavonoid, quercetin for 14 days, suppressed reduction of muscle mass at 4 or 6 days after 

226 denervation, whereas, 1-day pre-intake of quercetin did not prevent the reduction of muscle 

227 mass [26]. Therefore, in the present study, we decided to continue ARs feeding for 34 days 
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228 including pre-intake for 28 days in order to account for effective prevention of muscle 

229 atrophy.

230 The results of this study demonstrated that the intake of ARs inhibited the decreases in the 

231 muscle mass and CSA of the myofibers in skeletal muscle that were caused by denervation. 

232 However, ARs failed to suppress the upregulation of the expression of muscle atrophy-

233 associated ubiquitin ligases and autophagy. Additionally, there was no difference between D-

234 ND and D-AR in the abundance of 4E-BP1 (data not shown), which is one of the protein 

235 synthesis-related proteins. It is possible that other factors contribute to the limitation of 

236 muscle mass loss by ARs. Interestingly, we found that the abundance of the autophagy 

237 marker p62 was significantly higher in D-AR than in D-ND (Fig. 4). Recently, it has been 

238 reported that p62 co-localized with LDs in L6 myocytes [27]. Moreover, p62 was found to 

239 interact with adipose differentiation-related protein, which is an LD membrane protein, 

240 implying that it regulates lipophagy to modulate the turnover of LDs. In addition, p62-

241 deficient mice developed obesity, impaired glucose, and insulin intolerance [28]. These 

242 findings suggested that the intake of ARs may be associated with the degradation of lipids in 

243 atrophic muscle.

244 Activation of the autophagy-lysosome system has been demonstrated in a large number of 

245 atrophied muscles [29]. Among them, mitophagy specifically plays an important role in the 

246 selective degradation of impaired mitochondria in atrophied muscle [30, 31]. Previous report 



Hiramoto et al.

15

247 has shown that muscle-specific knockout mice lacking autophagy-related (Atg) protein 7 

248 developed severe muscle atrophy and age-dependent decrease in force, which implies that 

249 autophagy flux is essential for preservation of muscle mass and retention of myofiber 

250 integrity [32]. On the other hand, we found that ARs could possibly modify the disruption to 

251 fatty acid metabolism induced by lipid autophagy. Recently, it has been reported that 

252 lipophagy contributes to supplying energy from lipid and control lipid homeostasis [33]. 

253 These findings suggest the importance of mitophagy and lipophagy in the physiologic 

254 adaptation of muscle atrophy.

255 It has also been reported that the phenolic compound, epigallocatechin-3-gallate found in 

256 green tea induces lipophagy though the activation of adenosine monophosphate-activated 

257 protein kinase (AMPK) in vascular endothelial cells and adipocytes [34, 35]. Similarly, 

258 kaempferol, a natural flavonoid, improves accumulated lipid and increased ER stress through 

259 an AMPK/mTOR-mediated lipophagy pathway in pancreatic β-cells [36]. AMPK controls 

260 glucose and lipid metabolism in response to intracellular energy imbalance. Additionally, the 

261 activation of AMPK stimulates glucose transport by insulin independent signaling pathway 

262 [37]. Given that the fasting glucose level of ARs-fed mice was lower than that of the normal 

263 diet-fed mice, ARs may induce lipophagy through activation of AMPK. Further 

264 investigations are necessary to explore this mechanism.
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265 Muscle atrophy caused by aging and inactivity is associated with the accumulation of 

266 intramuscular triglycerides as well as a progressive loss of muscle mass [38]. It has been 

267 reported that the regulation of the expression of perilipin, which is a known LD-associated 

268 protein, contributes to sarcopenia and muscle weakness [39, 40]. These findings may reflect 

269 the changed energy demand under the condition of muscle atrophy. Indeed, the expression of 

270 Plin 2 was induced to a higher level in D-AR than in D-ND, while the expression of Plin 4 

271 and 5 was slightly higher in D-AR than in D-ND (Fig. 6). Plin 2 and 4 were highly expressed 

272 in type I (slow oxidative) fibers more than in type II (fast glycolytic) fibers [41, 42, 43]. 

273 Moreover, Plin 5 localizes with LDs and mitochondria in skeletal muscle, where it regulates 

274 fatty acid oxidation [44]. Bosma et al. showed that the overexpression of Plin5 in skeletal 

275 muscle promoted the expression of genes involved in fatty acid β-oxidation, tricarboxylic 

276 acid cycle, electron transport chain, and, mitochondrion organization [45]. These findings 

277 raise the possibility that the energy demand in the atrophied muscle of mice fed with the AR-

278 supplemented diet could be met by increased lipid oxidation. 

279 PPARδ is an important transcription factor that is known as a regulator of muscle lipid 

280 oxidation in skeletal muscle [46]. The expression of UCP3 and PDK4 is regulated by the 

281 PPARδ pathway to modify fatty acid metabolism and regulate insulin sensitivity in skeletal 

282 muscle [47, 48]. We found that the expression of PPARδ, UCP3, and PDK4 increased in the 

283 atrophied muscle of the mice that were fed with ARs-supplemented diet (Fig. 5). PDK4 is a 
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284 key enzyme that downregulates glycolysis and upregulates lipid oxidation by inhibiting the 

285 synthesis of acetyl-CoA from pyruvate [48, 49]. Transgenic mice with the cardiac-specific 

286 overexpression of PDK4 showed enhanced fatty acid oxidation, but not glucose oxidation, 

287 preventing high fat diet-induced myocyte lipid accumulation [50]. In addition, transgenic 

288 mice with the skeletal muscle-specific overexpression of UCP3 showed an increased capacity 

289 for fatty acid uptake, fatty acid oxidation, and an increased whole-body fat oxidation [51]. 

290 These findings suggest that the main energy supply pathway in the atrophic muscle of mice 

291 fed with an ARs-supplemented diet shifted from glycolysis to fatty acid oxidation. 

292
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472 Table 1. Changes in body weight and food intake of denervated mice fed a normal or ARs 

473 diet.

Groups S-ND D-ND S-AR D-AR

n 5 6 5 6

Body weight (g) 28.0 ± 0.6ab 29.7 ± 0.7a 26.8 ± 0.4bc 25.4 ± 0.5c

Food intake (g) 3.8 ± 0.6a 3.1 ± 0.4a 3.4 ± 0.2a 3.8 ± 0.5a

474 Data are mean ± SEM (n = 5–6). Different letters indicate significant differences (P <0.05) 

475 based on ANOVA and Tukey-Kramer test. S-ND, sham-operated (control) mice fed with 

476 normal diet; D-ND, denervated mice fed with normal diet; S-AR, control mice fed with ARs-

477 supplemented diet; D-AR, denervated mice fed the ARs-supplemented diet.

478
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479 Figure legends

480 Fig. 1. The effect of dietary alkylresorcinols (ARs) on the denervation-induced decrease in 

481 the wet weight of skeletal muscle. An ARs-supplemented diet or a normal diet was given to 

482 mice for 4 weeks, and then their skeletal muscles were isolated 6 days after denervation. The 

483 wet weights of the tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius 

484 (GA), and soleus (SO) muscles were measured. Data are mean ± SEM (n = 5–6). Different 

485 letters indicate significant differences (P <0.05) based on ANOVA and Tukey-Kramer test. S-

486 ND, sham-operated (control) mice fed the normal diet; D-ND, denervated mice fed the 

487 normal diet; S-AR, control mice fed the ARs-supplemented diet; D-AR, denervated mice fed 

488 the ARs-supplemented diet.

489

490 Fig. 2. Effect of dietary ARs on the denervation-induced decrease in muscle cross-sectional 

491 area (CSA). (A) Representative sections (5-m thickness) from the GA muscle of denervated 

492 mice on day 6 were stained with hematoxylin and eosin. Scale bar = 100 m. (B) The 

493 distributions of CSAs indicate the ratio of the number of myofibers with the indicated area to 

494 the total number of myofibers in the section. S-ND, sham-operated (control) mice fed the 

495 normal diet; D-ND, denervated mice fed the normal diet; S-AR, control mice fed the ARs-

496 supplemented diet; D-AR, denervated mice fed the ARs-supplemented diet.
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497 Fig. 3. Effect of dietary ARs on the expression of ubiquitin ligase- and autophagy-related 

498 genes in the denervated muscle of mice. The total RNA of gastrocnemius muscle was 

499 extracted and subjected to real-time reverse transcription-polymerase chain reaction. The 

500 ratio between the intensities of ubiquitin ligase- or autophagy-related genes and 18S 

501 ribosomal RNA was calculated. Data are mean ± SEM (n = 5-6). Different letters indicate 

502 significant differences (P <0.05) based on ANOVA and Tukey-Kramer test. S-ND, sham-

503 operated (control) mice fed the normal diet; D-ND, denervated mice fed the normal diet; S-

504 AR, control mice fed the ARs-supplemented diet; D-AR, denervated mice fed the ARs-

505 supplemented diet.

506

507 Fig. 4. Effect of ARs on the activation of autophagy and protein synthesis in the denervated 

508 muscle of mice. Proteins (20 g/lane) extracted from the GA muscle were subjected to 

509 sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a 

510 polyvinylidene difluoride membrane. Immunoblotting for LC3b, p62, and GAPDH was 

511 performed on different membranes without antibody stripping, as described in the Materials 

512 and Methods. The ratio of p62 and LC3-II protein to GAPDH was calculated by 

513 densitometric analysis. Data are mean ± SEM (n = 5-6). Different letters indicate significant 

514 differences (P <0.05) based on ANOVA and Tukey-Kramer test. S-ND, sham-operated 
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515 (control) mice fed the normal diet; D-ND, denervated mice fed the normal diet; S-AR, control 

516 mice fed the ARs-supplemented diet; D-AR, denervated mice fed the ARs-supplemented diet.

517 Fig. 5. Effect of dietary ARs on the expression of energy metabolism-related genes in the 

518 denervated muscle of mice. The total RNA of gastrocnemius muscle was extracted and 

519 subjected to real-time reverse transcription-polymerase chain reaction. The ratio between the 

520 intensities of energy metabolism-related genes and 18S ribosomal RNA was calculated. Data 

521 are mean ± SEM (n = 5-6). Different letters indicate significant differences (P <0.05) based 

522 on ANOVA and Tukey-Kramer test. S-ND, sham-operated (control) mice fed the normal 

523 diet; D-ND, denervated mice fed the normal diet; S-AR, control mice fed the ARs-

524 supplemented diet; D-AR, denervated mice fed the ARs-supplemented diet.

525

526 Fig. 6. Effect of dietary ARs on lipid droplets (LD) formation and the expression of LD-

527 coated proteins-related genes in the denervated muscle of mice. Total RNA of gastrocnemius 

528 muscle was extracted and subjected to real-time RT-PCR. The ratio of the intensities of genes 

529 related to LD formation and the abundance of LD-coated proteins to that of 18S ribosomal 

530 RNA was calculated. Data are mean ± SEM (n = 5-6). Different letters indicate significant 

531 differences (P <0.05) based on ANOVA and Tukey-Kramer test. S-ND, sham-operated 

532 (control) mice fed the normal diet; D-ND, denervated mice fed the normal diet; S-AR, control 

533 mice fed the ARs-supplemented diet; D-AR, denervated mice fed the ARs-supplemented diet.
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Supplementary Table 1 Primer sets used in this study

Target gene 　 Sequence

S 5’- GGCGGACGGCTGGAA -3’
Atrogin-1

AS 5’- CAGATTCTCCTTACTGTATACCTCCTTGT -3’

S 5’- TGCCTGGAGATGTTTACCAAGC -3’
MuRF1

AS 5’- AAACGACCTCCAGACATGGACA -3’

S 5’- CACTGCTCTGTCTTGTGTAGGTTG -3’
MAP1-LC3b

AS 5’- TCGTTGTGCCTTTATTAGTGCATC -3’

S 5’- CATCGTGGAGAAGGCTCCTA -3’
Gabarapl1

AS 5’- ATACAGCTGGCCCATGGTAG -3’

S 5’- TTCCACTAGCACCTTCTGATGA -3’
Bnip3

AS 5’- GAACACCGCATTTACAGAACAA -3’

S 5’- TTGGGGCATTTTACTAACCTTG -3’
Bnip3l

AS 5’- TGCAGGTGACTGGTGGTACTAA -3’

S 5’- TGAATGAGGATGACAGTGAGCA -3’
Beclin

AS 5’- CACCTGGTTCTCCACACTCTTG -3’



S 5’- CTTCGGAAGCTGAAACATGG -3’
p62

AS 5’- GACTCAGCTGTAGGGCAAGG -3’

S 5’- GGAGTCTCACCTGTTTACTGACAACT -3’
UCP3

AS 5’- GCACAGAAGCCAGCTCCAA -3’

S 5’- AAAGGACAGGATGGAAGGAATCA -3’
PDK4

AS 5’- TTTTCCTCTGGGTTTGCACAT -3’

S 5’- GAGGAAAGGAAGACTAAACGGCCA -3’
PGC-1α

AS 5’- GCCAGTCACAGGAGGCATCTTT -3’

S 5’- CCTCAGGGTACCACTACGGAGT-3’
PPARα

AS 5’- GCCGAATAGTTCGCCGAA-3’

S 5’- GAGGGGTGCAAGGGCTTCTT-3’
PPARδ

AS 5’- CACTTGTTGCGGTTCTTCTTCTG-3’

S 5’- ATCGGTGATGGATGGAAAGG -3’
Pld1

AS 5’- CCCAGGACAAGTCTGAAGCA -3’

S 5’- AGGACGTGCTGACCACTCTG -3’
Rab18

AS 5’- TGTGAACCTCAGGAGCAGGC -3’

Plin2 S 5’- GGGTGGAGTGGAAGAGAAGC -3’



AS 5’- GAGCTGCTGGGTCAGGTTG -3’

S 5’- GCTGCATGTGGGAAGCTGT -3’
Plin4

AS 5’- GTGCACAGCCTGTCCTGAG -3’

S 5’- CCAGTTGGCCACAGTGAATG -3’
Plin5

AS 5’- GGCTGATGTCACCACCATGT -3’

S 5’- GTAACCCGTTGAACCCCATT -3’
18S

AS 5’- CCATCCAATCGGTAGTAGCG - 3’

AS, antisense primer; S, sense primer; UCP, uncoupling protein; PDK, pyruvate 

dehydrogenase kinase; PPAR, peroxisome proliferator-activated receptor; PGC-1α, 

PPAR gamma coactivator 1 alpha; GAPDH, glycelaldehyde-3-phosphate 

dehydrogenase; MAP1-LC3b, microtubule-associated protein 1 light chain 3 beta; 

Gabarapl1, gamma-aminobutyric acid (GABA) A receptor-associated protein-like 1; 

Bnip3, BCL2/adenovirus E1B interacting protein 3; Bnip3l, BCL2/adenovirus E1B 

interacting protein 3-like; Pld1, phospholipase D1; Rab18, RAS oncogene family 

member Rab 18; Plin, perilipin,; 18S, 18S ribosomal RNA.




