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Abstract  17 

A better understanding of the hydrogeochemical evolution of groundwater in vulnerable aquifers is 18 

important for the protection of water resources. To assess groundwater chemistry, groundwater 19 

sampling was performed from different representative aquifers in 2012-13. A Piper trilinear diagram 20 

showed that the groundwater types can be classified into Na-SO4 and Na-Cl types. Only one 21 

groundwater sample was Na-HCO3 type. The dominant cations for all samples were Na+. However, 22 
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the dominant anions varied from HCO3
- to SO4

2-, and as well Cl-. The mean total dissolved solid 23 

(TDS) content of groundwater in the region was 1,889 mg/L. Thus, only 20% of groundwater 24 

samples meet Chinese drinking water standards (<1,000 mg/L). Principal component analysis 25 

(PCA) combined with hierarchical cluster analysis (HCA) and self-organizing maps (SOM) were 26 

applied for the classification of the groundwater geochemistry. The three first principal components 27 

explained 58, 20, and 16% of the variance, respectively. The first component reflects sulfate 28 

minerals (gypsum, anhydrite) and halite dissolution, and/or evaporation in the shallow aquifer. The 29 

second and third components are interpreted as carbonate rock dissolution. The reason for two 30 

factors is that the different aquifers give rise to different degree of hydrogeochemical evolution 31 

(different travel distances and travel times). Identified clusters for evolution characteristic and 32 

influencing factors were confirmed by the PCA-HCA methods. Using information from eight ion 33 

components and SOM, formation mechanisms and influencing factors for the present groundwater 34 

quality were determined.  35 
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  40 

Introduction  41 

The Ordos Basin is part of a large-scale sedimentary geological area in northwestern China. 42 

Abundant organic minerals such as coal, petroleum, natural gas, and halite have been deposited in 43 

the basin, which makes it one of the largest sources for energy and petrochemical production in 44 
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China (Jiang et al., 2012). During recent decades, the economy and mining industry have boomed 45 

in the area, resulting in a dramatic increase in water demand. However, due to the lack of surface 46 

water, groundwater is the main water resource for local development needs. The Dosit River is one 47 

of a number of the sub-basins of the Ordos Basin with similar resources and water problems. In 48 

order to meet the water resources demands for drinking water and industrial water supply in this 49 

region, research has focused on determining: (1) the groundwater hydrogeochemical characteristics; 50 

(2) recharge and evaporation amount estimates; and (3) assessment of the characteristics of the local 51 

groundwater flow systems (Yin et al., 2011; Jiang et al., 2014; Wang et al., 2015, Jiang et al., 2018). 52 

As water scarcity is a serious issue in the region, determining the key aspects of the hydrogeology 53 

of the region is important for the local economic development.  This is particularly the case for 54 

understanding the quality of groundwater and its availability for extractive uses, the characteristics 55 

of surface-groundwater interactions, and for an improved understanding of the hydrogeochemistry 56 

and groundwater circulation characteristics. To improve this understanding, groundwater samples 57 

were collected in the downstream region of the Dosit River for assessing water quality and its 58 

chemical composition. Piper trilinear diagrams, multivariate statistical analyses such as principal 59 

component analysis (PCA) and hierarchical cluster analysis (HCA) were used to investigate 60 

collected groundwater samples (e.g., Brown, 1998; Cloutier et al., 2008; Nakagawa et al., 2016). 61 

Recently, self-organizing maps (SOM) have been shown to efficiently classify groundwater 62 

chemistry (Choi et al., 2014; Nguyen et al., 2015). Consequently, we combined SOM with PCA-63 

HCA methods to investigate groundwater chemistry for the downstream Dosit River area.  64 

In view of the above, the main objectives of this study were: (1) to assess groundwater 65 

quality, hydrogeochemistry, and evolution characteristics of the groundwater by use of the 66 
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aforementioned techniques; and (2) to determine usefulness of these methods for hydrogeochemical 67 

investigations in regions like the Dosit River area.  68 

  69 

Materials and methods  70 

Study area  71 

The Dosit River Basin is located between 106°54’28’’ and 108°16’16’’ E, and 38°18’21’’ 72 

and 39° 36’06’’ N (Fig. 1). It occupies an area of 10,924 km2 and constitutes a sub-basin of the 73 

Ordos Basin in Northwestern China. In turn, the Dosit River discharges into the important Yellow 74 

River. The altitude of the Dosit River Basin varies from 1,080 to 1,500 m. The basin is mostly 75 

surrounded by mountains with the exception of the west and water flows in a westerly direction in 76 

the basin. The average monthly temperatures range from -10.5 oC in January to 22.4 oC in July and 77 

the mean annual temperature is about 6.9 oC (1955-2007). The mean annual rainfall of the region is 78 

about 267 mm (1955-2007) and 60-80% of rainfall takes place from June to September. The mean 79 

annual evaporation is about 2,465 mm (Sun, 2010; Jiang et al., 2014). The basin climate is thus 80 

characterized as arid to semiarid.  81 

The aquifers of the Dosit River watershed can be classified into two groups. The first, is 82 

the uppermost aeolian and alluvial-lacustrine pore aquifer system in Quaternary sediments that is a 83 

thin and uneven unconfined aquifer. The second, deeper aquifer system is constituted by a poorly 84 

consolidated, pore-fissure aquifer system of Cretaceous sandstone with a thickness of 700-1,000 m 85 

which is the main aquifer system of the Dosit River Basin. The Jurassic mudstone with coal layers, 86 

which underlies the Cretaceous sandstone, is generally assumed to be an aquiclude. The main 87 

minerals of the Cretaceous sandstone aquifer contain quartz, albite, and feldspar, as well as some 88 
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minor minerals such as gypsum, mirabilite, halite, calcite, and dolomite (Sun, 2010; Wang et al., 89 

2015). According to hydrogeochemical and isotope studies, a three-part structure with boundaries 90 

at depths of 200 m and 600-750 m, is consistent with local, intermediate, and regional groundwater 91 

flow systems (Wang et al., 2015). The principle recharge and discharge areas of local flow systems 92 

are mainly distributed on sides of valley slopes. Groundwater discharge from the deeper aquifers 93 

mostly takes place in river channels and recharge to these aquifers mostly takes place at a distance 94 

from major rivers. The groundwater of these flow systems contributes to baseflow in the Dosit River 95 

(Wang et al., 2016).  96 

  97 

Sampling and analysis  98 

Groundwater samples were collected by pumping at 20 locations from existing water 99 

supply wells in the downstream part of the Dosit River in 2012-2013 (Fig. 1). Water samples were 100 

collected in pre-washed bottles. Temperature, pH, and electrical conductivity (EC) were analyzed 101 

at the sampling sites, CO3
2- and HCO3

- concentrations were identified with titration by use of HCl. 102 

Cl- and SO4
2- concentration were analyzed by ion chromatography (ICP-900, Dionex), while Na+, 103 

K+, Mg2+, and Ca2+ concentrations were measured by inductively coupled plasma (ICP-900, 104 

Thermo) (Wang et al., 2015). Charge balance errors (CBE) were checked for all groundwater 105 

samples according to:  106 

cations anions
CBE 100

cations anions


 



 
 

 107 

where all ions concentrations are expressed in mmolc/L. We confirmed that all CBEs of samples 108 

were less than 10%.  109 

  110 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  6  

Multivariate statistical analysis  111 

Principal component analysis (PCA) is a well-tested multivariate statistical method that has 112 

been widely used to analyze hydrochemical groundwater data. Its key feature is data reduction from 113 

high- to low-dimensional space (Morell et al., 1996; Choi et al., 2014). It extracts synthetic variables 114 

with minimal information loss (Aiuppa et al., 2003; Nakagawa et al., 2017). HCA is an effective 115 

method for data classification. It has been used to identify clusters of groundwater samples based 116 

on similarity of hydrogeochemical components (Cloutier et al., 2008; Montcoudiol et al., 2015). 117 

The classification result is expressed in a dendrogram, using the Euclidean distance as a distance 118 

measure (Ward’s method) (Güler et al., 2002). In this study, the statistical software JMP Pro 13 119 

(SAS Institute Inc.) was used when using PCA and HCA.  120 

The Self-organizing map (SOM) technique is also a powerful and effective tool for data 121 

classification (Nguyen et al., 2015; Nakagawa et al., 2017). It has been used in different research 122 

fields such as hydrology (Kalteh and Berndtsson, 2007), wastewater treatment (Yu et al., 2014), and 123 

meteorology (Nishiyama et al., 2007). As well, SOM has been applied to investigating water 124 

chemistry of river and groundwater (Choi et al., 2014; Nguyen et al., 2015). SOM is a type of 125 

artificial neural network technique, which is distinguished by unsupervised training (Kohonen, 126 

2001). It can project high-dimensional data onto a low-dimensional array, and let complex target 127 

data simplify into a regular arranged map based on the degree of similarity (Jin et al., 2011). In 128 

general, the purpose of the SOM application is to acquire useful and informative reference vectors. 129 

These vectors are obtained by iterative updates in the training phase of SOM that is made up from 130 

three main steps; competition between nodes, selection of a winner nodes, and updating of the 131 

reference vectors (Nguyen et al., 2015). When applying SOM methodology, the selection of an 132 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  7  

appropriate initialization and data transformation method is important. On the basis of SOM 133 

properties, larger map sizes will obtain a higher resolution for pattern recognition. The optimal 134 

number of map nodes is determined by heuristic rules according to 5m n , where m represents 135 

the number of map nodes and n represents the number of input data (Hentati et al., 2010). The 136 

number of rows and columns is dependent on square root of the ratio between the two largest 137 

eigenvalues of the transformed data (García and González, 2004). The eigenvalues are calculated 138 

by PCA.   139 

Following the above rules, the SOM structure was organized. Using a linear initialization 140 

technique, each node is set with a reference vector. Under the proper limited data condition, a linear 141 

initialization technique is better for the pattern classification as compared to random initialization 142 

due to small data sets and boundary effects (Nguyen et al., 2015). More details of SOM are discussed 143 

by Kohonen, (1982, 2001) and Vesanto et al. (2000). Results of SOM analysis are achieved at the 144 

end of the training process, which is fine-tuned using cluster analysis. K-means algorithms, which 145 

is a partitioned algorithm, is frequently used in SOM (Jin et al., 2011). Davies-Bouldin Index (DBI) 146 

applying k-means algorithms determine the optimal number of clusters (García and González, 147 

2004). According to the principle of “similarity within a cluster” and “dissimilarity between 148 

clusters”, the DBI values were calculated from the minimum to maximum number of clusters. The 149 

smaller DBI values show that the dissimilarity of each cluster becomes larger (Nakagawa et al., 150 

2017). In other words, the minimum DBI corresponds to the optimal number of clusters in SOM 151 

application. These processes were put into practice using a modified version of SOM Toolbox 2.0 152 

(Vesanto et al., 2000).  153 

  154 
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Results and discussion  155 

Hydrogeochemical characteristics  156 

Table 1 shows the statistical summary of hydrogeochemical variables (Na+, K+, Ca2+, Mg2+, 157 

Cl-, SO4
2-, CO3

2-, HCO3
-, TDS, pH) for the 20 samples. Mean TDS corresponded to 1,889 mg/L, 158 

with a minimum of 455 mg/L and a maximum of 3,974 mg/L. TDS concentration of surface water 159 

is generally higher in the downstream of Dosit River, due to evaporation and the effects of 160 

groundwater evolution. pH varied from 8.0 to 9.0, indicating that the water environment is slightly 161 

alkaline.  Figure 2 shows results plotted in a Piper trilinear diagram (Piper, 1944). All samples are 162 

located in area IV. Only one sample is classified as Na-HCO3 type. Seven samples showed Na-SO4 163 

type. The other samples represented Na-Cl type. Cations were dominated by Na+ in all samples. 164 

Principal anions changed from HCO3
- to SO4

2-, and then to Cl- along groundwater flow direction. 165 

This process corresponds to anion evolution according to HCO3
-→HCO3

-+SO4
2-→SO4

2-+Cl- →Cl-166 

+SO4
2-→Cl- from recharge to discharge areas in aquifers of large sedimentary basins (Chebotarev, 167 

1955; Singhal and Gupta 2010).    168 

  169 

Principal component and hierarchical cluster analysis  170 

Eight parameters (Na+, K+, Mg2+, Ca2+, Cl-, HCO3
-, CO3

2-, and SO4
2-) were selected for 171 

analysis by PCA and HCA. Firstly, input data were standardized, and then eigenvalues, factor 172 

loadings, and principal component scores were calculated using a correlation matrix (Nakagawa et 173 

al., 2016). The total number of common factors in the PCA was selected on the basis of the Kaiser 174 

Criterion (Cloutier et al., 2008). In this criterion, if an eigenvalue is greater than 1, it is retained. 175 

According to this rule, the first three components (Factors 1, 2, and 3) were extracted. Ward’s 176 
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method with Euclidean distances was selected for HCA. For more distinct understanding of the 177 

eight ionic correlations, TDS, pH, and water table depth were not considered in the PCA-HCA 178 

analysis. The result of PCA is shown in Table 2. The first three principal components accounted for 179 

a total of 94% of the variance. The three components explained 57.8, 20.1, and 16.1% of the 180 

variance, respectively. Hereafter, the first three principal components are called Factors 1, 2 and 3, 181 

respectively. Factor 1 had positive loadings for Ca2+, Mg2+, SO4
2-, Na+, Cl-, and K+ (r = 0.80~0.94). 182 

Factor 1 is interpreted as sulfate minerals (gypsum and anhydrite) and halite dissolution, and/or 183 

evaporation in the shallow aquifer. Factor 2 has positive high loadings for HCO3
-, and CO3

2- (r = 184 

0.66 and 0.93). Factor 2 is mainly affected by carbonate rock dissolution. Factor 3 has moderately 185 

positive loadings for Mg2+ and Ca2+ (r = 0.49 and 0.50). Factor 3 is also mainly affected by carbonate 186 

rock dissolution. The reason may be a different degree of carbonate rock dissolution due to different 187 

travel distances and travel times in the different aquifers.  188 

The scatter plot of the 20 samples described by principal components (Factors 1 and 2; 189 

Factors 2 and 3) and classified into four clusters based on HCA is shown in Fig. 3. If a factor score 190 

is greater than 0, it means that the component is influenced by the water chemistry characteristic at 191 

the site. Conversely, if a factor score is less than 0, it means that the component was not significantly 192 

affected by the water chemistry at the site (Banoeng-Yakubo et al., 2009). In Fig. 3(a) Cluster A is 193 

to some extent influenced by Factor 2. Cluster C is to some extent affected by Factor 1. Clusters B 194 

and D are influenced by both Factors 1 and 2. As well, Fig. 3(b) indicates that Clusters A and B are 195 

affected by Factor 3. Factor 3 has less influence on Clusters C and D. According to the local and 196 

regional groundwater flow systems of the Dosit River Watershed (Wang et al., 2016) and evolution, 197 

samples of Clusters A and B are located at different sites but in the same aquifer (depth less than 198 
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200 m; local flow system). Samples of Cluster A are located in the upstream area as opposed to that 199 

of Cluster B (Fig. 4). Similarly, samples of Clusters C and D are located at different sites but in the 200 

same aquifer (depth between 200 and 600 m; regional flow system). The location of samples 201 

classified into Cluster D is closer to the river than that of Cluster C (Fig. 4).  202 

Water samples were classified into Clusters A, B, C, and D in a Piper trilinear diagram 203 

(Fig. 2). Water composition of samples in Cluster A was modified to that of Cluster B due to sulfate 204 

minerals and halite dissolution with groundwater flow from upstream to downstream (Figs. 2 and 205 

4). Because of the groundwater discharge from the peripheral aquifer to the river (Jiang et al., 2018), 206 

carbonate dissolution changed water composition of samples in Cluster C to that in Cluster D (Figs. 207 

2 and 4). Thus, groundwater samples of Cluster A affected by Factor 1 appear to evolve into 208 

groundwater samples of Cluster B. As well, water samples of Cluster C affected by Factor 2 appear 209 

to evolve into water samples of Cluster D.   210 

  211 

Self-organizing map analysis  212 

Based on the methodology described above, concentrations of the eight chemical variables  213 

(Na+, K+, Ca2+, Mg2+, Cl-, SO4
2-, CO3

2-, and HCO3
-) for the 20 samples were used as input to the 214 

SOM application. Figure 5 shows visual SOMs for each parameter after the training process. The 215 

SOMs are characterized by 24 nodes (number of rows and columns are 6 and 4, respectively) and 216 

display concentration characteristics of each variable. If the node color is dark gray, it represents 217 

variables that have high values. On the contrary, nodes color that are light gray, means that variables 218 

have low values. From Fig. 5 it can be seen that maps for Ca2+, Mg2+, and SO4
2- have similar gray 219 

gradients, indicating that there is a strong positive correlation among these ions. Maps for Na+ and 220 
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Cl- also have a similar gray gradient. In contrast, HCO3
- displays negative correlation with inverse 221 

gray gradients for the SOM maps. The main sources of HCO3
- is dissolution of carbonate rock 222 

(calcite, dolomite), which commonly occurs in the area (Sun, 2010). However, there is no significant 223 

correlation between HCO3
- and cations, which suggests that ion exchange of cations and carbonate 224 

precipitation occurs. Chloro-alkaline indices (CAI-I and CAI-II) suggested by Schoeller (1972) 225 

were calculated to assess the ion exchange. Both CAI-I and CAI-II for all samples were negative 226 

from -2.99 to -0.15, and -1.02 to -0.13, respectively, indicating that there is exchange Na+ and K+ in 227 

the soil matrix with Ca2+ and Mg2+ in groundwater. Saturation Indices (SI) with respect to calcite, 228 

dolomite, and aragonite were calculated by using PhreeqcI version 3.20-9820 in this study 229 

(Parkhurst and Appelo 2013). The SI values of calcite, dolomite, and aragonite ranged from -0.33 230 

to 1.38, -1.49 to 2.93, and -0.47 to 1.24, respectively. Except for the sampling location CBS3 that 231 

is located in the upstream reaches, most of the samples showed positive SI values, which explain 232 

that groundwater is saturated to oversaturated with these carbonate minerals in the lower reaches of 233 

the watershed. The main sources of Ca2+ and SO4
2- are likely to be from the dissolution of gypsum 234 

and anhydrite. Thus, there is a positive correlation between Ca2+ and SO4
2-. However, Ca2+ 235 

concentrations for the groundwater samples are generally lower than SO4
2- concentration, 236 

suggesting that carbonate deposition is taking place (Sun, 2010). Similarly, Na+ and Cl- come mainly 237 

from halite dissolution and/or evaporation. To further confirm quantitative relations between the 238 

eight main ion components, correlation coefficients for all variables were calculated using the 239 

reference vectors (Table 3). Positive correlations exist between Ca2+ and Mg2+ (r = 0.99), Ca2+ and 240 

SO4
2- (r = 0.97), and Mg2+ and SO4

2- (r = 0.95), respectively. Moreover, there is a high correlation 241 

between Na+ and Cl- (r = 0.96). These results are consistent with the SOM maps.  242 
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The variation of DBI from minimum to maximum cluster is shown in Fig. 6. The minimum 243 

DBI was obtained for a number of groups equal to 4. After determining the optimal number of 244 

clusters, the HCA with Ward’s method was implemented. Figure 7 shows the hierarchical cluster 245 

dendrogram for the SOM nodes. According to the figure, 24 SOM nodes were divided into four 246 

different groups.  247 

The pattern classification maps for the four groups are shown in Fig. 8. All samples were 248 

classified into these groups (nodes). Group 2 (lower right part) of the pattern classification map is 249 

linked to high concentration of Na+, Cl-, and SO4
2-. These features are also observed for the same 250 

location in respective component plane (Fig. 5). On the other hand, all ions (except for HCO3
-) in 251 

Group 1 located at the upper left part have lower concentrations than corresponding ones for the 252 

other groups (Fig. 5).  253 

The groundwater chemistry characteristics for respective groups using standardized 254 

reference vectors are shown in Fig. 9. Group 1 is characterized by relatively high concentration of 255 

HCO3
-. Group 2 displays high concentrations for all cations, SO4

2- and Cl-. Group 3 is characterized 256 

by high Na+ and Cl- concentrations. Group 4 is identified by high Na+, K+, Cl-, HCO3
-, and CO3

2- 257 

concentrations. In order to further understand group characteristics, average ion concentrations for 258 

each group were calculated using raw data (Table 4). The results of this analysis showed that Group 259 

1 can be identified by relatively high contents of SO4
2- and HCO3

-. Other ions have lower 260 

concentrations. On the other hand, Groups 2, 3, and 4 are characterized by high concentrations of 261 

Cl- and SO4
2-. Compared to Chinese drinking water standards, concentrations of Cl- and SO4

2- for 262 

Groups 2, 3, and 4 greatly exceed these standards (250 mg/L), respectively. Besides, SOM 263 

classification results are consistent with the HCA category from Groups 1, 2, 3, and 4 to Clusters 264 
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A, B, C, and D, respectively.  265 

  266 

Conclusions  267 

In this study, to improve the understanding of hydrogeochemical evolution characteristics 268 

and assessing water quality, groundwater samples were collected in the lower part of the Dosit River 269 

in the Ordos Basin. By using a Piper trilinear diagram, PCA-HCA and SOM methods, the main 270 

conclusions were obtained as follows: (1) TDS for 80% of samples exceeded the Chinese drinking 271 

water standard (TDS<1,000 mg/L). The hydrogeochemical facies included Na-HCO3, Na-SO4 and 272 

Na-Cl types. Anions evolve from HCO3
-, SO4

2-, and Cl- along the groundwater flow. This process 273 

is in accordance with anion evolution characteristics from recharge to discharge areas for aquifers 274 

in large sedimentary basins. (2) By applying PCA, three main influencing factors were identified. 275 

These correspond to gypsum, halite as well as carbonate dissolution, evaporation, and carbonate 276 

precipitation. (3) Using PCA and HCA, water samples were divided into four clusters. In addition, 277 

evolution features among these clusters could be identified. (4) Using SOM, we obtained component 278 

maps for each variable, which is a readily understandable and visualized map for the strong 279 

relationships between Ca2+ - Mg2+ (r = 0.99), Ca2+ - SO4
2- (r = 0.97), Mg2+ - SO4

2- (r = 0.95), and 280 

Na+ - Cl- (r = 0.96). (5) SOM classification results are consistent with the HCA category from 281 

Groups 1, 2, 3, and 4 to Clusters A, B, C, and D, respectively. 282 
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 397 

Figure Captions  398 

Fig. 1  Topography and groundwater sample points for the research area 399 

Fig. 2  Piper trilinear diagram for 20 samples 400 

Fig. 3  Scatter plot for two principal components with respect to clusters (a) Factors 1 and 2; (b) 401 

Factors 2 and 3 402 

Fig. 4  Spatial distribution of respective cluster in the study area 403 

Fig. 5  Component planes for (Na+, K+, Ca2+, Mg2+, Cl-, SO4
2-, HCO3

-, and CO3
2-)   404 

Fig. 6 Variation of DBI values with optimal number of groups   405 

Fig. 7 Dendrogram for respective group using node numbers   406 

Fig. 8 Pattern classification map of the four groups by the SOM  407 

Fig. 9  Radar charts for respective groups using standardized data 408 

 409 

Table captions  410 

Table 1  Statistical summary of water samples (eight parameters, pH, TDS)  411 

Table 2   Results of principal component analysis  412 

Table 3  Correlation coefficients among eight physicochemical variables using standardized data  413 

Table 4  Mean of the eight variables for four groups and all data 414 
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Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9



Table 1 Statistical summary of water samples (eight parameters, pH, TDS) 

 

Na+ K+ Ca2+ Mg2+ Cl- SO4
2- HCO3

- CO3
2- TDS pH 

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L  

Maximum 812.8  7.0  235.0  154.0  813.3  2072.3  243.5  12.6  3973.9  9.0  

Minimum 156.7  0.9  3.0  0.2  65.4  100.4  73.4  0.0  454.7  8.0  

Mean 543.7  3.8  56.5  36.4  466.8  698.8  157.1  4.7  1889.3  8.4  

SD 200.6  2.0  67.2  48.9  226.1  491.2  48.8  6.1  913.6  0.3  

 

SD means standard deviation. 

n = 20

Table



Table 2 Results of principal component analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Components 

 Factor 1 Factor 2 Factor 3 

Na+ 0.80 -0.14 -0.51 

K+ 0.81 0.53 -0.05 

Ca2+ 0.86 -0.01 0.50 

Mg2+ 0.85 0.06 0.49 

Cl- 0.83 0.02 -0.52 

SO4
2- 0.94 -0.1 0.25 

HCO3
- -0.53 0.66 0.35 

CO3
2- 0.07 0.93 -0.28 

Eigen values 4.62 1.61 1.29 

% of variance 57.8 20.1 16.1 

Cumulative % 57.8 77.9 94.0 



Table 3 Correlation coefficients among 8 physicochemical parameters 

  K+ Ca2+ Mg2+ Cl- SO4
2- HCO3

- CO3
2- 

Na+ 0.76** 0.72** 0.7** 0.96** 0.85** -0.76** 0.03 

K+  0.78** 0.81** 0.86** 0.79** -0.34 0.54** 

Ca2+   0.99** 0.74** 0.97** -0.66** -0.03 

Mg2+    0.76** 0.95** -0.63** 0.05 

Cl-     0.83** -0.68** 0.23 

SO4
2-      -0.75** -0.07 

HCO3
-       0.51* 

* Correlations significant at p = 0.05 

** Correlations significant at p = 0.01 

n = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 Mean values of 8 parameters for 4 groups and whole data 

 

Na+ K+ Ca2+ Mg2+ Cl- SO4
2- HCO3

- CO3
2- 

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Group 1 184.9 1.2 9.5 3.7 75.8 154.2 200.9 2.2 

Group 2 670.5 6.5 207.7 146.6 653.6 1664.6 125.3 4.2 

Group 3 609.6 2.8 33.7 17.6 500.9 634.6 122.4 0 

Group 4 571.8 5.1 34.7 22.7 523.3 573.9 197.2 12.6 

Whole data 543.7 3.8 56.5 36.4 466.8 698.8 157.1 4.8 

 


