SUMT 法による高速片側式リニアインダクション モータの設計パラメータの最適化について

樋口 刷*•野中作太郎**

Optimized Parameters of the High-Speed Single-Sided Linear Induction Motors Using a SUMT Technique

by

Tsuyoshi HIGUCHI* • Sakutaro NONAKA**

The problem of optimizing the parameters of the high-speed single-sided linear induction motor (SLIM) is approached using nonlinear programing.

Five principal design parameters are chosen as the indipendent variables, and the materials of the secondary reaction rail is expressed as their objective function. The power factor-efficiency product, the maximum flux density in teeth and the primary length are selected as constraint function.

Optimization problem is mathematically formed by use of the design formulas of SLIM approximately taking into account the end effect, skin effect and airgap leakage. The sequential unconstrained minimization technique (SUMT) and the simplex method are used to solve the problem.

The method is applied to the SLIM for the propulsion of the 300 km/h magnetic levitated vehicle of about 20 m length and 27 tons weight.

1. まえがき

リニアインダクションモータ(LIM)は、電磁力 により非接触で推力を発生することができるため、高 速で低公害の磁気浮上式鉄道の推進装置として開発が 進められている。

高速 LIM では、一次鉄心や一次巻線部分が有限で あり、また二次側がシート状でエアギャップが比較的 大きいなどの構造的特徴に起因して、高速領域におい て特性が大幅に劣化する端効果や表皮効果及びエアギ ャップ漏れ磁束の影響などが問題となり、その最適設 計法の確立が望まれている。

近年,電子計算機の発達に伴って電気機器の設計に 数理計画的手法を応用する方法がいくつか発表されて いる¹⁾²⁾。筆者らは先に,実用規模の磁気浮上式鉄道 用高速片側式 LIM (SLIM) に関して設計方針を提 案し³⁾,設計の手順を示す⁴⁾と共に設計パラメータが 運転特性やモータ重量・二次側地上設備資材に及ぼす 影響を詳細に検討したが³⁰⁵⁾,本稿では SLIM の設 計に非線形最適化手法を導入して,運転特性や設計上 及び製作上の制約を考慮しながら設計パラメータの最 適化を計る方法について検討している。

最適設計問題を数理計画的手法を用いて解析する場 合,まず最適性の判断の基準となる目的関数や制約条 件を独立変数の関数として定式化する必要がある。高 速 LIM の特性算定は空間高調波解析法⁶⁾により行う ことができるが,式が級数の形で表されるため最適設 計問題の定式化にはより簡単な形のものが望ましい。 本稿では,筆者らが先に端効果を無視した二次元解

昭和59年4月28日受理

**九州大学工学部 福岡市箱崎 (Department of Electrical Engineering, Kyushu University, Fukuoka)

^{*}電気工学科 (Department of Electrical Engineering)

析に端効果波の概念を導入して導出した,端効果,表 皮効果,エアギャップ漏れ磁束の影響を考慮できる近 似特性計算式⁷⁷を用いている。

数値例として巡航速度300 km/h, 推力2 ton の高 速 SLIM の最適設計問題を考え, 非線形最適化問題 の一解法である SUMT 法により解析を行っている。

2. 非線形最適化問題8)

SLIM の最適設計は $x \in l$ 個の独立変数 $x = (x_1, x_2, \dots x_l), g_i(x) \in n$ 個の制約関数, F(x) を目的 関数とすると次のような非線形最適化問題として表す ことができる。

$$g_i(\mathbf{x}) \ge 0$$
 (*i*=1,2,…*n*)
の条件下で
 $F(\mathbf{x})$ を最小にする **x** を求める (1)

このような制約条件のある非線形最適化問題を解く には制約条件を利用する勾配射影法や制約のない問題 へ変換して解く変換法などがある。

変換法は、目的関数 $F(\mathbf{x})$ と制約関数 $g_i(\mathbf{x})$ を組み 合せて変換関数 $P(\mathbf{x}, \mathbf{r}_k)$ を作り、その最適解を求め ることにより元の制約条件のある非線形最適化問題を 解くというもので外点法と内点法に大別される。

内点法において, n 個の不等式制約 $g_i(x) \ge 0$ を持つ場合の変換関数は次のように表される。

$$P(\boldsymbol{x},\boldsymbol{r}_{k}) = F(\boldsymbol{x}) + \boldsymbol{r}_{k} \sum_{i=1}^{n} \varphi \{g_{i}(\boldsymbol{x})\}$$
(2)

ここで、 r_k は正の数、 $\varphi\{g_i(\mathbf{x})\}$ は区間(0, ∞) において連続かつ凸で、減少する関数であり、実行可 能領域の境界で無限大となるような関数で、SUMT 法では次のように $1/g_i(\mathbf{x})$ が用いられる。

$$P(\mathbf{x}, \mathbf{r}_{k}) = F(\mathbf{x}) + r_{k} \sum_{i=1}^{n} \{1/g_{i}(\mathbf{x})\}$$
(3)

ここで r_k は摂動パラメータと呼ばれ, $r_1 > r_2 > \cdots > r_k > 0$ と単調減少させて次々に変換関数 $P(x, r_k)$ の 最適解を求めていくと,それら一連の解は $k \rightarrow \infty$ の時 に制約のある最適化問題の解に収束する。

計算ではまず x 及び r_k の初期値 $x^0 \in \mathbb{R}^0 = \{x \mid g_i \ge 0, i=1,2, \dots n\}, r_1 > 0$ を与え,次に r_k に対して x^{k-1} を初期値として $P(x, r_k)$ を最小にする解 x^k を求め,最適解が収束するまで $r_{k+1} = r_k/c(c>1)$ と r_k を減少させながら計算を続ける。ここで,実行可 能領域の内部 \mathbb{R}^0 は空でない,すなわち実行可能な初 期値 x⁰ が存在する必要がある。また, x⁰ の選び方 によって計算時間が左右されるため,独立変数と目的 関数や制約条件の関係をあらかじめ把握しておくこと が望ましい。

(3)式で得られた制約のない最適化問題の解法として 直接探索法や降下法などがあるが、ここでは直接探索 法の1つであるシンプレックス法を用いて最適解を求 める。Fig.1に本稿で用いた解析手順の流れ図を示 す。

Fig. 1 Flow chart of optimization program

3. SL I Mの最適設計問題の定式化

3.1 独立変数

Fig. 2 (a), (b)に SLIM のスロット及び構造略図を 示す。一次側ステータにおいて、L:モータ長、h: 鉄心積み厚、 d_a :鉄心高さ、 t_s :スロットピッチ、 w_s :スロット幅、 z_t :歯幅である。一次側とメカニカ ルクリアランスgだけ隔てて置かれた二次側リアクシ ョンレールは厚さ d_2 のアルミニウム板に厚さ d_1 の鉄 板を張り合せた構造を持ち、オーバハング c だけ一次 鉄心幅 h より両端に張り出したものとする。

- Fig. 2 Dimensions of slot and construction of single-sided LIM
 - (a) Dimensions of slot,
 - (b) Construction of SLIM

最適化問題の定式化を行う場合,まず多くの設計パ ラメータの中から独立変数を選定し,他のバラメータ については適値を与えるか,もしくは独立変数の式と して表す。

本稿では、SLIM の特性やモータ重量・二次側地 上設備資材に大きな影響を及ぼす、ポールピッチ τ , 鉄心積み厚 h, 極数 p, 二次側アルミニウム板厚 d_2 , オーバハング長 c を選ぶ。

3.2 目的関数

LIM 製作において所要資材の大半は二次側地上設 備が占めるものと考えられる。従ってここでは目的関 数 $F(\mathbf{x})$ として次式で与えられる 1 km 当りの二次 側重量 $G_{A12}+G_{Fe2}$ を用いる。なお、定式化に際し て SI 単位系を用いることとする。

$$F(\mathbf{x}) = G_{A l 2} + G_{F e 2} = (\gamma_{A l 2} d_2 + \gamma_{F e 2} d_1)(h + 2c)$$
(4)

ここで、 γ_{Al2} 、 γ_{Fe2} はそれぞれアルミニウム、鉄の比重である。

なお,目的関数として他に一次側モータ重量や年間 運転コストなども考えられるが,列車の使用状況に応 じて最適化の目標を設定すればよい。

3.3 制約関数

設計では,保証特性として定格速度,定格推力の他に 最大推力と力率×効率(単位容量当りの出力)を考えて いるが,最大推力については仕様値が得られるまで定 格すべりを変更して最適設計を繰り返すこととし,(1) 式の制約関数としては力率×効率 cosφ1×nを与える。 また,一次鉄心歯部での磁束の飽和を防ぐため歯部

磁束密度の最大値 *B*tm に, 更にモータの機械的強度 や製作上及び列車走行上の制約からモータ長*L*につい て制限値を設ける。

 b_1, b_2, b_3 をそれぞれ $cos \varphi_1 \times \eta$, B_{tm} , L の仕様 値とすると,

 $g_1(\mathbf{x}) = \cos \varphi_1 \times \eta - b_1$

$$=\frac{(1-s_n)r'_{2e}}{\sqrt{(r_1+r'_{2e})^2+(x_1+x'_{2e})^2}}-b_1$$
(5)

 $g_2(\mathbf{x}) = b_2 - B_{tm}$

$$=b_{2}-\frac{h}{(h-n_{d}w_{d})k_{1}(1-k_{t})}B_{m}$$
(6)

$$g_{\mathfrak{z}}(\boldsymbol{x}) = b_{\mathfrak{z}} - (p + \beta - \frac{1}{mq})\tau \tag{7}$$

ここで、s: jでり、 $s_n: 定格j$ でり、 r'_{2e} :等価二 次抵抗、 x'_{2e} :等価二次漏れリアクタンス、 r_1 :一次 抵抗、 $r_1:$ 一次漏れリアクタンス、 n_d :一次鉄心のエ アダクト数、 $w_d:$ エアダクト幅、 $k_1:$ 成層鉄心の占積 率、 $\beta:$ 短節率、m:相数、q: 毎極毎相のスロット 数、 $k_t(=w_s/t_s):$ スロット幅/スロットピッチ

なお,制約条件として温度上昇限度も考えられる が,SLIM は列車下部に装着され高速で移動するため 十分な冷却効果が得られる。従ってここでは省略して いる。

3.4 設計上の関係式

(4)式~(7)式を独立変数で表すための関係式を以下に 示す。

等価二次抵抗 r'_{2^e} , 等価二次漏れリアクタンス x'_{2^e} は,

$$r'_{2e} = k_{e_1} r_{2e}$$
 (8)

$$x'_{2e} = k_{e_2} x_{2e}$$
 (9)

ここで, r_{2e} , x_{2e} はそれぞれ端効果を無視した場合の等価二次抵抗,等価二次漏れリアクタンスで,次のように表わされる⁷⁾⁹⁾

$$r_{2e} = 4m \frac{(k_w N_{ph})^2}{p} \frac{hv_1}{\tau} \mu_0$$

$$\times \frac{\sin 2\frac{\pi}{\tau} d_2 \beta'_2}{\cosh 2\frac{\pi}{\tau} (g + d_2 \alpha'_2) - \cos 2\frac{\pi}{\tau} d_2 \beta'_2} \quad (10)$$

$$x_{2e} = 4m \frac{(k_w N_{ph})^2}{p} \frac{hv_1}{\tau} \mu_0$$
sink $2^{\frac{\pi}{\tau}} (r + d_1 \alpha'_1)$

$$\times \frac{\frac{1}{\tau}(g+a_2\alpha'_2)}{\cosh 2\frac{\pi}{\tau}(g+d_2\alpha'_2)-\cos 2\frac{\pi}{\tau}d_2\beta'_2} \quad (11)$$

但し,

$$\frac{\pi}{\tau} d_2(\alpha'_2 + j\beta'_2) = \tanh^{-1} \left\{ \frac{\mu_0}{\mu_2} \lambda_2 \tanh \frac{\pi}{\tau} \right\}$$
$$(d_2\lambda_2 + d_1\lambda'_1)$$

$$\frac{\pi}{\tau}d_1\lambda'_1 = \tanh^{-1}\left\{\frac{\mu_2}{\mu_1}\frac{\lambda_1}{\lambda_2}\frac{\frac{\mu_1}{\mu_0\lambda_1} + \tanh\frac{\pi}{\tau}d_1\lambda_1}{1 + \frac{\mu_1}{\mu_0\lambda_1} \tanh\frac{\pi}{\tau}d_1\lambda_1}\right\}$$
(3)

$$\lambda_1 = \sqrt{1 + j\sigma_1 \mu_1 s v_1 \tau / \pi} \tag{14}$$

$$\lambda_2 = \nu' \frac{1 + j\sigma_2 \mu_2 s v_1 \tau / \pi}{1 + j\sigma_2 \mu_2 s v_1 \tau / \pi}$$
(15)

$$s = (v_1 - v)/v_1$$
 (16)

$$v_1 = v_2/(1 - s_n)$$
 (17)

$$N_{ph} = pqN \tag{18}$$

ここで、 k_w : 巻線係数, N_{ph} : 1 相の直列巻数, N: 1 コイルの巻数, v_1 : 同期速度, v_2 : 巡航速度, v: 速度, μ_0 : 空気の透磁率, μ_1 : 裏張り鉄板透磁率, μ_2 : アルミニウム透磁率, σ_1 : 裏張り鉄板導電率, σ_2 : アルミニウム導電率で, σ_1 , σ_2 は Russell-Norsworthy 係数で横方向端効果を考慮した導電率 を用いる。

また, ke₁, ke₂ は端効果を考慮するための補正係数 で次式で与えられる ⁷⁾。

$$ke_{1} = 1 - \frac{1}{p\tau \left[\left\{ s\pi/(1-s)\tau \right\}^{2} + (1/T')^{2} \right]}$$
$$\times \left[\varepsilon^{\frac{p}{T'}} \sin \frac{s\pi}{1-s} p \left\{ \frac{s\pi}{(1-s)\tau} - \frac{1}{T'} \tan \varphi \right\} \right]$$

$$+\left\{1-\varepsilon^{\frac{-p\tau}{T'}}\cos\frac{s\pi}{1-s}p\right\}\left\{\frac{s\pi}{(1-s)\tau}\tan\varphi+\frac{1}{T'}\right\}\right]$$
(19)

$$ke_{2} = 1 - \frac{1}{p\tau \left[\left\{ s\pi/(1-s)\tau \right\}^{2} + (1/T')^{2} \right]}$$

$$\times \left[\varepsilon^{-\frac{p}{T'}} \sin \frac{s\pi}{1-s} p \left\{ \frac{1}{T'} \cot \varphi + \frac{s\pi}{(1-s)\tau} \right\} + \left\{ 1 - \varepsilon^{-\frac{p}{T'}} \cos \frac{s\pi}{1-s} p \right\} \left\{ \frac{1}{T'} - \frac{s\pi}{(1-s)\tau} \cot \varphi \right\} \right]$$

$$(20)$$

$$\tan \varphi = \frac{\sinh 2\frac{\pi}{\tau}(g + d_2 \alpha'_2)}{\sin 2\frac{\pi}{\tau}d_2 \beta'_2} \tag{2}$$

T['] は SLIM における 端効果波の減衰時定数で次 式で示される。

$$T' = v_2(x_{m\,t} + x_{2\,t}) / \omega_1 r_{2\,t} \tag{22}$$

(2)式の x_{mt} , x_{2t} , r_{2t} は端効果により生じた二次 電流に対する二次回路定数で、(10)式、(11)式に $\tau = (1-s)\tau$ を代入した時の値 r_{2et} , x_{2et} より求めること ができる。 x_{mt} はすべり s = 0時の x_{2et} の値, r_{2t} , x_{2t} はそれぞれ次式により求められる。

$$r_{2t} = \frac{s r_{2 \cdot t} x^2_{mt}}{r^2_{2et} + (x_{2et} - x_{mt})^2}$$
(23)

$$x_{2t} = \frac{x_{mt}(x_{2e} + x_{mt} - r^{2}_{2et} - x^{2}_{2et})}{r^{2}_{2et} + (x_{2et} - x_{mt})^{2}}$$
(24)

一次抵抗 r1 は次式で与えられる10)。

$$r_1 = K_r \rho \frac{2N_{phla}}{2A_{c_1}} \tag{25}$$

但し, Kr:交流実効抵抗の補正係数, ρ:一次巻線 の体積抵抗率, また J₁ を一次巻線電流密度とすると 半コイル長 la, 一次巻線の導体断面積 Ae₁ は,

$$la = h + 1.5 \tau \beta \tag{26}$$

$$A_{c_1} = I_1 / a J_1 \tag{27}$$

 I_1 は次の一次有効電力 P_{g_1} の式より求めることができる。

$$P_{g_1} = F_n v_1 \tag{28}$$

$$= m I_{1}^{2} \left\{ 4 m \frac{(k_{w} N_{ph})^{2}}{p} \frac{h v_{1}}{\tau} \mu_{0} \right\}$$

$$\times \frac{\sin 2 \frac{\pi}{\tau} d_{2} \beta'_{2}}{\cosh 2 \frac{\pi}{\tau} (g + d_{2} \alpha'_{2}) - \cos 2 \frac{\pi}{\tau} d_{2} \beta'_{2}} \tag{29}$$

開放スロットで m 相二層巻線の一次漏れリアクタ ンス x_1 は Kilgore の式を用いると次のように与え られる¹⁰⁾。

$$x_{1} = 16 m f_{1} h \frac{(k_{w} N_{p}h)^{2}}{p} \times 10^{-7} \\ \times \left\{ \frac{Kx_{1}}{k^{2}_{w}} \frac{20}{mq} (\frac{d_{2s}}{w_{s}} + \frac{d_{1s}}{3w_{s}}) + \frac{4}{h} (2l_{e_{2}} + l_{e_{1}}) \right\}$$
(30)

ここで, d_{1s} , d_{2s} , l_{e_1} , l_{e_2} は Fig 2(b)に示した値で, K_{x_1} , d_{1s} は,

$$Kx_1 = -\frac{1}{4}(3\beta + 1) \tag{31}$$

$$d_1 s = 2 A c_1 / w_s \tag{32}$$

 $w_s = k_t t_s \tag{33}$

$$t_s = \tau/mq \tag{34}$$

但し, 簡単化のために Ac1 は連続変数であると仮 定している。

(6)式におけるエアギャップ磁束密度の最大値 *Bm* は,

$$B_{m} = 2\sqrt{2} m I_{1} \frac{k_{w} N_{ph}}{p\tau} \mu_{0}$$

$$\times \sqrt{\frac{\cosh 2\frac{\pi}{\tau} (g + d_{2}\alpha'_{2}) + 1}{\cosh 2\frac{\pi}{\tau} (g + d_{2}\alpha'_{2}) - \cos 2\frac{\pi}{\tau} d_{2}\beta'_{2}}} \quad (35)$$

なお,特性計算式は二次元解析より導出したもので あるが,一次側ステータにおいて平滑一次鉄心を仮定 している。従ってスロットの影響を考慮するために,

(b) Power factor and efficiency

(b) I ower ractor and erriclency

ここではカータ係数¹⁰⁾を用いて等価平滑鉄心面にギ ャップ長を換算している。Fig.3は速度300 km/h, 推力2ton,モータ長8mの高速SLIMの定数を用 いて近似特性計算式の精度を検討したものである。近 似解(点線)は空間高調波解析法による計算結果(実 線)とよく一致し、十分な精度を有することがわか る。

4. 数値例による検討

Table 1 は巡航速度 300 km/h, 1 車両の長さ 20m, 重量 27 ton,所要推力 2 tonの磁気浮上式 鉄道用車 上一次片側式 LIM について, $\cos \varphi_1 \times \eta \ge 60\%$, B_{tm} $\le 2 T$ なる条件下で行った最適設計結果を示す。LIM 1 はモータ長に制限を設けない場合,LIM 2,LIM 3はモータ長を8m, 6mに制限した場合である。

メカニカルクリアランスg=10mmとし、定格すべ り s_n が異なるのは最大推力が定格推力の 200 %程度 になるように s_n を選定しているためである。

計算式において, A_{e_1} 及び極数 p を連続変数とし て扱っており, Table 1 に示した p は解に最も近い 偶整数を示したものである。

相数,並列回路数,1コイルの巻数,一次巻線電

流密度はそれぞれ m=3, a=1, N=1, J₁=4.3 A/mm², 毎極毎相のスロット数 q=4に固定し短節率 β =10/12, スロットピッチに対するスロット幅の比 k_t =0.77とする。また, 裏張り鉄板厚 d₁ は, 特性的 には4mm程度で十分であり, リアクションレールの 機械的強度を考慮して決定すべきであることを明らか にしているが³), ここでは d₁=10mm としている。 $=-\beta$ 長に制限を加えない場合(LIM1), $=-\beta$

Table 1 Design examples of high-speed SLIM

	名称	記号	単位	LIM 1	LIM 2	LIM 3
	線間電圧	V ₁	V	2,420	1,506	1,934
定	周波数	f	Hz	129	146	179
	一次電流	I_1	А	620	1,022	743
	容量	KVA	kVA	2,597	2,666	2,489
	定格すべり	s _n		0.080	0.075	0.065
格	定格推力	F_n	kg	1,934	2,021	1,911
	同期速度	v_1	km/h	326	324	321
	モータ長	L	m	27.7	7.6	6.1
	相数	m		3	3 `	3
	極数	Þ		78	24	24
	ポールピッチ	au	mm	352	309	248
	鉄心積み厚	h	mm	172	267	460
.	鉄心高さ	d_a	mm	39	54	45
	毎極毎相のスロット数	q		4	4	4
	スロットピッチ	ts	mm	29	26	21
1/17	スロット幅	ws	mm	23	20	16
1 K	スロット深さ	d_s	mm	20	31	30
	短節率	β		10/12	10/12	10/12
	1コイルの巻数	Ń		1	1	1
側	1相の直列巻数	Nph		312	96	96
	半コイルの長さ	la	mm	612	653	771
	一次抵抗	r_1	Ω	0.055	0.011	0.017
	一次漏れリアクタンス	x_1	Ω	0.547	0.213	0.322
	銅重量	GCu_1	kg	1,527	802	740
	鉄重量	GFei	kg	715	388	392
ギャップ	メカニカルクリアランス	g	mm	10	10	10
	裏張り鉄板抵抗率	ρ_1	$\Omega - m$	10.5×10 ⁻⁸	10.5×10-8	10.5×10 ⁻⁸
	裏張り鉄板厚み	d_1	mm	10	10	10
=	アルミニウム抵抗率	ρ_2	$\Omega-m$	3.3×10 ⁻⁸	3.3×10 ⁻⁸	3.3×10 ⁻⁸
	アルミニウム厚み	d_2	mm	5	4	3
次	オーバハング	C	mm	13	11	17
	二次導体幅	h_2	mm	198	290	494
側	アルミニウム重量/km	G_{Al_2}	ton/km	2.465	3.149	4.420
	裏張り鉄板重量/km	G_{Fe_2}	ton/km	15.570	22.810	38.850
電気		$\cos \varphi_1$	%	68.7	68.6	68.2
特性		η	%	88.5	90.2	91.7
1111	[1] A. Argeline and A. Arge	1	1	<u></u>	1	1

(c) Power factor×efficiency-slip curve

長 L=28 m, 幅 h=172 mm と一次側が極端に細長 く,二次側のアルミニウム板厚は $d_2=5$ mm とやや 厚めで,オーバハング長は c=13 mm と小さめの設 計結果が得られる。これは二次側地上設備資材を最小 にするという目標に対する設計の方向を示すものであ るが,最適設計問題を数理計画的手法を用いて解析す る場合,特性面からのみ論ずると,このように列車長 よりモータが長くなるといった不合理な解が得られ ることがある。実際の設計においては前述のように LIM の形状にはモータの機械的強度や製作技術,更 に走路との空間的関係など他の要因からも制約が課せ られる。

LIM 2, LIM 3 はモータ長に8 m, 6 m の制限を 加えた場合の計算結果を示す。極数は共に p=24 で あるが,モータ長が8 m, 6 m と減少するに従って τ はそれぞれ $\tau=309$ mm, 248 mm と減少し, h は h=267 mm, 460 mm と増加する。従って1 km 当りの二 次側重量 GAI_2+GFe_2 は26 ton, 43.3 ton と大幅に 増加することがわかる。また,二次側において c は L に関係なく10~20 mm が適当であり, d_2 は L の 減少と共に $d_2=4$ mm, 3 mm と減少することがわ かる。

筆者らは先にモータ長について、端効果を本質的に 軽減し更に二次側資材の節減を計るためには極数の多 い「細長く簿い LIM」を設計すべきであること、ま たポールピッチやアルミニウム板厚については τ = 200~400 mm, d_2 = 3mm程度がよいことを明らかに したが、本計算結果からもその妥当性が確認できる。

Fig.4に空間高調波解析法により求めた各モータの 速度特性を示す。

Fig.5は速度300km/h,モータ長8mの条件で定 格推力を変化して最適設計を行った場合の二次側重量 の変化の様子を示す。最大推力は定格推力の200%程 度とする。図より定格推力が変化しても二次側重量に は大きな変化はないことがわかる。

5. むすび

高速片側式 LIM の最適設計の問題を制約条件のあ る非線形最適化問題として扱い解析を行った。独立変 数としてポールピッチ,鉄心積み厚,極数,二次側ア ルミニウム板厚,オーバハング長を選び,SUMT 法 及びシンプレックス法を用いて,運転特性やモータ長 に関する制約の下で二次側地上設備資材の最小化を計 った。数値例による検討から,最適解は筆者らが先に 明らかにした設計パラメータの適値とよく一致するこ とが確認された。

おわりに,日頃御鞭撻を頂く工学部山田英二教授, 小山純教授に,また卒業研究として協力された本学卒 論生橘純一郎,花田恒弘両氏に深く感謝の意を表しま す。

文 献

- R. Ramarathnam & B. G. Desai: "Optimization of Polyphase Induction Motor Design", IEEE Trans., PAS-90, 2, 570 (1975)
- R. W. Menzies & G. W. Neal : "Optimization Program for Large-Induction-Motor Design", Proc. IEE, **122**. 643 (1975)
- 3) 野中・樋口:「磁気浮上式鉄道用高速片側式リニ

アインダクションモータの設計方針について」, 電学論 B, 101, 475(昭56-8)

- 4)野中・樋口:「高速片側式リニアインダクション モータの設計方法について」,九大工学集報,55, 611(昭57-12)
- 5) S. Nonaka & T. Higuchi : "Study of High-Speed Single-Sided Linear Induction Motor Design" The Memoirs of the Faculty of Engineering, Kyushu University, 42, 1 (1982)
- 6) S. Nonaka & K. Yoshida: "Analysis of Linear Induction Motors Using a Space Harmonic Technique", Transport Without Wheels (edited by E. R. Laithwaite) pp. 187~216 (1977) Elek Science
- 7)野中・樋口:「片側式リニアインダクションモー タの近似特性計算式について」,電学論 B, 102, 565(昭57-9)
- 8) S. L. S. Jacoby, J. S. Kowalik & J. T. Pizzo : "Iterative Methods for Nonlinear Optimization Problems", (1972) Prentice-Hall, Inc.
- 野中・吉田:「両側式リニアモータの特性解析」、 電学誌,90,880(昭45-5)
- 野中・吉田:「両側式リニアモータの等価回路定数と特性算定式」,電学誌,90,890(昭45-5)