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ABSTRACT 

Heterogeneous photoinduced electron transfer between a hydrophilic dye, 5,10,15,20-tetrakis(4-

carboxypheny)porphyrinato zinc(II) (ZnTPPC4-), and a lipophilic quencher, ferrocene, across the 

polarized water|1,2-dichloroethane interface was studied in the presence of citrate-stabilized gold 

nanoparticles (Au-NPs). A positive photocurrent arising from the photoreduction of ZnTPPC4- was 

significantly enhanced by adding Au-NPs. The photocurrent enhancement was dependent on the 

concentration of Au-NPs, the excitation wavelength, and the polarization angle of the excitation light, 

respectively. The results demonstrated that Au-NPs act as effective photoreaction catalysts at the 

liquid|liquid interface. 
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1. Introduction 

Metal and semiconductor nanoparticles are widely used to modify solid electrodes. In particular, gold 

nanoparticles (Au-NPs) have been studied extensively for the plasmonics application [1-3]. Under the 

photoexcitation at the wavelength where resonance occurs, the localized surface plasmon resonance 

(LSPR) and surface plasmon resonance (SPR) effects take place, respectively, for individual Au-NPs 

and a surface layer. In order to obtain SPR, a strict optical alignment of the photo-irradiation on surface 

layer should be achieved at a given wavelength. In contrast, LSPR occurs even in colloidal solution 

state or dispersed particles on the substrate, although the plasmon intensity is smaller than SPR. The 

plasmon field of Au-NPs drastically enhances the photoexcitation yield of adjacent dyes, and it has been 

applied to photo-energy conversion, trace analysis and biomedical applications [4-7]. Su et al. have 

reported the electric field-induced assembly of mercaptosuccinic acid (MSA)-stabilized Au-NPs at the 

liquid|liquid interface [8]. The interfacial concentration and assembly of Au-NPs could reversibly be 

controlled without aggregation or decomposition by applying potentials. Their report suggests that the 

photoreactive characteristics of the liquid/liquid interface could be modified in the presence of Au-NPs 

under potentiostatic control. 

Photosynthesis involving the photoreaction of chlorophyll can take place effectively in vivo, and a 

variety of artificial photosynthesis systems employing the porphyrin derivative has been examined in 

biomimetic vesicles, micelles, oil droplets and liquid/liquid systems [9-12]. In the case of a 

heterogeneous photoinduced electron transfer between hydrophilic dyes and lipophilic quenchers across 

a liquid|liquid interface, the hydrophile-lipophile intermediate ion pair can be formed only in the 

interfacial region [12]. The improvement of the photoreaction yield has been attempted by choosing an 

appropriate redox couple of dye and quencher. In the present work, the photocurrent response at a dye-

sensitized water|1,2-dichloroethane (DCE) interface was investigated in the presence of citrate-

stabilized Au-NPs. 
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2. Experimental Section 

5,10,15,20-Tetrakis(4-carboxyphenyl)porphyrinato zinc(II) tetrasodium salt (Na4ZnTPPC) (Frontier 

Scientific) was dissolved in the aqueous phase and ferrocene (Fc) (Nacalai Tesque, GR, 95%) was used 

as a quencher in the organic pahse. The concentrations of ZnTPPC4- and Fc were 1.0  10-4 mol dm-3 

and 1.0  10-3 mol dm-3, respectively. The composition of the electrochemical cell is represented in Fig. 

1(a). Li2SO4 and bis(triphenylphosphoanylidene)ammonium tetrakis(4-chlorophenyl)borate 

(BTPPATPBCl) were used as supporting electrolytes for the aqueous and organic phases, respectively. 

The aqueous solutions were prepared with water purified by a Milli-Q system (Millipore Milli-Q 

Integral). The organic solvent, 1,2-dichloroethane (DCE), was of HPLC grade (Nacalai Tesque, 99.7 %). 

All other reagents were of the highest grade available. Citrate-stabilized Au-NPs were prepared by the 

reduction of hydrogen tetrachloroaurate(III) tetrahydrate by adding trisodium citrate in the aqueous 

solution. The core size of Au-NPs was an average diameter of 17±3 nm determined by analyzing the 

TEM image. The plasmon absorption band of Au-NPs was observed at 522 nm for a colloidal aqueous 

solution in agreement with the estimated particle size [13].  

A three compartment spectroelectrochemical cell was used for all measurements [14]. A flat 

water|DCE interface with a geometrical area of 0.50 cm2 was polarized by a four-electrode potentiostat 

(Hokuto Denko HA-1010mMA1). Platinum wires were used as counter electrodes in both aqueous and 

organic phases. The Luggin capillaries were provided for the reference electrodes (Ag/AgCl and 

Ag/Ag2SO4). The Galvani potential difference ( oww
o   ) was estimated by taking the formal ion-

transfer potential ( 'w
o   ) of tetramethylammonium ion as 0.160 V [15]. 

In the photocurrent measurements, the water|DCE interface was illuminated under total-internal 

reflection (TIR) with the angle of incidence of ca. 75° by a cw laser at 410 nm (Neoark TC20-4030S-

2F-4.5) or 532 nm (Photop GDLM-5050L) with a half-wave Fresnel rhomb retarder. A lock-in detection 

of ac-photocurrent was performed at 11 Hz by a digital lock-in amplifier with an optical chopper (NF 
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LI5640 with 5584A) [16]. The photocurrent action spectrum was obtained by using a Xe lamp 

(Hamamatsu Photonics LC8-03, 150 W). The monochromatized excitation light was irradiated 

perpendicularly to the interface at 11 Hz and the ac-photocurrent was measured at each wavelength. All 

experiments were carried out in a thermostated room at 298 ± 2 K. 
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3. Results and Discussion 

Fig. 1(b) and (c) shows cyclic and ac voltammograms, respectively. The formal ion transfer potential 

( 'w
o   ) of an oxidized form of Fc, ferrocenium (Fc+), was measured as '

Fc

w
o


   at 0.03 V. The ion 

transfer response of ZnTPPC4- was not clearly observed since V) 25.0('

ZnTPPC

w
o 4  

  is rather close to 

a negative edge of the potential window [17]. The admittance responses tend to be increased in the 

presence of Au-NPs. The increments of the admittance could be associated with an increase of the local 

ionic strength by the accumulation of Au-NPs [18]. Fig. 2(a) shows typical photocurrent transients in 

the presence and absence of Au-NPs as measured under the photoexcitation at 410 nm. The 

photocurrents increase immediately from zero to pseudo steady-state values at positive potentials. It 

should be noted that no photocurrent was observed in the absence of ZnTPPC4-. Furthermore, the 

absorption or light-scattering of the excitation light by Au-NPs in the bulk aqueous phase is negligibly 

small under a TIR photoexcitation from the organic phase. The photoreduction of ZnTPPC4- by Fc at the 

water|DCE interface generates a positive photocurrent, i.e., heterogeneous photoinduced electron 

transfer from the organic to the aqueous phases [19]: 

  o
5
wo

4
w FcZnTPPCFcZnTPPC hv  

where the subscripts w and o refer to the aqueous and organic phases, respectively. The potential 

dependence of the photocurrent basically is correlated with the electron transfer rate constant, which is 

increased with increasing w
o  [20], and the interfacial behavior of ZnTPPC4- [19]. The interfacial 

concentration of ZnTPPC4- increases when w
o  approaches its transfer potential ( '

ZnTPPC

w
o 4


  ). At 

potentials close to '

ZnTPPC

w
o 4


  , however, a high interfacial concentration induces the formation of 

nonphotoreactive aggregates [17]. The decrement of the photocurrent at negative potentials is also 

inseparably connected to the ion transfer of photoproducts, i.e., the positive photocurrent could be 

canceled out through the instantaneous transfer of Fc+ to the aqueous phase at '

Fc

w
o

w
o


  . Thus, the 
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heterogeneous photoinduced electron transfer across the interface can effectively take place at 

 w
o

'

Fc

w
o  

  within the potential window. The photocurrent transients in the presence of Au-NPs 

exhibited distinct enhancements of the positive photocurrent (Fig. 2(a)). At 'w
o    > 0.10 V, e.g., the 

pseudo steady-state photocurrent (iphoto) is more than four times greater magnitude in the presence of 

Au-NPs. The lock-in detection of the ac-photocurrent was carried out at 11 Hz as shown Fig. 3(a), and 

the potential dependence of the ac-photocurrent coincides with the pseudo steady-state photocurrent in 

Fig. 2(b). In the positively polarized condition, the magnitude of the real (iphoto,re) and imaginary 

(iphoto,im) components was gradually increased by adding Au-NPs. A slight increase of negative iphoto,im at 

higher concentrations might be associated with slow charge transfer process such as homogeneous 

photoreaction followed by an ion transfer of the photoproduct [16]. 

The structural changes of the interface such as corrugation or roughening associated with the 

accumulation of Au-NPs might slightly increase an effective interfacial area [18, 21]. It is, however, 

insufficient to explain the significant enhancement of the photocurrent observed in this study. The 

photocurrent enhancements in the presence of Au-NPs, thus, should be correlated with Au-NPs acting 

as (case I) sensitizers involving the localized surface plasmon (LSP) effect to improve the photoreaction 

yield or (case II) electron transfer mediators between ZnTPPC4- in water and Fc in DCE. Lahtinen et al. 

have reported that Pd-NPs could act as electron transfer mediators for photocatalytic reaction at the 

interface [22]. The photocurrent action spectrum at 0.20 V was measured in the presence and absence of 

4.9 × 10-3 g dm-3 Au-NPs by the lock-in detection at 11 Hz (Fig. 3(b)). In this case, the photocurrent 

responses were normalized at the irradiation power of 0.5 mW taking into account the spectral 

distribution of the Xe lamp. The photocurrent action spectra were well correlated with the absorption 

spectrum of ZnTPPC4- in the aqueous phase, and a maximum photocurrent was observed around the 

Soret band at 420 nm. The action spectra indicate that Au-NPs enhance the photocurrent in a wide 

visible region. In addition, the photocurrent enhancement seems to be more effective in the Q band 

region close to the resonant plasmon band of Au-NPs at 522 nm, e.g., the photocurrent was 114% at 420 

nm and 163% at 520 nm, respectively, in the presence of Au-NPs. The dependence of the pseudo 
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steady-state photocurrent on the polarization angle (Ψ) of the excitation beam was also measured under 

TIR conditions. Both in the presence and absence of Au-NPs, the maximum value of photoi  was 

obtained with the s-polarized excitation beam (Ψ = 90°) which is parallel polarization to the interfacial 

plane (Fig. 3(c)). The polarization angle dependence of the photocurrent relates to the average 

orientation angle (θ) of transition dipole moments of ZnTPPC4- adsorbed at the interface [19]. The θ 

value in the absence of Au-NPs was estimated, respectively, as 66±3° at 0.20 V and 67±2° at 0.30 V 

with respect to the normal of the interface. The estimated θ values indicated that ZnTPPC4- molecules 

are adsorbed nearly in parallel to the interface. In addition, the polarization angle dependence was 

relatively improved by adding Au-NPs, in which the ratio of the s- and p-polarized photocurrents 

( p
photo

s
photo ii  ) at 0.20 V of 1.5 was increased to 1.8 by adding Au-NPs. In principle, the LSP field is 

generated in parallel to the polarization of the excitation light [3, 23]. The relatively large p
photo

s
photo ii   

value in the presence of Au-NPs would indicate either effective photoexcitation of ZnTPPC4- oriented 

parallel to the interface in the s-polarized LSP field or orientation change of ZnTPPC4- adsorbed at the 

interface. Although the action spectra and polarization angle dependences of the photocurrents seem to 

support the mechanism (case I) phenomenologically, a further kinetic study is essential to elucidate a 

detailed mechanism of the photocurrent enhancement. 

 



 

9

4. Conclusions 

The photocurrent response at the dye-sensitized water|DCE interface was effectively enhanced in the 

presence of Au-NPs in the aqueous phase. The photocurrent enhancement over a wide wavelength range 

was observed in the photocurrent action spectra. The present results clearly demonstrated that Au-NPs 

can be used as effective photoreaction catalysts at the polarized liquid|liquid interface. 
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Fig. 1. (a) Composition of the electrochemical cell, (b) cyclic and (c) ac voltammograms of the 

ZnTPPC4-/Fc system in the presence of 4.9 × 10-3 g dm-3 Au-NPs in the aqueous phase. The real (Yre) 

and imaginary components (Yim) of the admittance are represented by the solid and dashed lines, 

respectively. The potential sweep rates were (b) 10, 20, 50, 100 mV s-1 and (c) 5 mV s-1. The potential 

modulation for the admittance measurements was 10 mV at 11 Hz. 



 

13

 

 

Fig. 2. (a) Photocurrent transients and (b) pseudo steady-state photocurrents (iphoto) at the water|DCE 

interface. The blue and black lines for the transients refer to the presence and absence of 9.9 × 10-2 g 

dm-3 Au-NPs in the aqueous phase. The excitation light source was a cw laser of 22 mW at 410 nm in 

TIR. The symbols in parentheses denote the photocurrent in the absence of Au-NPs. 
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Fig. 3. (a) Potential dependence of the real (iphoto,re) and imaginary components (iphoto,im) of the ac-

photocurrent at 11 Hz, (b) photocurrent action spectra at 0.20 V with a typical absorption spectrum of 

ZnTPPC4- in the aqueous phase (solid line), and (c) dependence of pseudo steady-state photocurrents 

(iphoto) at 0.20 V on the polarization angle of the excitation beam (Ψ). The excitation light source was 

(a) 11 mW at 410 nm in TIR and (b) monochromatized Xe lamp, respectively, with frequency of 11 Hz, 

and (c) cw laser of 50 mW at 532 nm in TIR. 


