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Abstract: Recent studies suggest that cancer stem cells may be responsible for 

tumorigenesis and contribute to some individuals’ resistance to cancer therapy. Some 

studies demonstrate that side population (SP) cells isolated from diverse cancer cell 

lines harbor stem cell-like properties; however, there are few reports examining the role 

of SP cells in human oral cancer. To determine whether human oral cancer cell lines 

contain a SP cell fraction, we first isolated SP cells by fluorescence activated cell 

sorting, followed by culturing in serum-free medium (SFM) using the SCC25 tongue 

cancer cell line, so that SP cells were able to be propagated to maintain the CSC 

property. Differential expression profile of stem cell markers (ABCG2, Oct-4 and 

EpCAM) was examined by RT-PCR in either SP cells or non-SP cells. Growth 

inhibition by 5-FU was determined by the MTT assay. Clonogenic ability was evaluated 

by colony formation assay. SCC25 cells contained 0.23% SP cells. The fraction of SP 

cells was available to grow in SFM cultures. SP cells showed higher mRNA expression 

of stem cell markers (ABCG2, Oct-4 and EpCAM) as compared with non-SP cells. 

Moreover, SP cells demonstrated more drug resistance to 5-FU, as compared with 

non-SP cells. The clone formation efficiency of SP cells was significantly higher than 

non-SP cells at an equal cell number (P<0.01). We isolated cancer stem-like SP cells 

from an oral cancer cell line. SP cells possessed the characteristics of cancer stem cells, 

chemoresistance, and high proliferation ability. Further characterization of cancer 

stem-like SP cells may provide new insights for novel therapeutic targets. 
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Introduction 

Although monoclonal in origin, most tumors appear to contain a heterogeneous 

population of cancer cells.1 The concept of cancer stem cells (CSC) was introduced to 

explain this heterogeneity.2,3 Recent studies suggest that CSC may be responsible for 

tumorigenesis and contribute to some individuals’ resistance to cancer therapy.2,3 Some 

studies demonstrate that side population (SP) cells isolated from diverse cancer cell 

lines harbor stem cell-like properties;4-21 however, there are few reports examining the 

role of SP cells in human oral cancer.5,6,15-18,20,21 Isolation of CSC-like SP cells from 

cancer cell lines has been successful using two distinct methods based on the properties 

of CSC. First, isolation of CSC is made possible by flow cytometry according to CSC 

characteristics.7-9,14,16,17,20 Plotting fluorescence intensity on blue versus red wavelengths, 

the SP fraction appears as a low-fluorescent tail-shaped cell population. The SP 

phenotype is determined by the ability to efflux Hoechst 33342 dye through an 

ATP-binding cassette (ABC) membrane transporter. Second, the sphere formation of 

CSC is enriched under the cultivation of defined serum-free medium (SFM) with 

growth factors.15,18,22,23 In these methods, however, the CSC population from the cancer 

cell line is not only small, but it is also difficult to maintain an enriched status of CSCs 

in long-term culture.7,8,18,24,25 In our experiments, we first isolated SP cells by 

fluorescence activated cell sorting (FACS), followed by culturing in SFM containing 

basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), so that SP 

cells were able to be propagated to maintain the CSC property. 
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The purpose of this study was the characterization of CSC in the oral cancer cell line. 

The novel therapeutic strategies that selectively target the CSC subset might nonetheless 

achieve long-term disease eradication by exhausting self-renewal and growth potential 

of cancer tissues. 

 

 

Materials and Methods 

Cells 

The human tongue cancer cell line SCC25, obtained from the American Type Culture 

Collection (Manassas, VA), was cultured in a 1:1 mixture of Ham’s F-12/DMEM 

supplemented with 10% fetal bovine serum (FBS) at 37°C in the presence of 5% CO2. 

 

SP analysis and cell sorting 

Cells were labeled with 2.5 μg/ml Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) for 

30 min at 37°C. The control cells were incubated in the presence of 50 μM verapamil 

(Sigma-Aldrich). Propidium iodine (PI) 1 μg/ml was added to discriminate dead cells. 

Analysis and sorting were performed on FACS Vantage SE (Becton Dickinson, San Jose, 

CA). 

 

Sphere culture 

After sorting, SP cells and non-SP cells of SCC25 were placed at a density of 1,000 
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cells/ml under stem cell conditions by resuspension in tumor sphere medium consisting 

of serum-free 1:1 mixture of Ham’s F-12/DMEM, N2 supplement (Invitrogen, Carlsbad, 

CA), 10 ng/ml human recombinant bFGF (Invitrogen), and 10 ng/ml EGF (Invitrogen), 

followed by culturing in ultra-low attachment plates (Corning, NY) for about 2 weeks.  

 

Reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was isolated with TRIzol Reagent (Invitrogen) and first-strand cDNA was 

synthesized from 1 μg total RNA using Oligo d (T) primer (Invitrogen) and ReveTra 

Ace (TOYOBO, Osaka, Japan). For PCR analysis, cDNA was amplified by Taq DNA 

polymerase (TAKARA, Otsu, Japan). Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as the endogenous expression standard. Each PCR for cancer stem 

cell markers (ABCG2, Oct-4 and EpCAM) and GAPDH was performed using PCR 

Thermal Cycler MP (TAKARA). Each primer was designed to encompass an exon 

junction to prevent templating from possibly contaminated genomic DNA. Primer 

sequences were, for ABCG2: F, AGC TGC AAG GAA AGA TCC AA and R, TCC AGA 

CAC ACC ACG GAT AA; for Oct-4: F, ATC CTG GGG GTT CTA TTT GG and R, CTC 

CAG GTT GCC TCT CAC TC; for EpCAM: F, CTG CCA AAT GTT TGG TGA TG and 

R, ACG CGT TGT GAT CTC CTT CT; and for GAPDH: F, ATG TCG TGG AGT CTA 

CTG GC and R, TGA CCT TGC CCA CAG CCT TG. The amplified products were 

separated by electrophoresis on ethidium bromide-stained 1.2% agarose gels. Band 

intensity was measured by Image J version 1.37. 
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Cell proliferation assay 

The parental, SP or non-SP cells were seeded in the 96-well plate at a concentration of 5

×103 per well in DMEM/F-12 supplemented with 10% FBS. The cells were incubated 

for 24 h, followed by incubation for 0, 12, 24, 48, and 72 h. At each point, cells were 

incubated with 0.5 mg/ml 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 

bromide (MTT; Sigma-Aldrich). Four hours later, the medium was replaced with 100 μl 

dimethylsulfoxide (DMSO; Sigma-Aldrich) and vortexed for 10 min. Absorbance was 

then recorded at 570 nm using Easy Reader 340 AT (SLT-Lab Instruments, Salzburg, 

Austria), and drew the cell growth curve according to the data. 

 

Colony formation assay 

Parental, SP or non-SP cells were plated at about 200 cells per well in 6-well coated 

plates, and cultured in DMEM/F-12 supplemented with 10% FBS for 10 days. After 

most cell clones had increased to >50 cells, they were washed with PBS, fixed in 

methanol for 15 min, and stained with crystal violet for 15 min at room temperature. 

After washing out the dye, clones with >50 cells were counted as positive colonies. The 

percentage of cells that formed colonies is presented as clone formation efficiency 

(CFE). 
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5FU-IC50 and chemosensitivity assay 

Parent SCC25 cells without sorting were seeded in the 96-well plate at a concentration 

of 5×103 per well in DMEM/F-12 supplemented with 10% FBS and allowed to attach 

overnight. The cells were treated with 5-FU (Sigma-Aldrich) at various concentrations. 

After 48 h, the number of surviving cells following 5-FU treatment was assessed using a 

MTT proliferation assay as described above. These experiments were performed in 

triplicate. 5FU-IC50 values (the drug concentration that corresponded to a reduction in 

cell survival of 50% compared with the survival of untreated control cells) were 

determined from dose response curves. 

Parental, SP or non-SP cells were seeded in the 96-well plate at a concentration of 5

×103 per well in DMEM/F-12 supplemented with 10% FBS. After 24 h, the cells were 

treated with the IC50 of 5-FU for 48 h. Cell viability (%) was determined by MTT assay, 

and calculated as a percentage of the absence of 5-FU. 

 

Statistical analysis 

Statistical analyses were performed using StatMate III (Atms Co., Tokyo, Japan). 

Continuous data are given as the mean ± standard deviation. Data sets were examined 

by one-way analysis of variance (ANOVA) followed by Scheffe’s post-hoc test. P < 

0.05 was considered significant. 
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Results 

SP analysis 

SCC25 Hoechst-low cells were sorted from the SCC25 cell line after excluding dead 

cells and cellular debris based on scatter signals and propidium iodide fluorescence. SP 

cells have been shown to exhibit a distinct projection pattern by actively effluxing 

Hoechst 33342 dye from cytoplasm. The SP cell fraction comprised 0.23% of the total 

cell population, but totally disappeared after treatment with the selective ABC 

transporter inhibitor Verapamil (Fig. 1).  

 

Sphere formation 

Isolated SP cells and non-SP cells of SCC25 were cultured in SFM. SP cells were able 

to grow, forming spheres at day 5 (Fig. 2a). Floating spheres in suspension generated 

from single cells of SCC25 increased in size over time (Fig. 2b); however, non-SP cells 

could not be propagated under stem cell conditions. Thus, after sorting, these cells were 

cultured and maintained in DMEM/F-12 supplemented with 10% FBS. 

 

Expression of stem cell genes 

To examine the expression difference of the stem cell genes between sphere forming SP 

and non-SP cells, the extracted RNA from parental, sphere forming SP or non-SP cells 

was analyzed by semiquantitative RT-PCR for ABCG2, Oct-4 and EpCAM. The 

expression of ABCG2, Oct-4 and EpCAM was significantly higher in sphere forming SP 
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cells than in parental and non-SP cells (Fig. 3). 

 

Cell growth rate 

The growth rate for each population was measured with an MTT assay for 6 days. SP 

cells had higher proliferative ability than that of parental and non-SP cells. On days 2, 3, 

and 4 after seeding, the growth rate of SP cells was significantly higher than that of 

parental and non-SP cells; however, after day 5, SP cells had reached a plateau. The 

growth rates were not significantly different between SP and non-SP cells (Fig. 4a). 

 

Colony formation ability 

Colony formation assays were repeated twice in triplicate. SP cells revealed significant 

increases in large colony formation ability compared with parental and non-SP cells 

(Fig. 4b and 4c). 

 

5-FU chemosensitivity differences 

The IC50 of 5-FU obtained from the dose response curve for parental SCC25 cells was 

82.2 μM. SP cells were significantly more resistant to 5-FU than parental and non-SP 

cells (Fig. 5). 
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Discussion 

Since the concept of CSC has been proposed to explain tumor cell heterogeneity, some 

research has suggested that current therapies fail to prevent cancer relapse and 

metastasis because of a small, surviving population of CSC.2,3,24,25 It is assumed that the 

most effective therapy should target CSC. Recent researches on various solid tumors 

revealed the existence of CSCs, providing strong evidence for the presence of functional 

heterogeneity within the tumor population;4,16,26 however, CSCs are very rare and their 

differentiated progeny are very inaccessible. The SP technique is the most widely used 

strategy to isolate CSCs from cancer cell culture.7-9,14,16,17,20,21 Goodell et al. first 

examined the cell cycle distribution of whole bone marrow cells using Hoechst 33342 

vital dye staining and discovered that the display of Hoechst fluorescence 

simultaneously at two emission wavelengths (blue 450 nm and red 675 nm) localizes a 

small, yet distinct unstained cell population that expresses stem cell markers 

(Scal+Linneg/low).27 SP cells are localized in the left lower quadrant of a FACS profile. 

Zhang et al. reported that the SP population was highly variable among the oral cancer 

cell lines, from as high as 10% of the cellular population to merely 0.2%;16 however, 

other authors reported that the ratio of SP to non-SP cells at seven days post-culture in 

serum was almost the same as that before sorting.8,28 On the other hand, some studies 

reported that SFM selection might be useful for CSC expansion.15,29,30 Since serum 

causes irreversible differentiation of stem cells, SFM allows for maintenance of an 

undifferentiated stem cell status.30 Moreover, the addition of EGF and bFGF has been 
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reported to induce the proliferation of CSC.15,18 Kondo et al. reported that SP cells were 

isolated by FACS using Hoechst 33342 dye, and that their proportion increased by 

culturing in SFM with growth factors in the glioma cell line.29 In this study, we isolated 

SP cells (0.23% of the total cell population) from the human tongue cell line SCC25. 

Moreover, the proportion of SP cells but not non-SP cells formed spheres, and was 

significantly increased by culturing in SFM with EGF and bFGF. Non-SP cells could 

not be propagated under stem cell conditions. These results suggest that SFM selection 

is capable of increasing SP cells from the tongue cancer cell line. 

   The cellular capacity of Hoechst 33342 dye efflux is determined by the 

concentration of ABC transporter superfamily efflux pumps in the plasma membrane, 

including multidrug resistance 1 (MDR1).31,32 Human ABCG2 is the second member of 

the G subfamily of ABC transporters.32 Elevated expression of ABCG2 has been 

observed in a number of putative CSCs from various cancers.33-36 AGCG2 is a 

well-known marker useful for identifying and isolating CSCs. The Oct-4 gene, a 

member of the POU family of transcription factors, was shown to be expressed in both 

embryonic and adult stem cells.37 Oct-4 is involved in controlling not only the 

maintenance of embryonic stem cell pluripotency but also the proliferation potential.37,38 

Hu et al. reported that Oct-4 might maintain the survival of CSCs partly through the 

Oct-4/Tcl1/Akt1 pathway.39 Moreover, Wang et al. demonstrated that the 

Oct-4/Tcl1/Akt1 pathway could affect cell survival and drug sensitivity by regulation of 

ABCG2;40 therefore, Oct-4 is an important marker of CSCs. Epithelial adhesion 
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molecule (EpCAM) is also a CSC marker.41-43 EpCAM is a glycosylated, 39-42 kDa, 

transmembrane protein.44 Overexpression of EpCAM has been reported in various 

cancers, including colorectal cancer, tongue cancer and breast cancer.44-47 Gonzalez et al. 

reported that EpCAM reduction resulted in quantitatively decreased proliferation and 

expression of stem markers, such as Oct-4, SSEA-1, and c-myc, and exogenous 

expression of EpCAM conversely compensated for the requirement of the stem cell 

phenotype.48 In our study, all of these representative CSC markers (ABCG2, Oct-4, and 

EpCAM) were significantly increased in SP cells compared with non-SP cells; therefore, 

it is suggested that our isolated SP cells could characterize the properties of CSC. 

   Extensive proliferative and self-regeneration potential are fundamental 

characteristics of CSCs.2,3 In vitro experiments revealed that SP cells grow faster than 

non-SP cells and have higher colony formation ability.7,8,18,49 In our study, SP cells had 

higher proliferation rates and colony formation ability than non-SP cells in DMEM/F-12 

supplemented with 10% FBS; however, after day 4, SP cells reached a plateau. After 

day 5, the growth rates were not significantly different among parental, SP, and non-SP 

cells. These results indicated that the ratio of SP to non-SP cells was almost the same as 

before sorting. The same phenomenon was previously reported by Kruger et al.28 and 

supported the idea that tumorigenic cells are probably enriched in the SP fraction, but 

even non-SP cells may contain a small number of tumorigenic cells. On the other hand, 

it has been assumed that CSCs have a low rate of division and proliferation in restrictive 

niche environments;3,24,25,50 however, SP cells were sorted from other tumor cells, might 
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separate from their niche environments, and then gain the ability to proliferate faster, in 

contrast to non-SP cells.51 Consequently, we considered that SP cells were typical stem 

cells capable of self-regeneration, including high proliferative capacity and a colony 

formation potential greater than non-SP cells. 

   According to the CSC concept, chemotherapy kills most cells in a tumor; however, 

it is believed to leave CSCs behind, which might be an important mechanism in the 

development of resistance to chemotherapy. Indeed, CSCs are known to be significantly 

resistant to various chemotherapeutic agents in vitro.7,8,18 Our results showed that SP 

cells were significantly more resistant to 5-FU than non-SP cells. The Hoechst 33342 

exclusion ability conferred by ABC transporters forms the basis for SP phenotypes, and 

many chemical drugs may be pumped out of cells in the same way.18 In our study, 

isolated SP cells showed a higher level of ABCG2 expression; therefore, it is suggested 

that the up-regulation of ABCG2 is closely associated with the resistance of SP cells to 

5-FU. 

   In summary, we were able to isolate SP cells by FACS, followed by culturing in 

SFM. These SP cells are enriched as cells with CSC characteristics of self-regeneration, 

high proliferative capacity, and chemotherapy resistance. This characterization of CSCs 

may provide new insights into novel therapeutic targets for oral cancer treatment. 
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Figure legends 

 

 

Figure 1 Identification of SP cells in oral cancer cell line SCC25. SCC25 cells were 

stained with Hoechst 33342 and then analyzed by flow cytometry in the absence or 

presence of verapamil. SP cells were gated and shown as a percentage. These 

experiments were performed in triplicate with similar results. 
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Figure 2 Representative phase contrast photomicrographs of tumor spheres from SP 

cells cultured in SFM supplemented EGF and bFGF. (a) SP cells were able to grow, 

forming spheres at day 5. (b) Spheres in suspension generated from single cells 

increased in size over time, imaged on day 14 of culture. (Original magnification, 

200×). 
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Figure 3 Expression of stem cell markers in SP and non-SP cells. The elevated 

expressions of ABCG2, Oct-4, and EpCAM genes in derived SCC25 were detected by 

RT-PCR. Data are presented as the means of three separate experiments, each performed 

in triplicate. Bars, SD. *P < 0.01, compared with parental and non-SP cells, 

respectively. 
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Figure 4 Cell growth curve and colony formation. (a) Growth curve of SP, non-SP, and 

parental cells cultured for 6 days. SP cells had higher proliferative ability than parental 

and non-SP cells. Data are presented as the means of three separate experiments, each 

performed in triplicate. Bars, SD. *P < 0.01, compared with parental and non-SP cells, 

respectively. (b and c) The clone formation efficiency (CFE) of SP cells was 

significantly higher than parental and non-SP cells with an equal cell number. The 

experiments were repeated twice in triplicate. Bars, SD. *P < 0.01, compared with 

parental and non-SP cells, respectively. 
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Figure 5 5-FU sensitivity in SP and non-SP cells derived from the SCC25 cell line. The 

cells were treated with the IC50 (82.2 μM) of 5-FU for 48 h. Data are presented as the 

means of three separate experiments, each performed in triplicate. Bars, SD. *P < 0.01, 

compared with parental and non-SP cells, respectively. 


