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The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra 

of a He+ ion by the resonant or quasi-resonant neutralization  was theoretically examined using 

quantum rate equations. When calculating the scattered ion yield spectra of  He+  to simulate the 

experimental data, we observed that the band structure, especially the bandwidth, had a strong 

influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. 

Through many simulations, it was determined that theoretical calculations that include bandwidth 

calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and 

He+-Sn systems. In contrast, simulations not including  bandwidth simulation could neither 

reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at 

low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably 

corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. 

Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily 

neutralized on the surface when the bandwidth is large. 

KEYWORDS: resonant neutralization, He+ ion, bandwidth, ion survival probability, ion scattering 

spectrometry, Heisenberg equations of motion  
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1. Introduction 

Ion scattering spectrometry (ISS) 1-7) is an important method of surface analysis, together with 

secondary ion mass spectroscopy (SIMS)8-12), electron or photo-stimulated desorption (ESD, PSD) 

study 13-18), and ion neutralization spectroscopy (INS)19-22). Through measurements of the intensity, 

kinetic energy, and angular distribution of surviving backscattered ions as  functions of the incident 

energy and direction of the ions, ISS provides useful information related to  surface properties, such 

as composition, structure, location of absorbed atoms, and electronic states. ISS is also a powerful and 

useful tool for characterizing surfaces through analysis of the scattering of low-energy ions at solid 

surfaces. However, some dynamic aspects associated with time-dependent quantum effects have not 

been completely resolved, despite extensive theoretical and experimental efforts. 

One of the problems that has not been completely resolved or analyzed is resonant or 

quasi-resonant charge exchange on a surface. This process includes resonance tunneling (RT) and 

energy-level crossing (EC), both of which are strongly associated with quantum dynamics. Therefore, 

it is important to investigate this problem theoretically. 

When an empty energy level of an ion is close to the continuum of electronic states of a metal 

solid surface, a resonant or quasi-resonant charge process can take place, and neutralization occurs as 

a result of the charge transfer between the ion and the metal surface. However, such a neutralization 

process has been considered a  specific case19,23-24) in comparison with the Auger neutralization 

process. However, a strong dependence of the Ne+ ion yield in scattering from a metal surface on the 

metal work function  has recently been observed25-26). Therefore, the resonant or quasi-resonant 
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charge exchange process is considered  not to be very specific but rather to be the dominant 

neutralization pathway, as opposed to the Auger process, if the empty energy level of the ion is close 

to the energy level of the metal. 

For  neutralization resulting from the resonant or quasi-resonant charge exchange process, we 

can refer to the neutralization of He+ ions occurring on a metal surface. This process has been known 

to exhibit oscillations with increasing incident ion energy. The origin of this oscillatory behavior can 

be explained by the quantum interference caused by the difference between the phases of the two 

states (the state of an ion approaching the target atom and the state of an ion retreating from the target 

atom). However, a detailed evaluation of the electronic structure of the metal surface  remains to be  

discussed, even though such a quantum oscillation would include information related to the electronic 

structure of the metal surface. Accordingly, further investigation of these neutralization processes is 

essential to understanding the surface dynamics and  surface electronic structure in detail. 

The neutralization of a rare-gas ion on a metal surface and the resulting oscillation were first 

experimentally observed in the He+-Pb, He+-Ge, He+-Bi, and He+-In systems by Erickson and Smith27). 

On the basis of the analysis by Tolk and cowarkers28-29), the angular dependence of the backscattered 

oscillatory intensity implied a near-resonant charge–exchange process, i.e., a quasi-resonant process. 

Similar oscillations were observed in He+-Ga and He+-Sn systems30). Furthermore, from experiments 

related to the He+-Pb system by Zartner et al.31), the ion yield of He+ scattered from atomic Pb (Pb 

beam) showed oscillation as a function of the energy of the incident ion, indicating that the atomic 

nature  has a strong effect on the quasi-resonant charge exchange process. However,  it should be 
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noted that the scattered He+ ion yield from epitaxial HgCdTe on CdTe showed oscillation similar to 

that observed in the He+-Sn system, but that the scattered He+ ion yield from Te showed no oscillation, 

i.e., a smooth curve32). Such an oscillation from epitaxial HgCdTe on CdTe could be interpreted as the 

appearance of a quasi-resonant state, caused by a change in Te energy level. Consequently, the 

detailed conditions leading to quasi-resonant exchange remain to be elucidated. Additionally, inelastic 

energy losses for the He+-Pb33) and He+-Sn34) systems were investigated and showed good agreement 

with the Oen-Robinson model 35). 

Concerning the theoretical analysis of data of such experiments with rare-gas ion neutralization 

on metal or metallic compound surfaces, as described in the previous paragraph,  Tully first 

discussed the quantum mechanics of  the He+-Cd, He+-Ga, He+-Pb, He+-In, He+-Sn, and He+-Sb 

systems36 ） , using an approach based on solving the time-dependent Schrödinger equation 

tiH  / . In this calculation, the total wave function   was expanded into the summation of 

the terms of the basis functions, so that differential equations consisting of expansion coefficients 

could be numerically solved. However, the obtained solutions did not agree well with experimental 

observations. On the basis of the explanation by Tully, the discrepancies between the theoretical  and  

experimental results were due to the very approximate nature of the interaction potential used in their 

calculations. Subsequently, Easa and Modinos.37) extended  Tully’s semi-empirical theory using a 

Born-Mayer-type interaction potential between the projectile and target atoms. In their study37), they 

set the two states 0  and A , where A  is the configuration of the occupied valence level of the 

ion (projectile) and all occupied energy levels of the metal except  the inner vacant d-level and 0  
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represents the empty valence level of the ion (projectile) and all occupied energy levels of the metal. 

On the basis of  the numerical analysis of several differential equations using the expansion 

coefficients obtained by substituting the two states with the expansion coefficients into the 

time-dependent Schrödinger equation tiH  / , they evaluated the ion survival probability 

(ISP). The obtained results of ion yield spectra greatly improved the agreement with the experimental 

data, and the theoretically evaluated ISPs were similar to those obtained experimentally. However, the 

description of the 0  and A  states neglected many electron states over time  t . In 

addition, Vitanov and Panev generalize the Demkov formula in near-resonant charge transfer on the 

basis of WKB approximation, attempting to explain the K+-Rb and Li+-Na systems (oscillating 

structures as charge exchange at quasi-resonance) with the use of the two time-dependent states 

(initial and final states)38). However, many quantum states mixing with the ion and surface band 

electrons should be considered especially when ion and surface are very close. 

The Keldysh formalism has regularly been used generally  for such calculations of 

nonequilibrium time-dependent states39). This method is very effective and has been applied to many 

fields of analysis of nonsteady states, such as quantum dots, point-conduct tunnel junctions, and 

spintronic devices and surfaces. In surface physics, the time-resolved two-photon photoemission from 

Cu(100)40), the formation of H- ions from collision with a Si surface41), and the scanning tunneling 

microscopy (STM) tunneling current for ultrathin Pb on Si(111) substrates 42) have been analyzed 

using this method. Although the merits of Green's function methods have been discussed and  

actually been applied in various fields, showing good agreement with experimental data, calculations 
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for such complicated systems require considerable time as well as complex analytical schemes, such 

as the evaluation of self-energy and Dyson's equation. 

Consequently, to reduce the discrepancies between the calculation and the experiment, and to 

investigate the electronic states of metal surfaces in detail through comparison of  quasi-resonant 

experimental data for He+ neutralization on various metal surfaces, we applied a novel numerical 

approach. We employed quantum rate equations composed of differential equations 43) to solve these 

problems, with emphasis on many-electron effects. Our proposed method is very simple, with no need 

of complex analytical schemes derived from Dyson's equations. 

This study is an extension of an earlier study that showed  the quantum rate equation and its 

application to various systems 43). In the earlier study, we derived quantum rate equations on the basis 

of the Heisenberg equation of motion. Numerical results obtained by solving the quantum rate 

equations showed good agreement with the theoretical conclusion, as analyzed and discussed 

previously44). Furthermore, we applied this method to the neutralization process under an impurity 

potential and obtained interesting results 43). 

On the basis of  our proposed method, it is possible to evaluate )(aan  (number of electrons 

occupying the He+ ion orbital at t ) directly, without any approximations, even when new 

perturbative Hamiltonians, such as an impurity potential, are introduced into the nonperturbative 

Hamiltonian. Additionally, complex calculations including time-dependent terms can be performed 

without any integral procedures. Since our theoretical approach is based on the transformation of the 

Heisenberg operator (Q-number) into a c-number, the proposed method can be easily applied to the 
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direct calculation of neutralization probability, i.e., )(aan , even when the Hamiltonian includes a 

new perturbative Hamiltonian or complex time-dependent terms.  Furthermore, using  proposed 

method, it is be possible to evaluate the band structures such as bandwidth  and density of 

states(DOS) and many parameters by  comparison with experimental data.  

In this study, therefore, to investigate the effect of 3d –or 4d bands electrons on the resonant 

charge transfer process of a rare-gas  ion and to estimate these band properties from the ISS 

measurements, we discuss the application of our method to the neutralization of He+ ions, on various 

metal surfaces, with emphasis on many-electron effects. Many transition quantum states are thought to 

appear and disappear as an ion approaches a surface. Therefore, calculations including precise 

information related not only to the target atom, but also to its surroundings, are essential and 

calculations including many-electron terms are required. In addition, it should be noticed that  

although oscillating structures as charge exchange structures at quasi resonance have been 

theoretically analyzed by several authors, their  band properties have never been investigated through 

comparison with experimentally obtained ISS data. In §2, we briefly discuss the theoretical 

framework on the basis of  the Heisenberg equations of motion and derive simultaneous differential 

equations. In §3, numerical results obtained by applying our method to the neutralization of He+ ions 

on a metal surface are illustrated in comparison with experimental data, with  emphasis on the band 

structure of the metal surface. Finally, in §4, we conclude with a discussion of the remaining 

problems and future research. 
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2. Quantum Rate Equations 

As discussed previously43), quantum rate equations were derived from the Heisenberg equations 

of motion. On the basis of the Heisenberg equations of motion, the time dependence of the operator 

)(ˆ tai
  is given by 

                      Htata
t ii

ˆ),(ˆ)(ˆi  



  ,                                    (1) 

where the operator )(ˆ tai
  is in the Heisenberg representation. By using eq. (1), the differentiation of 

)(ˆ)(ˆ tata ji
  can be expressed as 

         HtatataHtatata
t jijiji
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 .                         (2) 

By taking the expectation value of each term, we obtain the following differential equation, i.e., 

the quantum rate equation, 

             HtatataHtatata
td

d
jijiji
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1
)(ˆ)(ˆ
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where <***> denotes the quantum-mechanical expectation value. 

 

3. Application of Quantum Rate Equations to Analysis of Resonant or Quasi-Resonant Systems 

Let us apply eq. (3) to the analysis of the resonant or quasi-resonant charge exchange process, in 

which a singly charged rare-gas ion, such as He+
, approaches a metal surface, collides with the surface, 

and then moves away from it, thus interacting with the inner d-levels of the target atoms. Initially, to 

simplify the discussion of the resonant or quasi-resonant charge exchange process, we assume that the 

target atom d-level has only one energy level, dE , with no band structure formation (a localized d state 

model). The resulting spinless Anderson-Newns Hamiltonians are given as 
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,'ˆˆˆ
0 HHH                                    (4)    

,ˆˆ)(ˆˆˆ
0 aaaddd CCzECCEH             (5)         

.ˆˆ)(ˆˆ)('ˆ
adaddaad CCzVCCzVH   .                                  (6) 

In the above equations, dE  is the inner d-level of the target atom, 
dĈ  and dĈ  are the creation and 

annihilation operators of the inner d-level of the target atom, respectively, )(zEa  denotes the energy 

level of the ion that  usually depends on the surface-ion distance z, 
aĈ  and aĈ are the creation and 

annihilation operators of the  state of the ion, respectively, and )(zV da  is an electron transfer matrix 

element from the inner d-level of the target atom to the state of the ion that is  expressed as a 

function of the surface-ion distance z. Since z can be expressed as a function of time, we hereafter use 

)(tEa , )(tV da , and )(tV ad  instead of )(zEa , )(zV da , and )(zV ad . 

From eqs. (4)-(6), 

                )(ˆ)()(ˆ)(]ˆ),(ˆ[ tCtVtCtEHtC dadaaa  ,                            (7) 

                )(ˆ)()(ˆ]ˆ),(ˆ[ tCtVtCEHtC adaddd  .                            (8) 

Combining eqs. (7) and (8) with eq. (3), we obtain the following quantum rate equations: 

],)()()()([
i

)( tntVtntVtn
dt

d
adaddadaaa 


                                  (9) 

    )],)()(()()())(([
i

)( tntntVtntEEtn
dt

d
ddaadaadadad 


                (10) 

   )).()()()((
i

)( tntVtntVtn
dt

d
adaddadadd 


.                               (11) 

In the above equations, we define 
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                   )(ˆ)(ˆ)( tCtCtn jiji ,                                    (12) 

and )(tn ij  is obtained from the relation *))(()( tntn jiij  . 

From eqs. (9) and (11), 

;0)()(  tn
dt

d
tn

dt

d
ddaa   

Consequently, we obtain the following conservative equation for the total number of electrons: 

)()()(const)()(  Nnntntn ddaaddaa .              (13) 

Equation (13) indicates that the sum of the number of electrons occupying the inner d-level of the 

target atom and the state of the ion remains constant over time, i.e.,  t . Furthermore, using 

eq. (13) and assuming 0))(Im())(Im(  tVtV daad  and )())(Re())(Re( tVtVtV daad  , we obtain the 

differential-integrate equation for determining )(tnaa : 

]))((
1

cos[))()(2)(()(2)(
2

 









t

ad

t

aaaa dxxEENnVdtV
i

tn
dt

d






 .      (14) 

Assuming const)( tnaa to be  the particular solution of the above equation, we obtain the following 

relation because 0/)( dttdnaa  for  t : 

      0)()()()(2  ddaaaa nnNn .                                    (15) 

Accordingly, we can conclude that )(tnaa  retains a constant  )(aan  if the initial condition is 

2or0)( aaN . This result indicates that no electron transfer occurs between the ion and the target 

atom if both the ion state and the inner d-level are occupied or empty at t . Furthermore, when 

da EtE )( , eq. (14) can be simplified and a second-order linear differential equation with respect to 

)(tnaa  can be deduced: 
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2
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


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 NtntV

i
tn
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



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In the above equation, )()( tn
dt

d
tn aaaa  , )()( tV

dt

d
tV   and )()()( 2 tn

dt

d
tn aaaa  . 

Figure 1 shows the time dependence of  ISP, where ISP is defined as )(1  aan . We set 

)exp()( 22
0 tvVtV   ( v : ion velocity, ζ: positive constant) and da EtE )( . In the calculations, 

,0V , and v  were 1.2 eV, 1.0 Å-2, and 15 km/s, respectively. As shown in the figure, the ISP 

oscillated in the range of about 0t , indicating that electrons frequently transferred between singly 

charged rare-gas ions and the inner d-level of the target atom in the vicinity of the surface. Because of 

the presence of the mixed region caused by the energy-level crossing between ions and target atoms, 

electrons were considered to move freely between the two potential states of R+-M and R-M+ (R: 

rare-gas, M: target atom) in an adiabatic manner34). Thus, oscillation such as that shown in Fig. 1 

indicates the adiabatic electron transfer between two potential states. 

Figure 2 shows the dependence of ISP on ion velocity. Although oscillations were observed, 

their period increased with increasing velocity. When the ion velocity is infinite, i.e., v , we 

can simplify eq. (16) by setting )exp()( 22
0 tvVtV  : 

                             0)(2)( 2  tntvtn aaaa   .                          (17) 

Consequently, we obtain )()(lim 
 aaaa

v
nn  from the relation Ctvtnaa  22)(ln   (C: an 

arbitrary integral constant) and the above equation. Furthermore, provided that )(tV  satisfies 

,0)(lim 


tV
v

 regardless of )(tV , we can derive the following equation from 

0)(/)()(/)(  tVtVtntn aaaa
  in the limit v : 
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


t

aaaa ndVCtn )()()( 0  , and )()(lim 
 aaaa

v
nn ,              (18) 

where Co is an arbitrary integral constant. Equation (18) indicates that no electron transfer occurs 

between ions and the surface because  there is insufficient time when the ion velocity is too high. 

Therefore, a rare-gas ion cannot be neutralized in the limit v . In other words, the ISP 

approaches unity with increasing ion velocity. 

Let us consider the above point  from the viewpoint of the charge exchange process with the 

accompanying energy-level crossing, which has been explored in the field of atomic and molecular 

collisions, with the well-known Landau-Zener model45-47) being the most popular approach. On the 

basis of their formula, the one-way survival probability p  of remaining in the initial state is 

expressed as  




















Fv

V
p



2~
2

exp


,                           (19) 

where V
~

 is the interaction matrix element, F  is the difference in slope between the two potential 

surfaces, and v  is the velocity of the ion or atom. On the basis of the theoretical calculations by 

Bykhovskii et al.48), the transition probability P  from one state to another state, which included both 

the approach to and departure from the target, can be approximately expressed as follows, using the 

one-way survival probability p  from eq. (19): 

                             )1(2 ppP  .                                     (20) 

The ISP, i.e., )(1  aan , can therefore be expressed as 22)1(1 ppP  . In the limit v , 
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11  P  because 1p  from eq. (19), which is consistent with our result that ISP approaches 

unity with increasing ion velocity. 

Next, to investigate and interpret the various reports on resonant and quasi-resonant charge 

exchange processes, such as the experimentally observed He+-Ga, He+-Sn, and He+-In systems30,34), 

let us consider that )(zEa , the energy level of the ion, has a time dependence as a result of the 

interaction between the target atom and the ion. 

As the ion approaches the surface, the electrostatic attraction between the ion and its image 

potential in the surface has a dominant effect on the energy level of the ion, and the ion will 

experience a strong repulsion very close to the surface because of Pauli repulsion. Accordingly, the 

dependence of the ion energy level aE  on the surface-ion distance z can be expressed as follows in 

atomic units: 

                   
)(4

1
)(

im
aa zz

IzEE


  ,             (21) 

where I, , and miz  are the work function, ionization potential, and the location of the image 

potential (we take Bm az 2  in the following calculations, :Ba  Bohr radius), respectively. We set I 

= 24.58 eV, which is the first ionization potential of He49). In subsequent calculations, we assumed the 

Fermi level of solid to be FE  = 0. 

Figure 3 shows the calculated relationship between ISP and the ion velocity v  for work 

functions   = 1, 3, and 5 eV. When calculating ISP, we assumed a binding energy of the target atom 

of 20 eV, which corresponds to the 4d-electron binding energy of In 50). As shown in the figure, the 
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behavior of  ISP is strongly dependent on  . Frequent oscillations in the ISP were observed for   

= 3 eV, whereas ISP was monotonic and changed only gradually in the other cases. 

Figure 4 shows the relationship between the ion-surface distance z and the energy level of the 

ion aE . As shown in the figure, )(zEa  crosses the binding energy of the target atoms at about z = 1 

Å when   = 3 eV. In contrast, there were no energy-level crossings between the energy level of the 

4d inner core and the energy level of the ion for   = 1 or 5 eV, which were lower and higher than the 

4d inner level for   = 1 and 5 eV, respectively. 

As illustrated in the previous figure, when an ion (He ion) with   = 3 eV approaches and then 

moves away from the surface, it passes into the mixing region formed by the energy level crossing of 

dE  = -20 eV. In other words, the ion passes into the mixing region twice. Therefore, the 

experimentally observed oscillations in the quasi-resonant charge exchange processes of the He+-Sn, 

He+-In, and He+-Ga systems can be interpreted as the result of a phase difference between the two 

states of the ion and the surface, which independently evolve after first passing the crossing point, i.e., 

the mixing region during the approach29,31-32,34,36-37). Therefore, we can conclude that the oscillation 

observed in Fig. 3 is caused by a similar phase difference between the states of the ion and target atom. 

Furthermore, considering that the transition probability determines the spectra of the oscillations, as 

was experimentally observed, more detailed studies are recommended. 

On the basis of the theoretical investigation using a time development operator by Tsuneyuki et 

al.51), the transition probability )( baP   from state a to state b in the resonance tunneling process 

can be expressed as a function of the scattering time T. Tsuneyuki et al’s  results indicated that 
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)/(cos1)( 0
2 TVbaP   when the width of the Lorenzian band was reduced to 0 and the 

interaction )(tV  between the ion and the surface retained a constant 0V  for Tt 0  and 0 for 

0t  or Tt  . If we introduce the scattering length L , within which the interaction )(tV  switches 

on ( 0)( VtV  ) and )(tV  switches off ( 0)( tV ) when Lz  , then T  is proportional to the inverse 

of the ion velocity v  from the simple relation vTL 2 . Transition probability can, therefore, be 

expressed as a function of the inverse of ion velocity, i.e., v/1 , and )/2(cos1)( 0
2 vLVbaP   

with a constant period ( 02/ LV ). 

To compare the above result with those of our proposed method, we apply the preceding 

conditions of )0()( 0 TtVtV   and ),0(0 Ttt   to eq. (16) and obtain following differential 

equations: 

             0/)(4)( 22
0   txVtx aaaa   )0( Tt  , and    

              0)( txaa    ),0( Ttt  ,                                         (22) 

where we define )()(2)(  Ntntx aaaa . The solution of eq. (22) can be easily obtained under the 

initial conditions 1)(,0)(  ddaa nn  and  

)/2(cos1)/(cos12/))/2cos(1()( 0
2

0
2

0  vLVTVTVnaa  , which is the same as the 

transition probability result )( baP   for the resonance tunneling process discussed in the previous 

paragraph. Since the above initial conditions indicate that no electrons occupy the ion level at t , 

)(aan  corresponds to the transition probability )( baP  . As shown above, it should be noted that 

the same calculation results are obtained, although the theoretical results of Tsuneyuki et al. 51) were 

significantly different from ours. 
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The above discussion indicates that )(aan  is a simple cosine function with a constant period 

of 02/ LV  when plotted against the inverse of ion velocity. Experimentally, it was also observed 

that the period of oscillation remained constant in the scattered He+ ion yield from Sn when the data 

were plotted against the inverse of incident ion velocity34). In Kahn et al’s He+-Sn scattered ion yield 

experiment34), the primary energies of the incident ion 0E  for several peaks in the ISS spectrum were 

roughly estimated to be about 434, 532, 670, 900, 1200, and 1620 eV.  On the basis of the result of 

another experiment  by Rusch and Erickson30), we roughly determined E0 for several peaks to be 

about 455, 579, 717, 924, 1255, and 1628 eV. Since the relationship between 0E  and ion velocity v  

satisfies 0
2 Ev  , it follows that 0/1/1 Ev  . Therefore, the calculated 0/1 E  values are 0.048, 

0.044, 0.039, 0.033, 0.029, and 0.025 eV-1/2 according to the experiments by Kahn et al. 34), and were 

0.047, 0.042, 0.037, 0.033, 0.028, 0.025 eV-1/2 for the experiments by Rusch and Erickson30). The 

period of quantum oscillation for the He+-Sn system was evaluated to be approximately 0.004 eV-1/2 in 

units of 0/1 E  in both experiments. Additionally, based on experiments by Rusch and Erickson 30), 

0E  for several peaks was roughly estimated to be about 303, 386, 483, 566, 703, 883, 1145, and 1517 

eV for the He+-In system, and about 325, 450, 563, 738, 975, and 1413 eV for the He+-Ga system. 

Therefore, the period of oscillation for the He+-In and He+-Ga systems were 0.004 and 0.005 eV-1/2, 

respectively. 

Figure 5 shows a plot of ISP from Fig. 3 for   = 3 eV as a function of the inverse of ion 

velocity v , showing a constant period of oscillation. The estimated period is about 0.0097 s/km, 

which corresponds to 0.06 eV-1/2, assuming 2
0 21 MVE   (M: mass of a He atom). The theoretically 
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evaluated period is about ten times larger than the experimental one. The main reason for this 

discrepancy is that the theoretical oscillation occurs for relatively low incident energies, below 

approximately 280 eV, whereas the experimentally determined oscillation range was very wide, 

covering a range from approximately 300 to about 1500 eV. 

Next, let us consider the interpretation of the measured scattered ion yield more precisely, using 

our proposed model. To account for the experimentally obtained data more qualitatively, and to 

simulate them more precisely, let us consider kI  for the measured elastically scattered ion yield from 

the k-th surface component. kI  can be given as a function of   and 0E  ( : laboratory scattering 

angle) 52): 

          ),(1),( 000  EPETDINCI nkkfk  .                       (23) 

In the above equation, DTINC kf ,,,, 0 , and   are coefficients containing the appropriate 

conversion factors, the concentration of the k-th component, the primary ion current, the analyzer 

transmissivity, the detector sensitivity, and the analyzer acceptance angle, respectively. ),( 0  Ek  

and ),( 0 EPn  are the differential scattering cross section for components consisting of the surface  

and the ion neutralization probability, respectively. Assuming 1kN  for the He+-Ga, He+-Sn, and 

He+-In systems, and considering that DTIC f ,,, 0 , and   can be attributed to the characteristics of 

the measurement system, such as the power of the ion gun and the analyzer capability, which have no 

physical properties, we can simplify the scattering ion yield I  

          ),(1),( 00  EPEI n ,   

Because )(),( 0  aan nEP  , the experimentally measured scattering ion yield can be given as 
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           )(1),( 0  aanEI  .                                           (24) 

From classical scattering calculations based on the  Bohr, Born-Mayer, and Thomas-Fermi 

interactions, it can be shown that the differential scattering cross section   is a monotonically 

decreasing function of the primary ion energy 0E , with no dependence on the structure 53-54). 

Additionally, the laboratory scattering angle   was fixed at 90 in the experiments by Rusch  and 

Erickson30), while   ranged from approximately 30 to 130 in the report  by Kahn et al. 34) using   

their data for 90  for the analysis of the period of quasi-resonant oscillation. Thus, taking the 

monotonic decrease with increasing 0E  into consideration, we assume that the differential scattering 

cross section   for 90  is proportional to the inverse of the m-th power of 0E , that is, 

                    mEEE  000 )90,(),(   .                              (25) 

By combining the above equation with eq. (24), we can write I  as 

                     m
aa EnI

II




0)(1'

'
.                                       (26) 

Figure 6 show 'I   defined by eq. (26) as a function of the incident energy of the ion, 0E , 

schematically. Figure 7 shows the scattering ion yields of the He+-Ga, He+-Sn, He+-In, and He+-Cu 

systems experimentally determined by Rusch  and Erickson30). Although theoretical calculations 

showed oscillations similar to those observed in the experimental data, most of the oscillations were 

observed at low energies, below approximately 100 eV, whereas the experimental data showed 

long-range oscillations beyond approximately 1500 eV, as illustrated in Fig. 7. Furthermore, the 

numerical calculations indicated that I’ tends to decrease with oscillation over the entire range of 
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energy. In contrast, the experimentally determined intensity tended to increase with oscillation in the 

energy range below several hundreds of eV. Therefore, it seems that the theoretical model based on 

eqs. (4)-(6) (the localized d state model) can’t  sufficiently account for the experimental data 

regarding resonant or quasi-resonant neutralization processes. 

Since the electronic configurations of Ga, Sn, and In are [Ar]3d10 4s24p1, [Kr]4d105s25p2, and 

[Kr]4d105s25p1, the d electrons of Ga, Sn, and In may form band structures characterized by a narrow 

bandwidth and a relatively high density of states(DOS), like the 3d bands of the transition metals Fe, 

Co, and Ni. In contrast, the s,p electrons in the outer shells form a valence band in the vicinity of the 

Fermi level, which is characterized by a wide bandwidth and a relatively low DOS. Therefore, the 

theoretical model based on band electrons seems to be more suitable for explaining the experimental 

data. The improved model, which includes terms related to the presence of band electrons, is 

,'ˆˆˆ
0 HHH                                       (27)   

aaa CCzECCEH ˆˆ)(ˆˆˆ
0

 
k

kkk ,                                           (28) 

      );ˆˆ)(ˆˆ)(('ˆ
aaaa CCzVCCzVH   kkk

k
k                                      

thus, the corresponding quantum rate equations are 

)()(
i

)()(
i

)( tntVtntVtn
dt

d
aaaaaa k

k
kk

k
k  


,                     (30) 

  )()(
i

)()(
i

)())((
i

)( '
'

' tntVtntVtnzEEtn
dt

d
aaaaaaa kk

k
kkkkk 


,   (31) 

        .)()(
i

)()(
i

)()(
i

)( ' tntVtntVtnEEtn
dt

d
aaaa kkk'kk'kk'kk'k


 .    (32) 



 20

Furthermore, altering the notation to use ', jj  instead of the k'k, used in eqs. (30)-(32) and 

simplifying )(tV ja  as )(tV , with no dependence on j, we can rewrite the above equations as 

   ,))(
i

)()((
i

)(
11




N

j
ja

N

j
ajaa tntntVtn

dt

d


                              (33) 

   ),)()(()(
i

)())((
i

)(
1'

'



N

j
jjaaajajaj tntntVtnzEEtn

dt

d


           (34) 

))()(()(
i

)()(
i

)( '' tntntVtnEEtn
dt

d
ajjajjjjjj  ''


.                  (35) 

When solving eqs. (33)-(35) numerically, we defined jE  as 

),,2,1()1
2

1
(band

center Njj
N

EEE j 


 , with  meV.40E  N is usually an odd number; 

thus, band
centerEE j   at 2/)1(  Nj , i.e., the intermediate value of N; for example, 11j  when N = 

21. For the central energy of the band electrons band
centerE , we set eV20band

center E , which is close to 

:eV58.24(  II  first ionization potential of He ) . Additionally, on the basis of the above definitions, 

the bandwidth D is given by END  )1( . Concerning the initial conditions, we set 

'' )(,0)(,0)( jjjjjaaa nnn  . 

Figures 8(A), (B), and (C) show the evaluated )(1  aan  derived from the numerical 

calculations of eqs. (33)-(35) for D = 0.8, 1.6, and 2.4 eV, respectively. As illustrated in these figures, 

the values of )(1  aan  in the low-ion-velocity range tended to be smaller, which indicates that the 

He+ ion can be easily neutralized at low incident energies. Although these figures show relatively 

small values of )(1  aan  at low incident energies, the range of neutralization tended to extend with 

increasing D. This extension of the neutralization range with D is therefore considered a result of the 
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interactions between the ion and many band electrons, mainly associated with D. Consequently, such 

small values of ISS data at low incident energies, as experimentally observed in Fig. 7, are probably 

considered  a result of neutralization due to the effect of the band electrons. 

Figures 9(A), (B), and (C) show 'I  as defined in eq.(26) for D = 0.8, 1.6, and 2.4 eV, 

respectively. Compared with the previous results shown in Fig. 6, the model including the effects of 

the band electrons seems to more accurately simulate the experimental data. Through comparison with 

Fig.7, especially in the case of N = 61, i.e., D = 2.4 eV, the calculated results shown in Fig. 9(C) are 

closer to the experimental data. The theoretically evaluated period of oscillation was greatly reduced, 

to about 0.008 eV-1/2 in comparison with the previous result of 0.06 eV-1/2. This marked decrease can 

be ascribed to the extension of the oscillation range beyond 1000 eV, which was caused by the band 

electrons. 

Certainly the quantitative agreement between Fig. 9(C) and the experimental data (Fig.7) is not 

very good, but such small values, experimentally observed at low incident energies, as shown in Fig. 7, 

are numerically simulated in Fig. 9(C), which was impossible using the model based on eqs. (4)-(6) 

(localized d state model). Furthermore, it should be noted that the peaks of I’, usually observed at 

incident energies higher than 1000 eV, which the localized d model and band models with D = 0.8 and 

1.6 eV cannot express numerically, were clearly observed in Fig. 9(C) (case of D = 2.4 eV), even 

though the theoretically evaluated peak positions were different from the experimentally observed 

ones. The quantitative disagreements were mainly due to the bandwidth D and the surface-ion 

interaction ).(tV  Therefore, the quantitative mismatch should be improved by substituting more 
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precise parameter values. However, interpretation on the basis of the band model does seem to 

qualitatively explain the experimental data. 

 

4. Conclusions 

We have theoretically examined quasi-resonant and resonant neutralization processes, such as 

those observed in the He+-Ga, He+-Sn, and He+-In systems, using quantum rate equations. The 

calculated ISP as a function of inverse ion velocity v  was found to oscillate with a constant period, 

as has been experimentally observed in the He+-Ga, He+-Sn, and He+-In systems. Furthermore, on the 

basis of the 2nd-order differential equation (eq. (22)) derived from the quantum rate equations, we 

obtained analytical results consistent with those previously calculated using other theoretical 

approaches (such as the time development operator method )51).      

We attempted to apply the present method to the analysis of quasi-resonant and resonant 

neutralization processes. After assuming that the d-level of the target atom has only one energy level, 

dE , with no formation of a band structure (localized d state model), we examined these quasi-resonant 

systems numerically and theoretically, and then compared the results with available experimental data. 

The results calculated on the basis of the localized d state model showed oscillations, as were 

observed experimentally. However, most of the oscillations were found in a small range of incident 

energies below 500 eV, while the experimental data showed oscillations even at incident energies 

above 1400 eV. Furthermore, the localized model could not numerically simulate or reproduce the 

relatively small values of the ISS spectra at low incident energies below 600 eV, as were 
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experimentally observed in the He+-Ga, He+-Sn, and He+-In systems. The quantitative agreement was 

unacceptable. 

To improve the agreement between the theory and the experiment, we proposed an alternative 

model (band model), in which incident He+ ions are scattered by the many band electrons existing on 

the surface and are neutralized as a result of electron transfer from the band electrons. The mismatch 

was much improved, and ISS data similar to experimental observations were obtained. In particular, 

when the bandwidth D was as wide as 2.4 eV, relatively small values were observed in the spectra at 

low incident energies, which the localized d state model could not account for. Consequently, our 

proposed band model is suitable for the analysis of quasi-resonant or resonant neutralization processes, 

and the effect of band electrons plays a very important role in determining neutralization processes. 

Furthermore, it should be noted that the behavior of spectra in the low-incident-energy region is 

strongly affected by the bandwidth D. 

The proposed model can explain the experimental data qualitatively. However, the numerical 

agreement between the theoretical and experimental data remains incomplete. To decrease the 

numerical mismatch and simulate experiments more precisely, we should consider the following 

points. 

 

4.1 More detailed description of the energy dispersion of the band structure 

In this article, in order to perform smooth calculations and reduce computation time, we defined 

the band structure (energy dispersion) in a simplified form as  



 24

     ),,2,1()1
2

1
(band

center Njj
N

EEE j 


 . 

The above expression corresponds to DOS =ρ0(const) within a finite bandwidth D . An actual metal 

surface is much more complex, so calculations including a more detailed energy dispersion, i.e., DOS,  

would provide quantitative improvement. Concerning the numerical scheme for expressing the DOS, 

we can consider the equation below to determine }{ jE : 

         011 ))()()((
2

1
)(

1

nEEEEdEE jjjj

E

E

j

j

 


 , 

where )(E is the DOS for 3d-or 4d band electrons of surface and Δn0 is a positive arbitrary 

constant with no dimension. By solving the above equation numerically, we can obtain 

}{ jE corresponding to )(E ; thus, it is possible to  carry out the calculation including the DOS of 

more complex energy dispersion. 

 

4.2 Determination of more precise )(tV  

We used )(tV  instead of )(tVa k  in this study, ignoring the difference in interaction between 

the He+ ion and an electron with a momentum k. This approximation was too crude to simulate the 

system accurately. In further calculations to determine a more precise )(tVa k , we should consider and 

evaluate the precise interaction between the He+ ion and the surface. 

 

4.3  Closer description of )(zEa  

Usually, the energy level of a vacant ion level tends to increase as the ion approaches a surface, 
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because of Pauli’s exclusion principle. In this study, we analyzed resonant and quasi-resonant systems 

using eq. (21). However, eq. (21) was too simple to simulate the resonant or quasi-resonant behavior 

quantitatively. Therefore, a more detailed, experimentally determined formula should be applied to 

improve the simulations. 

 

4.4  Auger neutralization 

In this study,  we did not  introduce the Auger neutralization process. Certainly, the Auger 

neutralization process is considered to be important, at least, at low incident energies. Therefore, we 

can’t  refute the hypothesis that the observed ISS data can mainly be attributed to Auger 

neutralization. However, as illustrated in Fig. 7, ISS experiments related to the He+-Sn, He+-In, and 

He+-Ga systems showed several slight peaks at incident energies below 400 eV. Therefore, the 

contribution of resonant and quasi-resonant neutralization processes should be taken into account. 

Further detailed investigation of both neutralization processes is required. 

The above four points are considered essential to the qualitative fitting and analysis of the 

experimental data using a theoretical model. 

The quantum rate equations conclusively showed good agreement with previous experimental 

and theoretical results. These equations can explain the resonant or quasi-resonant system from a 

qualitative viewpoint and show that the behavior of spectra at relatively low incident energies is 

strongly affected by the bandwidth D. To understand and interpret experimental data theoretically, 

further study to improve the above four points is needed, with emphasis on the effect of the many 
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surface electrons. 
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Figure captions 

Fig. 1.  Dependence of ISP on time, where we set ion-surface interaction )exp()( 22
0 tvVtV   ( v : 

ion velocity, ζ: positive constant, :t  time) and   ,0V  and v   are 1.2 eV, 1.0 Å-2 and 

15 km/s, respectively. 

Fig. 2.   Dependence of ISP on the velocity of ion, where ion-surface interaction is the same as in 

Fig. 1. 

Fig. 3.  Calculated relation between ISP  and ion velocity  v   at work functions  =1, 3 and 5 eV, 

where ion-surface interaction is the same as in Fig.1, binding energy of target atom=20 eV 

and ionization potential=24.58 eV. 

Fig. 4.   Relation of ion-surface distance z and energy level of ion aE on the basis of eq. (21), where 

we take -2 Ba  as the value of the location of image potential ( :Ba  Bohr radius ) 

Fig. 5.    Plot of the ISP in Fig. 3 for  =3 eV as a function of inverse of ion velocity v . 

Fig. 6.    Schematic illustration of I’ as defined in eq. (26) based on the numerical calculation results 

of eqs. (9)-(11), where ion-surface interaction is the same as in Fig.1, binding energy of 

target atom=20eV ,ionization potential=24.58 eV, work function  =3 eV and m =1/2. 

Fig. 7.   Experimentally determined scattering ion yields of He+-Ga, He+-Sn, He+-In and He+-Cu 

systems by Rusch and Erickson30). 

Fig. 8.   Evaluated )(1  aan  derived from the numerical calculations  using eqs. (33)-(35) for 

various bandwidths D  where (A) D = 0.8 eV (B) D = 1.6 eV  (C)  D = 2.4 eV. The 

ion-surface interaction is the same as in Fig.1, binding energy of target atom=20 eV,  
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ionization potential=24.58 eV and work function  =3 eV. 

Fig. 9.  Schematic illustration of I’ as defined in eq.(26) on the basis of the numerical calculation 

results obtained using eqs. (33)-(35) for various bandwidths D  where  (A) D = 0.8 eV (B) 

D = 1.6 eV  (C)  D = 2.4 eV. The ion-surface interaction is the same as in Fig.1, binding 

energy of target atom=20 eV ionization potential=24.58 eV, work function  =3 eV and 

m=1/2.  
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