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 32 

Abstract 33 

The lack of appropriate model has been a serious concern in dengue research pertinent to immune 34 

response and vaccine development. It remains a matter of impediment in dengue virus (DENV) 35 

studies when it comes to an in vitro model, which requires adequate quantity of dendritic cells 36 

(DC) with uniform characters. Other sources of DC, mostly monocyte derived DC (moDC), have 37 

been used despite their limitations such as quantity, proliferation, and donor dependent characters. 38 

Recent development of human iPS cells with consistent proliferation for long, stable functional 39 

characteristics and desired HLA background has certainly offered added advantages. Therefore, 40 

we hypothesized that iPS derived cells would be a reliable alternative to the traditional DCs to be 41 

used in in vitro DENV system. To develop DENV infection and T cell activation model, we 42 

utilized iPS cell (HLA-A*24) as the source of DC. iPS-ML-DC was prepared and DENV 43 

infectivity was assessed apart from the major surface markers expression and cytokine production 44 

potential. Our iPS-ML-DC had major DC markers expression, DENV infection efficiency and 45 

cytokine production properties similar to that of moDC. Moreover, DENV infected iPS-ML-DC 46 

demonstrated the ability to activate HLA-matched T cell (but not mismatched) in vitro as 47 

evidenced by significantly higher proportion of IFN-γ+ CD69+ T cells compared to non-infected 48 

iPS-ML-DC. This affirmed the antigen-specific T cell activation by iPS-ML-DC as a function of 49 

antigen presenting cell. To conclude, maturation potential, DENV infection efficiency and T cell 50 

activation ability collectively suggest that iPS-ML-DC serves as an attractive option of DC for 51 

use in DENV studies in vitro. 52 

 53 

Keywords: iPS cell; dendritic cell; dengue virus; cellular immunity; antigen presentation; in 54 

vitro model. 55 

 56 
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Introduction 58 

Dengue disease, caused by dengue virus (DENV), is one of the most catastrophic 59 

diseases of the current world annually affecting two-third of the global population with 96 million 60 

overt infections (including 500,000 severe ones), and responsible for huge socio- economic 61 

burden in more than 120 countries of the tropical and sub-tropical regions [1-3]. DENV has four 62 

genetically and antigenically related serotypes (DENV-1 to DENV-4), and infection with each of 63 

them triggers mild to severe manifestations [1, 3, 4]. Unfortunately, no specific drug for this 64 

disease has been approved yet.  65 

DENV provokes peculiar immune response. Infection with any DENV serotype confers 66 

a long-term homotypic immunity against that serotype, however secondary infection with a 67 

different serotype often results into enhanced severity [5]. Therefore, balancing this tetravalent 68 

immunity and cross-protection is the biggest hurdle in dengue vaccine development [4, 6], despite 69 

the fact that several vaccine candidates are in pipeline [7-9] in addition to the one recently licensed 70 

(DengvaxiaTM by SANOFI PASTEUR) [10]. DengvaxiaTM induced sufficiently high level of 71 

neutralizing antibody against DENV serotypes, however it had a lower efficacy for DENV-2 [10]. 72 

Paucity of T cell immunity has been considered as a reason since the vaccine lacked protective T 73 

cell epitopes, particularly from non-structural (NS) proteins [11]. The effective dengue vaccine 74 

should induce both cellular and humoral immune responses (not mutually exclusive) [4, 6, 12]. 75 

Recent studies also demonstrated the protective roles of T cells in DENV infection in 76 

both human and mouse models [11, 13]. The exact mechanism on how T cells act in the 77 

pathogenesis or protection during DENV infection is still unclear and remained a matter of debate 78 

for long partly due to the lack of a perfect animal model [12, 14]. A reliable model has been a 79 

serious need either in the study of mechanisms or dengue immune responses/vaccines for decades 80 

now. Uninterrupted supply of functional dendritic cells (DCs) with constantly uniform characters 81 

is a prerequisite for a good in vitro system. For instance, to identify excellent protective epitopes 82 

presented by DC, a massive quantity of functional DCs with stable and uniform characters is 83 

needed [15]. Conventionally, monocyte derived DCs (moDCs) (induced by cytokines) have been 84 

used as antigen presenting cells (APCs) in vitro [16-18], however the number, quality and antigen 85 

presenting ability is donor dependent [19-21] which justifies the need of a better alternative source 86 

of DC to establish an in vitro system for DENV infection or vaccine studies.  87 
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At this juncture, DC is known to be a host of DENV and also an APC to activate T cell 88 

in antigen specific manner [16, 17, 22, 23]. iPS cells have recently made revolution in disease 89 

modelling and therapy [24, 25]. The iPS cell derived myeloid cell line (iPS-ML) had ability to 90 

proliferate for long and differentiate into iPS cell derived DC-like cell (iPS-ML-DC) in cytokine 91 

environment [19, 26]. Moreover, flexibility in generation of these iPS cells with different HLA 92 

background and quantity as required is its strength. Therefore, we hypothesized that iPS cell based 93 

in vitro system would also be appropriate for DENV infection to overcome limitations of moDC. 94 

In this study, we examined the characters of iPS-ML-DC and its ability to induce T cell upon 95 

DENV infection in vitro.  96 

  97 

Results 98 

General profile of iPS derived cells 99 

iPS-ML originated from the human fibroblast showed a constant proliferation in vitro and 100 

expressed myeloid markers (CD14, CD33 and CD11b) (Fig. S1) On microscopic observations, 101 

the original iPS-ML cells were found small and round, which enlarged upon differentiation (i.e. 102 

iPS-ML-DC), and further stimulation with OK-432 induced the development of distinct dendrites 103 

(Fig. 1b). These morphological changes were concordant with the increase in forward scatter 104 

(FSC) and side scatter (SSC) observed in flow cytometric analysis (Fig. 1a).   105 

Next, we analyzed the expression profile of major surface markers/co-stimulatory molecules 106 

(MHC-I, MHC-II, CD80, CD86 and DC-SIGN) of iPS-ML and iPS-ML-DC (with and without 107 

OK-432 treatment) before and after infection with DENV. Although both iPS-ML and iPS-ML-108 

DC expressed MHC class I and II, expression levels varied with differentiation phases (Fig. 1a, 109 

S2a and S2b, Table S1). Expression of MHC-II, CD80 and CD86 increased in iPS-ML-DC after 110 

infection with DENV indicating a relationship with differentiation and activation status (Fig. S2a 111 

and S2b). These expression profiles of iPS-ML-DC were found comparable with that of moDC 112 

in our parallel experiments (Fig. S3). Also, our iPS-ML-DC expressed three types of Fc gamma 113 

receptors (FcγRI, FcγRII and FcγRIII) like other DCs do (Fig. S4) [27].  114 

 115 

DENV efficiently infected iPS-ML-DC in vitro 116 

DENV-2 (strain 16681) efficiently infected iPS-ML-DC in vitro as evidenced by 117 

immunofluorescence staining of cells and corresponding virus titers of the culture supernatant 118 
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(Fig. 2a). Virus titers in the culture supernatant peaked at day 2 post-infection for iPS-ML-DCs 119 

(both OK-432 treated and non-treated cells) while iPS-ML showed almost negligible infection with 120 

DENV (Fig. 2b). Additionally, similar infectivity was also confirmed with moDC in our 121 

experiments (Fig. S5a and S5b). This observation indicates that iPS-ML-DC can be efficiently 122 

infected by DENV similar to moDC.  123 

 124 

DENV infected iPS-ML-DC produced high titers of IL-12p70 and TNF-α but not 125 

IFN-α 126 

To observe the immune response of iPS-ML-DC after DENV infection, major cytokines known 127 

to produce by DC (IFN-α2, TNF-α and IL-12p70) were measured using a multiplex assay system 128 

(Fig. 3). iPS-ML-DC produced significantly higher titers of IL-12p70 after DENV infection 129 

compared to iPS-ML (p = 0.0004, day 3). OK-432 stimulated iPS-ML-DC also had higher TNF-130 

α production compared to its non-stimulated counterpart (p = 0.006, day 3). In contrast, iPS-ML-131 

DC produced relatively low levels of IFN-α2 even after stimulation (range: 133.8 - 210.4 pg ml-132 
1) (Fig. 3). When we performed the cytokine assay for DENV-infected moDC under the similar 133 

conditions, the cytokine profiles were comparable with that of the iPS-ML-DC (Fig. S5c). 134 

 135 

IFN-α inhibited the infection of iPS-ML-DC by DENV in a dose dependent manner  136 

IFN-α is considered as an essential cytokine to induce protection against viral infection in general 137 

[28, 29]. In our results, DENV infection did not induce significant IFN-α production even with 138 

stimulated iPS-ML-DC (Fig. 3). So, we further examined to find out whether some relationship 139 

exists between IFN-α production and protection against DENV. Exogenous IFN-α was supplied 140 

to the stimulated iPS-ML-DC during and after infection, and it reduced the DENV infectivity in 141 

a dose dependent manner as depicted by the immunofluorescence staining (Fig. 4a) and focus 142 

forming assay results (Fig. 4b). On day 1 and 2 post-infection, 10,000 pg ml-1 and > 10 pg ml-1 of 143 

IFN-α resulted into significant reduction in virus titers respectively (p = 0.0176; bootstrap CI:   144 

-6,650,000 to -425,000) indicating potential the role of IFN-α2 in infection/inhibition although 145 

the observed evidence may not prove the relation between level of IFN-α2 induction and 146 

efficiency of virus infection in OK-432 stimulated iPS-ML-DC (Fig. 4).  147 

 148 

DENV infected iPS-ML-DCs activated T cells in vitro 149 
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One important function of DC is to stimulate T cells in an antigen specific manner. To examine 150 

whether the infected iPS-ML-DC could stimulate T cells, iPS-ML-DC was co-cultured with 151 

PBMC derived naïve HLA matched and mismatched T cell in vitro (Table S2). In a separate 152 

experiment, moDC was co-cultured with HLA matched T cell also. In the HLA matched 153 

experiment, we observed significantly higher proportion of IFN-γ+ CD69+ T cells (both CD4+ and 154 

CD8+ cells) with infected iPS-ML-DC compared to not-infected one (p = 0.0129 and p = 0.0002, 155 

respectively), and this activated proportion was also significantly higher than what was observed 156 

with the HLA mismatched combination (p = 0.0089 and p = 0.0016, respectively) (Fig. 5). 157 

Similarly, infected moDC co-cultured with naïve HLA matched T cell yielded significantly lower 158 

population of activated T cells (almost nil as also seen in the case of HLA mismatched iPS-ML-159 

DC/ T cell combination) compared to the corresponding HLA matched combination of iPS-ML-160 

DC/ T cell (p = 0.0138 and p = 0.0022, respectively) (Fig. 5). Despite the relatively smaller 161 

population of activated T cell we observed, these findings indicate that the DENV infected iPS-162 

ML-DC had ability to activate the naïve T cells in vitro in an antigen specific manner.  163 

 164 

From these results, we conclude that the iPS-ML-DC had comparable expression of key surface 165 

markers and cytokine production profiles as the DC does, and DENV infected iPS-ML-DC 166 

induced T cell in vitro indicating its ability as a professional APC. 167 

 168 

Discussion  169 

We have characterized the iPS cell derived iPS-ML-DC in the capacity of host cell for DENV 170 

infection and evaluated its T cell stimulation properties. The key surface markers and cytokine 171 

profiles were found not only comparable with the moDC but also infected iPS-ML-DC activated 172 

T cell suggesting their potential use as proxy DC in the DENV in vitro system to conquer the 173 

existing limitations of conventional moDC. Since DC is a crucial component in cellular immune 174 

response and acts as APC to induce T cells [30, 31], sole reliance on one cell source (monocytes) 175 

has become a barrier in several cell-based assays [20]. 176 

Apart from the morphological resemblance (e.g. presence of visible dendrites), our iPS-ML-DC 177 

exhibited MHC-I, MHC-II, CD80 and CD86 surface markers similar to that of DC. DC presents 178 

pathogen antigen to CD4 and CD8 T cell respectively via MHC-II and MHC-I, and co-stimulatory 179 

molecules CD80 and CD86 [31]. DC-SIGN which mediates DENV infection [32] was also 180 
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expressed on iPS-ML-DC in vitro. Increased expression of CD80, CD86 and MHC-II after DENV 181 

infection of our iPS-ML-DC brought it further closer to DC phenomenon since the increased 182 

expression of these markers are known to be associated with DC maturation during DENV 183 

infection [17]. This implies that the iPS-ML-DC was actually activated by DENV infection (Fig. 184 

2, S2 and Table S1). Moreover, our iPS-ML-DC also expressed three type of Fc gamma receptors 185 

indicating its potential use as an in vitro model to study about mechanism of antibody dependent 186 

enhancement (ADE) in DENV infection.  187 

Having seen the comparable phenomenology of iPS-ML-DC with DC, we carried out series of 188 

experiments to understand whether these cells had similarities in major cytokine secretion 189 

behaviors. We found that iPS-ML-DC produced IL-12 and TNF-α cytokines at high levels. IL-12 190 

is one of the important cytokines produced by DC to propel Th1 response required for CD8 191 

activation [33-35]. High TNF-α secretion by DC during DENV infection was also reported earlier 192 

[17]. Relatively low levels of IFN-α production by iPS-ML-DC is probably associated with the 193 

profound infectivity of DENV resulting into the inhibition of IFN-α production following the host 194 

cell (including human DC) infection as reported previously [36, 37]. Moreover, it is in agreement 195 

with the report that IFN-α promoted protection against DENV and vice versa [38]. It was also 196 

reflected in our experiment with exogenous IFN-α supply which reduced the DENV infectivity 197 

of stimulated iPS-ML-DC in a dose dependent manner (Fig. 4). Nevertheless, the post-infection 198 

cytokine profiles of our iPS-ML-DC were similar to that of moDC, which further suggests the 199 

functional similarities with the DC (Figs. 3 and S5c). 200 

 201 

Next, we examined the most crucial function of iPS-ML-DC to know if it could activate T cell in 202 

a capacity of professional APC (Fig. 5). DENV infected iPS-ML-DC was able to induce T cell in 203 

vitro as revealed by the IFN-γ+ CD69+ T cell population when co-cultured with HLA matched T 204 

cell. In contrast, combination with the HLA mismatched T cell failed to induce T cell activation 205 

(IFN-γ+ CD69+ population close to nil) which indicates that the observed T cell activation with 206 

HLA matched combination was truly antigen specific regardless of the small positive population. 207 

Therefore, it can be stipulated that iPS-ML-DC works well as an alternative to DCs. As we were 208 

limited to iPS cell with only one HLA background (HLA-A*24), and single donor of the HLA 209 

matched T cells, further validation with different HLA background iPS cells and different T cell 210 

donors would certainly make iPS-ML-DC an attractive option of DC for in vitro experimental 211 
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systems. Potential implications of iPS-ML-DC may include, but not limited to, the use of iPS-212 

ML-DC in DENV T cell epitope identification [15], or vaccine assessment to know antigen 213 

specific T cells induction [39]. Since there is growing interest in the T cell response in dengue, 214 

for instance, the identified role of CD8 T cell in dengue protection has great implication in vaccine 215 

strategies too [11, 13]. In that sense, iPS-ML-DC will be certainly useful as it is extremely flexible, 216 

and any cell background can be prepared in nearly unlimited quantity without losing the 217 

functional characters [19].  218 

 219 

In conclusion, iPS-ML-DC showed the cell surface markers, maturation potential, DENV 220 

infection efficiency and T cell activation properties quite close to DC function. Therefore, iPS-221 

ML-DC could potentially be used as an alternative source of moDC for in vitro system to study 222 

vaccine candidates, cellular immune response and mechanism of pathogenesis and protection in 223 

DENV infection. 224 

 225 

Methods 226 

Virus stocks, cells and antibodies 227 

DENV-2 (strain 16681) propagated in C6/36 cells were stored below -80 °C until use. Vero cells 228 

were maintained in Minimum Essential Medium (MEM) (Nissui Pharmaceutical, Tokyo, Japan) 229 

supplemented with 10% fetal bovine serum (FBS) (HyClone, Utah, USA). Human peripheral 230 

blood mononuclear cells (PBMC) were stored at -80 °C until use, and RPMI (supplemented with 231 

10% FBS, non-essential amino acids, sodium pyruvate) was used to culture human primary cells. 232 

All cell cultures were carried out at 37°C in a 5% CO2 atmosphere for specified incubation time. 233 

Antibodies used were purchased from BioLegend Inc, CA, USA (anti-human antibodies: IFN-γ-234 

PE, MHC class I-PE/Cy7, MHC class II-FITC, CD3-APC/Cy7, CD4-FITC/CD4-AlexaFluor488, 235 

CD8-PerCP/Cy5.5, CD14-PE, CD16-APC, CD25-Biotin, CD32-PE, CD33-PE/Cy7, CD64-236 

PE/Cy7, CD69-Biotin, CD71-Biotin, CD80-PE, CD86-PerCP/Cy5.5 and their isotype matched 237 

controls), BD Biosciences, CA, USA (CD11b-APC, CD69-APC, CD209 (DC-SIGN)-APC and 238 

their isotype matched controls), HRP-conjugated anti-mouse antibody (American Qualex, San 239 

Clemente, CA, USA), and mouse anti-NS-1 antibody and mouse anti-DENV E-protein were 240 

prepared in house. All the experiments were performed independently at least three times unless 241 

stated otherwise. 242 
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 243 

Generation of iPS cell derived DC like cells (iPS-ML-DC) 244 

iPS-ML-DC was generated as described previously [19], with some modifications in 245 

differentiation and maturation steps. Briefly, iPS cells were derived from human fibroblasts 246 

(HLA-A*24:02/11:01 and DRB1*01:01/04:06) after transduction with OCT3/4, SOX2, KLF4 247 

and cMYC. Next, the differentiation into iPS derived myeloid cells (iPS-MC) was accomplished 248 

by using M-CSF (50 ng ml-1) and GM-CSF (50 ng ml-1) containing α-MEM media supplemented 249 

with 20% FBS. Differentiated iPS-MC were further transfected with cMYC, BMI1 and EZH2 (or 250 

MDM2) to establish an iPS derived myeloid cell line (iPS-ML). Details on plasmid constructs 251 

and transfections have been described elsewhere [19]. Briefly, human cMYC cDNA 252 

fragment was cloned into the pENTR-TOPO vector (Invitrogen, Carlsbad, CA, USA). LR clonase 253 

system (Invitrogen) was used to transfer cDNAs of BMI1, EZH2 and MDM2 to a lentiviral 254 

expression vector, pCSII-EF. Additionally, two plasmids namely, pCMV-VSV-G-RSV-Rev and 255 

pCAG-HIVgp were used for lentiviral vector packaging. Finally, using this iPS-ML (clone # WL-256 

59), iPS-ML-DC was generated by three-days culture in complete α-MEM supplemented with 257 

recombinant human (rh) M-CSF (12.5 ng ml-1) (Shenandoah Biotechnology, Warwick, PA, USA), 258 

rhGM-CSF (100 ng ml-1) (Gentaur, San Jose, CA, USA) and rhIL-4 (10 ng ml-1) (Humanzyme, 259 

Chicago, USA) at 37°C, 5% CO2. Penicillin-killed Streptococcus pyogenes (OK-432) based 260 

maturation was used in some experiments because previous reports showed that iPS-ML-DC [19] 261 

or moDC [40] both achieved maturation when stimulated by OK-432. We used iPS-ML-DC 262 

treated with OK432 particularly to compare with the DC maturation caused by DENV infection. 263 

Thus, obtained iPS-ML-DC attained maturation upon additional three days of culture in the same 264 

media (with same cytokines) in presence of OK-432 (1.25 µg ml-1) (Picibanil, CHUGAI, Tokyo, 265 

Japan). 266 

 267 

Generation of peripheral blood monocyte derived DC (moDC) 268 

Freshly obtained heparinized blood was subjected to PBMC separation by Lymphoprep™ 269 

(STEMCELL Technologies, Vancouver, Canada) gradient centrifugation method according to the 270 

instruction manual. Briefly, after dilution with equal volume of PBS containing 2% FBS, blood 271 

was layered on Lymphoprep™ and centrifuged (800 g, 25 min, 15-20°C). PBMC was collected, 272 
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washed twice (low speed) and stored frozen at -80°C using freezing medium (CELLBANKER™1 273 

plus, ZENOAQ, Fukushima, Japan) when not used immediately.  274 

CD14+ cell was then positively selected from PBMC by MojoSort™ Human CD14 Selection Kit 275 

(BioLegend), and used for DC differentiation. 276 

For DC differentiation, monocyte (CD14+ cell) was seeded onto culture plates using complete 277 

RPMI medium containing 100 ng ml-1 rhGM-CSF and 75 ng ml-1 rhIL-4. Half of the culture 278 

medium was replaced every alternate day by fresh medium. Finally, moDC was harvested on day 279 

7 and re-suspended in RPMI complete medium.  280 

 281 

Flow cytometric analysis for cell surface markers  282 

To block non-specific binding of antibodies, iPS cell derived cells or moDC were first treated 283 

with Human TruStain FcX (BioLegend) for 10 min prior to specific staining. After washing, cells 284 

were stained with antibodies and corresponding isotype matched controls for 30 min on ice. Cells 285 

were acquired by FACSVerseTM (BD Biosciences), and then data analysis was performed with 286 

FlowJo (FlowJo, LCC, OR, USA). MHC-I, MHC-II, CD80 and CD86 were selected since they 287 

are common DC surface markers/co-stimulatory molecules that participate in antigen presentation 288 

to T cell [31] while DC-SIGN was selected as it mediates DENV infection and expressed 289 

preferentially on immature DC [32]. Because the DC expresses Fc receptors (often used for ADE) 290 

[27], expression profiles of common Fc receptors (e.g. FcγRI, FcγRII and FcγRIII) were also 291 

assessed. 292 

 293 

DENV infection  294 

iPS cell derived cells or moDC were infected with DENV-2 for two hours at 37°C, 5% CO2 using 295 

multiplicities of infection (MOI) 1. Mock infection was used as control. After washing (to 296 

eliminate unbound virus), cell concentration was adjusted to 2 x 105 cells ml-1 and cultured in 12-297 

well or 24-well cell culture plates for up to three days. Cells and culture supernatants were 298 

collected at the different time points (non-infection (NI), day 1, 2 and 3 post-infection). Cells were 299 

processed immediately while the supernatant was stored at -80°C until assayed.  300 

 301 

Immunofluorescence staining with DENV specific antibodies 302 
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DENV infected cells harvested at different time points were re-suspended with phosphate buffer 303 

saline (PBS) (pH 7.4), cell suspension (~20 µL) transferred onto a glass slide and air-dried. 304 

Fixation was carried out with cold acetone for 20 min. Immunofluorescence was performed 305 

immediately. Samples (cell spots) were incubated with primary antibody (anti-NS-1 antibody, 1 306 

µg ml-1) at 37°C for 1 h. Goat anti-mouse IgG conjugated FITC (Abcam, Cambridge, UK) was 307 

applied after washing. Finally, properly rinsed and dried samples were covered with cover-slip 308 

and visualized under a fluorescence microscope (BZ-9000) (Keyence, Osaka, Japan). 309 

Immunofluorescence was performed immediately after washing and fixation of cells at the different 310 

time points (NI, day 1, 2 and 3 post-infection).   311 

 312 

Virus titer estimation by focus forming assay 313 

Focus forming assay for virus titration in cell supernatant was carried out as described previously 314 

[41] with some modifications. In brief, Vero cells were prepared in 96-well cell culture plates. 315 

Then, 100 µL of 10-fold serially diluted culture supernatant of DENV infected cells were added 316 

and incubated for two hours, followed by addition of 100 µL of 1.25% methylcellulose (Wako 317 

Pure Chemical Industries, Osaka, Japan) in MEM supplemented with 2% FBS. After culturing 318 

for three days, the media was washed out and cells were fixed with 4% paraformaldehyde. Mouse 319 

anti-DENV E-protein antibody was added to each well after blocking and incubated for 1 h at 320 

37°C, 5% CO2. After washing out excess antibody, cells were stained with HRP-conjugated anti-321 

mouse antibody. Following rinsing and drying, positive spots were counted by microscopy. Focus 322 

forming unit (FFU) was calculated. 323 

 324 

Measurement of cytokine production by multiplex assay 325 

DC related cytokines produced by iPS derived cells after DENV infection were measured by 326 

multiplex cytokine analysis of the cell supernatant using MILLIPLEX MAP Kit (Millipore, 327 

Billerica, MA) according to the manufacturer’s manual. Acquisition and data analysis were 328 

executed with LABScan 100 (Luminex, Austin, TX, USA).  329 

 330 

IFN-α mediated DENV infection inhibition assay 331 

Different concentrations of recombinant human (rh) IFN-α (PBL Assay Science, Piscataway, NJ, 332 

USA) were continuously supplied to the medium during and following the DENV infection of 333 
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OK-432 treated iPS-ML-DC. Cell pellets and supernatants were recovered at indicated time 334 

points post-infection (day 1, 2, 3). DENV infectivity was determined by immunofluorescence 335 

staining and focus forming assay as described above. 336 

 337 

Induction of T cell stimulation by DENV infected iPS DC-like cells  338 

The HLA profiles of the T cells donors and iPS cells were determined by HLA typing (HLA 339 

Laboratory, Kyoto, Japan). Frozen HLA matched and mismatched PBMCs were thawed and 340 

rested overnight in complete RPMI medium at 37°C, 5% CO2. CD3+ T cells were negatively 341 

selected by MojoSort™ Human CD3 T cell Isolation Kit (BioLegend) according to the manual. 342 

Purified T cells (TC) were co-cultured with iPS-ML-DC (TC : DC = 5 : 1) for 48 h. Allo-reactive 343 

T cells (CD69 expressing cells) were removed by magnetic separation using biotinylated 344 

antibodies mix (CD25, CD71 and CD69) and CD3 T cell Isolation Kit (BioLegend) followed by 345 

incubation with Streptavidin Nanobeads (BioLegend). The resulting negative fraction of T cell 346 

was rested overnight. Next day, purified T cells were co-cultured with DENV infected iPS-ML-347 

DC (MOI = 1) in 96-well cell culture plate (5 x 105 T cells/well in 250 µL complete medium; TC: 348 

DC = 5 : 1) and incubated for 96 h (i.e. 4 days). Non-infected iPS-ML-DC + TC (NI-DC) and 349 

TC-only (without DC) were used as controls. In a separate experimental set, moDC co-cultured 350 

with HLA-matched T cells was also used under similar conditions. On day 4, cells were supplied 351 

with Brefeldin A (10 µg ml-1) for 5 h before harvesting. Cells were washed with PBS and stained 352 

with a panel of fluorescein-labelled antibodies against selected human cell surface markers (CD3, 353 

CD4, CD8, and CD69). Next, the cells were fixed and permeabilized using 354 

BD Cytofix/Cytoperm™ reagents (BD Bioscience) followed by fluorescein-labelled anti-human 355 

IFN-γ antibody staining (intracellular) in Perm/Wash Buffer (BD Bioscience). Stained cells were 356 

washed, resuspended in FACS buffer and acquired by flow cytometer (FACSVerseTM). Results 357 

were analyzed by FlowJo software.  358 

 359 

Statistical analyses   360 

Data were analyzed by R version 3.4.4. Cell population proportion was expressed as 361 

percentages. Continuous variables were expressed as mean with standard deviation (SD) as 362 

indicated by error bars. Student t test or bootstrap confidence intervals test (with 1,000 363 
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sampling) was used to compare difference between two groups as appropriate. Statistically 364 

significant differences were determined when p-value was less than 0.05. 365 
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Figure 1. General profile of iPS-ML-DC. a: General characters of iPS-ML-DC and their 530 

precursor (iPS-ML, WL-59) as examined by flow cytometry. Expression of each maker on cell 531 

surface was indicated with black line, and control staining (isotype control) is indicated with 532 

grey shadow in the histogram, or dot blot as appropriate. b: Morphology of each cell type was 533 

observed with microscopy. Each assay was performed in triplicate, and representative result is 534 

shown. (+) indicates presence and (-) indicates absence of OK-432. iPS-ML: iPS cell derived 535 

myeloid cell line, iPS-ML-DC: iPS-derived DC like cell. 536 

 537 

Figure 2. DENV efficiently infected iPS-ML-DC in vitro. Efficiency of DENV infection 538 

to iPS-ML and iPS-ML-DC was examined by immunofluorescence staining of cells (a) and 539 

virus titer of culture supernatant was measured by focus forming assay and expressed as focus 540 

forming units (ffu) /mL, results shown as mean±standard deviation (SD) of three independent 541 

experiments (b). DENV infection time line is indicated as non-infection (NI), and post-infection 542 

(day 1, 2 and 3). Immuno-staining results are shown as fluorescence staining and phase contrast 543 

panels (to show cells in the same field used in fluorescence panels). Green color indicates 544 

positive results with anti-NS1 staining. Each assay was performed in triplicate. (+) indicates 545 

presence and (-) indicates absence of OK-432. iPS-ML: iPS cell derived myeloid cell line, iPS-546 

ML-DC: iPS-derived DC like cell. 547 

   548 

Figure 3. DENV infected iPS-ML-DC produced high titers of IL-12p70 and TNF-α 549 

but not IFN-α2. iPS-ML and iPS-ML-DC were infected by DENV and cytokine levels of 550 

culture supernatant were measured by multiplex assay. Cytokine production was monitored at 551 

non-infection (NI) and post infection (day 1, 2 and 3). Each assay was performed in triplicate, 552 

and mean±SD is shown. (+) indicates presence and (-) indicates absence of OK-432. iPS-ML: 553 

iPS cell derived myeloid cell line, iPS-ML-DC: iPS-derived DC like cell. 554 

 555 

Figure 4. IFN-α inhibited the DENV infection of iPS-ML-DC in a dose dependent 556 

manner. (a) Immunofluorencence staining results, and (b) focus forming assay results showing 557 

the reduction in infection efficiency with IFN-α addition. Different concentrations of IFN-α 558 

were supplied, and cell pellets and supernatants were recovered. DENV infection in IFN-α 559 

treated iPS-ML-DC was monitored at day 1, 2 and 3 post-infection. Each assay was performed 560 
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in triplicate and expressed as mean±SD of virus titers (ffu /mL). A representative figure of 561 

immunofluorescence is shown together with the phase contrast panels. iPS-ML-DC: iPS-derived 562 

DC like cell. 563 

 564 

Figure 5. DENV infected iPS-ML-DC activated T cells in vitro. iPS-ML-DC function as 565 

antigen presenting cell (APC) was examined and measured by flow cytometry. Purified HLA 566 

matched or mismatched T cell (TC) and infected iPS-ML-DC (I-DC) were co-cultured for 96 h 567 

followed by intracellular staining for IFN-γ. Non-infected iPS-ML-DC + TC (NI-DC) and TC-568 

only (without DC) were used as controls, in a separate experimental set, moDC co-cultured with 569 

HLA-matched T cells was also used under similar conditions. IFN-γ and CD69 and expression 570 

of samples after gated on CD3+ and CD4+ (or CD8+) are shown by dot plots (a). Percentage of 571 

IFN-γ+ CD69+ T cells are indicated by bar graphs with mean±SD (b). In the bar graphs, 572 

samples are indicated as I-DC (Infected-DC + TC), NI-DC (non-infected DC + TC) and without 573 

DC (TC-only without DC). Each assay was performed in triplicate and a representative result is 574 

shown for dot plot. Student t test or bootstrap test was used to compare difference between two 575 

groups. Statistically significant differences were determined when p-value was less than 0.05 576 

and showed as asterisk. iPS-ML-DC: iPS-derived DC like cell, moDC: monocyte DC without 577 

OK-432 treatment. (-) indicates absence of OK-432 578 
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Supplementary Figure 1. iPS-ML cell expressed myeloid markers. a: Myeloid markers (CD14, CD33 and 

CD11b) of iPS-ML were examined by flow cytometry. Expression of each maker on cell surface was indicated with 

black line, and control staining (isotype control) is indicated with grey shadow in the histogram. Each assay was 

performed in triplicate, and a representative result is shown. b: Median of intensity (MFI) of each marker is 

expressed as mean±SD (error bar) derived from three independent experiments. iPS-ML: iPS cell derived myeloid 

cell line.
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Supplementary Figure 2. Surface marker expression profiles of iPS-ML and iPS-ML-DCs before and after 

DENV infection. iPS-ML and iPS-ML-DCs were infected by DENV and expression levels of cell surface markers 

were examined non-infection (NI) and post-infection (day 1, 2 and 3) by flow cytometry. Results are presented as, a:

Median of intensity (MFI) and b: percentage. Each assay was performed in triplicate, and expression level is presented 

as mean±SD (error bar). (+) indicates presence and (-) indicates absence of OK-432. iPS-ML: iPS cell derived 

myeloid cell line, iPS-ML-DC: iPS-derived DC like cell.
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Supplementary Figure 3. General profile of moDC based on cell surface markers expression. a: General 

characters of moDC were examined by flow cytometry. Expression of each maker on cell surface was indicated 

with black line, and control staining (isotype control) is indicated with grey shadow in the histogram or dot blot as 

appropriate. b: Median of intensity (MFI) of surface markers of moDC and population of CD80+, CD86+, DC-

SIGN+, CD80+CD86+, CD80+DC-SIGN+ and CD86+DC-SIGN+ cells are shown as bar graphs. Each assay was 

performed in duplicate, and a representative result is shown. moDC: monocyte DC without OK-432 treatment.
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Supplementary Figure 4. iPS-ML-DC expressed Fc gamma receptors. Fc gamma receptors (FcγRI, FcγRII and 

FcγRIII) of iPS-ML and iPS-ML-DCs were examined by flow cytometry. Expression level of each maker is 

indicated with black line, and control staining (isotype control) is indicated with grey shadow in the histogram. 

Each assay was performed in duplicate, and a representative result is shown. (+) indicates presence and (-) indicates 

absence of OK-432. iPS-ML: iPS cell derived myeloid cell line, iPS-ML-DC: iPS-derived DC like cell.
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Supplementary Figure 5. Cytokine profiles of moDC before and after infection with DENV. moDC were 

infected by DENV and cytokine levels of culture supernatants were measured by multiplex assay. a: Efficiency of 

DENV infection to moDC was examined by immunofluorescence staining of cells. Immuno-staining results are 

shown as fluorescence staining and phase contrast panels (to show cells in the same field used in fluorescence 

panels). Green color indicates positive results with anti-NS1 staining. b: virus titer of culture supernatant was 

measured on each day before and after DENV infection (as mentioned above) by focus forming assay and 

expressed as focus forming units (ffu) ml-1. c: Cytokine production was monitored as non-infection (NI) and post-

infected (day 1, 2 and 3). Each assay was performed in duplicate and a representative figure is shown. moDC: 

monocyte DC without OK-432 treatment.



CD80+ CD86+ DC-SIGN+ CD80+CD86+ CD80+DC-SIGN+ CD86+DC-SIGN+

iPS-ML (Mean±SD)

Non infection 16.63±9.47 12.79±7.33 10.82±5.37 6.17±5.40 4.64±3.20 2.61±1.81

Day 1 47.70±3.03 32.97±3.36 16.14±6.83 21.17±1.50 12.05±4.01 7.55±2.62

Day 2 64.87±15.84 57.80±19.17 22.25±11.48 43.23±20.17 18.78±9.46 16.97±10.60

Day 3 82.83±9.70 79.07±10.63 32.63±9.51 66.93±15.18 29.77±8.56 26.67±8.34

iPS-ML-DC (-) (Mean±SD)

Non infection 22.37±8.95 11.14±2.62 33.43±8.83 5.26±2.43 10.79±5.62 3.96±2.13

Day 1 55.10±1.61 46.97±6.49 57.07±14.35 28.37±3.38 30.23±2.06 20.70±4.04

Day 2 78.77±10.31 88.00±6.06 47.23±15.06 64.93±12.52 36.73±9.68 35.97±12.66

Day 3 89.47±7.60 94.83±3.85 46.60±17.53 80.00±9.27 40.73±13.51 39.50±14.47

iPS-ML-DC (+) (Mean±SD)

Non infection 58.93±11.80 44.33±11.31 31.90±10.45 34.57±10.53 22.17±3.87 13.72±3.29

Day 1 58.63±4.67 58.87±5.56 36.57±12.60 38.53±5.80 23.20±2.34 18.70±2.31

Day 2 69.30±6.86 82.50±6.20 30.73±19.27 56.50±8.45 23.13±13.61 23.93±16.90

Day 3 83.90±7.65 91.40±5.09 34.83±19.04 74.30±8.96 27.40±15.02 26.35±16.05

Supplementary Table 1. Surface marker expression profiles of iPS-ML and iPS-ML-DCs before and after DENV infection.



iPS-ML HLA matched and moDC HLA mismatched

HLA-A
11:01:01 24:02:01 11:02:01

24:02:01 31:01:02 33:03:01

HLA-B
07:02:01 51:01:01 27:04:01

15:01:01 59:01:01 58:01:01

HLA-C
04:01:01 01:02:01 03:02:02

07:02:01 15:02:01 12:02:02

HLA-DRB1
01:01:01 04:05:01 12:02:01

04:06:01 09:01:02 15:02:01

HLA-DRB3/4/5
4*01:03:01 4*01:03:01 3*03:01:03

4*01:03:02 5*01:01:01

HLA-DQA1
01:01:01 03:03:01 01:02:01

03:01:01 03:02 06:01:01

HLA-DQB1
03:02:01 03:03:02 03:01:01

05:01:01 04:01:01 06:02:01

HLP-DPA1 01:03:01 01:03:01 01:03:01

HLA-DPB1
02:01:02 02:01:02 03:01//+

04:02:01 04:01//+

Supplementary Table 2. HLA typing results
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