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Abstract: We designed and synthesized helical short oligopeptides with an l-proline on the N-terminus
and hydrocarbon stapling on the side chain. Side-chain stapling is a frequently used method for the
development of biologically active peptides. Side-chain stapling can stabilize the secondary structures
of peptides, and, therefore, stapled peptides may be applicable to peptide-based organocatalysts.
Olefin-tethered cis-4-hydroxy-l-proline 1 and l-serine 2 and 8, and (R)-α-allyl-proline 18 were used
as cross-linking motifs and incorporated into helical peptide sequences. The Z- and E-selectivities
were observed for the ring-closing metathesis reactions of peptides 3 and 11 (i,i+1 series), respectively,
while no E/Z-selectivity was observed for that of 19 (i,i+3 series). The stapled peptide B’ catalyzed
the Michael addition reaction of 1-methylindole to α,β-unsaturated aldehyde, which was seven times
faster than that of unstapled peptide B. Furthermore, the high catalytic activity was retained even at
lower catalyst loadings (5 mol %) and lower temperatures (0 ◦C). The circular dichroism spectra of
stapled peptide B’ showed a right-handed helix with a higher intensity than that of unstapled peptide
B. These results indicate that the introduction of side-chain stapling is beneficial for enhancing the
catalytic activity of short oligopeptide catalysts.

Keywords: peptide; helix; hydrocarbon stapling; ring-closing metathesis; organocatalyst; l-proline;
Michael addition

1. Introduction

Hydrocarbon stapling is one of the most commonly used methods to stabilize the secondary
structure of peptides as a way to provide enhanced functionality [1–3]. This powerful tool is especially
important for short oligopeptides due to their flexible secondary structure. Grubbs et al. reported
the synthesis of 310-helical heptapeptides stabilized by hydrocarbon stapling at the i,i+4 positions
using ring-closing metathesis [4,5]. In 2000, Verdine’s group reported all-hydrocarbon stapling
using α-olefin-tethered alanine at i,i+4 as well as at i,i+7 positions, and the introduction of these
staples highly induced α-helicities as well as the metabolic stabilities of the peptides [6]. Nowadays,
the all-hydrocarbon staplings at the i,i+4 and i,i+7 positions are widely used in the medicinal chemistry
of peptides [7–9].

Short peptides are also attractive compounds in the field of organocatalysis [10–13]. These peptide
catalysts can be categorized into several classes based on their secondary structure, those including
β-turn [14,15], helix [16–20], turn-helix types [21–23], and so forth. Therefore, hydrocarbon stapling can
be an effective tool for the development of peptide-based organocatalysts by controlling their secondary
structure. However, there are few examples of stapled peptide-catalyzed asymmetric organocatalytic
reactions. Demizu and co-workers reported an enantioselective Juliá–Colonna epoxidation of chalcone
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catalyzed by a helical peptide-based primary amino catalyst possessing a crosslink between two
l-homoserines at the i,i+4 positions (Figure 1) [24,25]. Likewise, secondary amino catalysts are powerful
catalysts with a broad range of applicable reactions [26,27]. Moreover, the peptide hydrocarbon staplings
at the i,i+1 and i,i+3 [28,29] positions are rarely examined compared to i,i+4 series but have potential
as constrained cyclic peptides for organocatalysis, material science, drug discovery, and so forth [30].
From this point of view, the introduction of allyl tethered cis-4-hydroxy-l-proline or (R)-α-allyl-proline can
be suitable for this purpose. Secondary structures, as well as helical screw directions, can be controlled by
introducing 1-aminocycloalkane-1-carboxylic acid in homopeptides [31–40] and heteropeptides [41–43],
and these constrained peptides catalyze asymmetric 1,4-addition reactions [44–46]. Therefore, poly
l-leucine-incorporating 1-aminocyclopentane-1-carboxylic acid was used as an α-helix-inducing motif.
The stapling efficiency was evaluated by comparing the catalytic activities of stapled and unstapled peptides
in Friedel–Crafts type 1,4-addition reactions [47,48]. Herein, we report the synthesis of helical N-terminal
prolyl oligopeptides with hydrocarbon stapling at i,i+1 as well as i,i+3 positions and the enhancements of
their catalytic activity for the Michael addition of 1-methylindole to α,β-unsaturated aldehyde.
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of 3 and 4 produced N-terminal free peptides A and B in quantitative yields. On the other hand, the 
ring-closing metathesis of dipeptide 3 was performed with 20 mol % of the second-generation Grubbs 
catalyst to give i,i+1-stapled dipeptide 5. In this reaction, the Z-configured product was obtained as a 
major product (E/Z = 1.0:5.6), possibly due to the medium ring size of 5 (13-membered ring) along 
with the rigid 4-hydroxyproline part. The hydrogenation of 5 provided dipeptide 6, which was 
coupled with H-(L-Leu-L-Leu-Ac5c)2-OMe to afford stapled octapeptide 7. The N-Terminal free 
peptides A’ and B’ were obtained by the Boc-deprotection of 6 and 7, respectively. It should be noted 
that neither the ring-closing metathesis of octapeptide 4 nor that of the trans-4-hydroxy-L-proline 
derivatives of 3 produced the desired cyclization products. This poor reactivity may be caused by a 
ring strain of the 13-membered ring product, which resulted in a preference for the Z-configured 
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Figure 1. Hydrocarbon-stapled peptides used in the organocatalytic reaction. (a) Helical peptide-based
primary amino catalyst with stapling at i,i+4 and (b) helical peptide-based secondary amino catalysts
with stapling at i,i+1 and i,i+3 (This work).

2. Results and Discussion

The synthesis of the unstapled peptides A and B and stapled peptides of the i,i+1 series A’ and B’
began from allyl tethered cis-4-hydroxy-l-proline 1 [49,50] and l-serine 2, as illustrated in Scheme 1.
The coupling of 1 and 2 produced dipeptide 3, which was successfully introduced to a helix-inducing
motif, H-(l-Leu-l-Leu-Ac5c)2-OMe [41,44]. The deprotection of the Boc-protecting groups of 3 and 4
produced N-terminal free peptides A and B in quantitative yields. On the other hand, the ring-closing
metathesis of dipeptide 3 was performed with 20 mol % of the second-generation Grubbs catalyst
to give i,i+1-stapled dipeptide 5. In this reaction, the Z-configured product was obtained as a major
product (E/Z = 1.0:5.6), possibly due to the medium ring size of 5 (13-membered ring) along with
the rigid 4-hydroxyproline part. The hydrogenation of 5 provided dipeptide 6, which was coupled
with H-(l-Leu-l-Leu-Ac5c)2-OMe to afford stapled octapeptide 7. The N-Terminal free peptides A’
and B’ were obtained by the Boc-deprotection of 6 and 7, respectively. It should be noted that neither
the ring-closing metathesis of octapeptide 4 nor that of the trans-4-hydroxy-l-proline derivatives of 3
produced the desired cyclization products. This poor reactivity may be caused by a ring strain of the
13-membered ring product, which resulted in a preference for the Z-configured isomer of 5.

Stapled peptide C’ possessing tethered side chains at the i,i+1 positions with a 15-membered
macrocyclic ring was also synthesized from 4-pentenyl tethered l-Ser 8 [51] by a similar manner as
described in Scheme 1 (Scheme 2). In contrast to the reaction of 4 to 7, unstapled peptide 11 underwent
the ring-closing metathesis reaction smoothly to provide stapled peptide 12 in a 93% yield with a
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preference for E-isomer over Z-isomer (E/Z = 5.5:1.0). This smooth reaction implies the released
macrocyclic ring strain of the product, which resulted in a preference for thermodynamically favored
E-olefin isomer.Molecules 2020, 25, x FOR PEER REVIEW 3 of 18 
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Scheme 1. Synthesis of unstapled peptides A and B and stapled peptides A’ and B’ (tethering at i, i+1
positions with a 13-membered ring).

The peptide stapling at the i,i+3 positions could be another choice to restrict the conformational
freedom of the N-terminus. We designed spirocyclic-stapled peptide D’ possessing tethered crosslinks
at the i,i+3 positions by introducing (R)-α-allyl-proline 18 [52,53] (Scheme 3). The synthesis of D’ began
from O-(4-pentenyl)-l-serine 8, which was sequentially coupled with H-l-Leu-l-Leu-Ac5c-OMe [44]
on C-terminus and with Boc-l-Leu-l-Leu-OH followed by 18 on N-terminus to produce heptapeptide
19. The ring-closing metathesis of 19 proceeded at high yield, but no E/Z-selectivity was observed
(E/Z = 1.1:1.0). The poor selectivity may be caused by sterically congested (R)-α-allyl-proline.
N-terminal-free heptapeptides D and D’ were synthesized by the hydrogenolysis of 19 and
20, respectively.

Next, we examined the Michael addition reaction of 1-methylindole (22) and α,β-unsaturated
aldehyde 21 using 20 mol % of unstapled peptides A–D and stapled peptides A’–D’ to compare their
catalytic activities (Table 1). The reaction with stapled octapeptide B’ showed a faster reaction rate than
the reaction with stapled dipeptide A’ (entries 2 and 4, 46% conversion after 6 d vs. 83% conversion
after 1 d). This result suggests that the helical motif -[l-Leu-l-Leu-Ac5c]2- of stapled peptide B’ is
important to catalytic activity. Furthermore, stapled peptide B’ is more active than unstapled peptide
B (entries 3 and 4, 83% conversion with a 76% isolated yield vs. 12% conversion). Similar trends were
observed for other stapled peptides A’, C’, and D’. Therefore, the introduction of side-chain stapling
plays a key role in enhancing catalytic activity. Moderate ee values could be improved by peptide
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sequence screening. The absolute configuration of 23 was determined by comparisons of the chiral
HPLC chart and the specific rotation with those in the literature [47,48].
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Table 1. Catalytic activities of unstapled peptides A–D and stapled peptides A’–D’ in the Michael
addition reaction of 21 and 22.
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The reaction with reduced catalyst loading (10 or 5 mol %) of stapled peptide B’ displayed almost
the same results as the reaction with 20 mol % (Table 2, entries 4 and 6), while that of unstapled peptide
B resulted in further decreases in both the conversion yield and ee value (entries 3 and 5). Lowering
the reaction temperature to 0 ◦C contributed to the deactivation of unstapled peptide B (entry 7),
but the reaction with stapled peptide B’ retained a high conversion, with increased ee values (entry 8).
These results also support that side-chain hydrocarbon stapling enhances the catalytic activities in
the reaction.

Table 2. Effect of the catalyst loading and temperature in the Michael addition reaction.
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Entry Peptide (mol %) Temp. (◦C) Conv. (%) 1 Ee (%) 2

1 B (20) rt 3 12 −29
2 B’ (20) rt 3 83 36
3 B (10) rt 3 6 −13
4 B’ (10) rt 3 81 36
5 B (5) rt 3 trace N.D. 4

6 B’ (5) rt 3 66 30
7 B (20) 0 trace N.D. 4

8 B’ (20) 0 78 47

1 Conversion was determined by 1H NMR analysis. 2 Ee was determined by HPLC. 3 Room temperature. 4

Not determined.

Circular dichroism (CD) spectra were measured for all peptide catalysts to obtain their secondary
structure information (Figure 2). The CD spectra of octapeptides B, B’, C, and C’ and heptapeptides D
and D’ showed right-handed helical structures, while those of dipeptides A and A’ showed β-turn
structures. The helicity of stapled peptide B’, which gave the best conversion in Table 1, was higher than
that of unstapled peptide B. These results suggest that reinforcement of helicity via side-chain stapling
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presumably increased the catalytic activity of the stapled peptide B’. Interestingly, the Michael reactions
catalyzed by unstapled peptide B and stapled peptide B’ produced opposite ee values, whereas
both peptides showed right-handed helical structures. Therefore, the introduction of side-chain
stapling to peptide catalysts can possibly reverse the enantioselectivities after the fine-tuning of the
peptide sequence.
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Figure 2. Circular dichroism (CD) spectra of peptide catalysts A–D and A’–D’. (0.5 mM in
2,2,2-trifluoroethanol).

Based on the right-handed helical structure, the plausible reaction mechanism catalyzed by stapled
peptide B’ and unstapled peptide B is shown in Figure 3. For the reaction catalyzed by stapled peptide
B’, the reactive iminium ion was formed inside the helical pipe with a rigid conformation caused by the
hydrocarbon stapling, which accelerated the Friedel–Crafts type attack of 1-methylindole from the si
face. On the other hand, the iminium species formed by unstapled peptide B exists outside the helical
pipe with a flexible conformation, which decreased the reaction rate and enabled 1-methylindole to be
accessed from both faces. Although the pioneering organocatalyst in this transformation, MacMillan’s
imidazolidinone catalyst showed high enantioselectivities [54]; its derivatization as such a covalent
immobilization to polymer supports as a recyclable catalyst is difficult and resulted in decreasing
yield and enantioselectivities [55]. On the other hand, peptide catalysts are easier to modify and
can be reused by immobilization in the resin at C-terminus, which does not affect the reactive site of
N-terminus [21–23].

In summary, we have developed synthetic routes to the N-terminal l-prolyl oligopeptides A’–D’
possessing side-chain hydrocarbon stapling. The ring-closing metathesis reactions of peptides A and
C selectively produced Z- and E-configured stapled peptides, respectively, while no E/Z-selectivity
was observed for the ring-closing metathesis of D. The stapled peptide B’ catalyzed the Michael
addition of 1-methylindole to α,β-unsaturated aldehyde, which was seven times faster than that of
unstapled peptide B. Since the reactions with B’ at lower catalyst loadings or lower temperatures
retained conversion yields comparable to those of B, the introduction of side-chain hydrocarbon
stapling is effective in enhancing the catalytic activity of peptides. These results provide useful
information related to the recent progress of the E/Z-selective ring-closing metathesis of peptides [56,57],
l-prolyl catalysts [58–60], and peptide foldamer [61–63]. Further studies including enantioselectivity
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improvement, an expansion of the reaction scope using catalyst B’, as well as applications to
cell-penetrating peptides [64–66] are ongoing in our laboratory.
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peptide B.

3. Materials and Methods

3.1. General Procedure and Method

Melting points were taken on an AS ONE melting point apparatus ATM-01 (AS ONE Corporation,
Osaka, Japan) and were uncorrected. Optical rotations were measured on a JASCO DIP-370 polarimeter
(JASCO Corporation, Tokyo, Japan) using CHCl3 as a solvent. 1H NMR and 13C NMR spectra
were recorded on the JEOL JNM-AL-400 (400 MHz), a Varian NMR System 500PS SN (500 MHz
and 125 MHz) spectrometer (Agilent Inc., Santa Clara, CA, USA). Chemical shifts (δ) are reported
in parts per million (ppm). For the 1H NMR spectra (CDCl3), tetramethylsilane was used as the
internal reference (0.00 ppm), while the central solvent peak was used as the reference (77.0 ppm
in CDCl3) for the 13C NMR spectra. The IR spectra were recorded on a Shimadzu IRAffinity-1
FT-IR spectrophotometer (Shimadzu Corporation, Kyoto, Japan). High-resolution mass spectra
(HRMS) were obtained on a JEOL JMS-T100TD using electrospray ionization (ESI) (JEOL Ltd.,
Tokyo, Japan) or direct analysis in the real-time (DART) ionization in time-of-flight (TOF) mode.
Circular dichroism (CD) spectra were measured with a JASCO J-725N spectropolarimeter (JASCO
Corporation, Tokyo, Japan) using a 1.0 mm path length cell. Analytical and semi-preparative thin layer
chromatography (TLC) was performed with Merck Millipore pre-coated TLC plates (MilliporeSigma,
Burlington, NJ, USA), silica gel 60 F254, and layer thicknesses of 0.25 and 0.50 mm, respectively.
Compounds were observed in UV light at 254 nm and then visualized by staining with iodine,
p-anisaldehyde, or phosphomolybdic acid stain. Flash and gravity column chromatography separations
were performed on Kanto Chemical silica gel 60N, spherical neutral, with particle sizes of 63–210 µm
and 40–50 µm, respectively. Analytical high-performance liquid chromatography (HPLC) was carried
out with JASCO PU-2089 on a UV spectrophotometric detector (254 nm, JASCO UV-2075, JASCO
Corporation, Tokyo, Japan), to which a 4.6 × 250 mm size chiral column (Daicel Chiralpak AD-H, Daicel
Corporation, Osaka, Japan) was attached. All moisture-sensitive reactions were conducted under an
inert atmosphere. Reagents and solvents were of commercial grade and were used as supplied, unless
otherwise noted. Compounds 1 [49,50], 2 [24,25], 8 [51], 18 [52,53], H-(l-Leu-l-Leu-Ac5c)2-OMe [44],
and H-l-Leu-l-Leu-Ac5c-OMe [44] were prepared according to the reported procedures. Copies of
NMR Spectra are given in the Supplementary Materials.

3.2. Synthesis of Unstapled Peptides A and B and Stapled Peptides A’ and B’

Boc-l-HypOAll-l-SerOAll-OMe (3): To a solution of Boc-l-HypOAll-OH (1 [49,50]; 4.22 g, 15.5 mmol)
in CH2Cl2 (52 mL) were added 3-[bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide
hexafluorophosphate (HBTU; 6.48 g, 17.1 mmol) and 1-hydroxybenzotriazole hydrate (HOBt·H2O;
2.62 g, 17.1 mmol) at 0 ◦C, and the solution was stirred for 30 min. Then, a solution of
HCl·H-l-SerOAll-OMe (2 [24,25].; 2.47 g, 15.5 mmol) in CH2Cl2 (52 mL) and N,N-diisopropylethylamine
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(DIPEA; 5.41 mL, 31.1 mmol) was added to the reaction mixture at the same temperature, and the
resultant mixture was gradually warmed to room temperature. After stirring overnight, the CH2Cl2
was removed and the residue was diluted with EtOAc. The solution was washed successively with 1
M of HCl, water, sat. aq NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and
concentrated in vacuo to give a crude product, which was purified by flash column chromatography
on silica gel (40% EtOAc in n-hexane) to give 3 (3.89 g, 61%) as a yellow oil. Rf = 0.69 (EtOAc). [α]30

D
−3.2 (c 1.02, CHCl3). 1H NMR (500 MHz, CDCl3, VT = 50 ◦C) δ: 5.98–5.77 (m, 2H), 5.28–5.11 (m, 4H),
4.77–4.66 (m, 1H), 4.33 (d, J = 8.8 Hz, 1H), 4.07–4.04 (m, 1H), 4.00–3.86 (m, 4H), 3.82 (dd, J = 9.7, 3.5, Hz,
1H), 3.78–3.70 (m, 1H), 3.74 (s, 3H), 3.61–3.49 (m, 3H), 2.56–2.44 (m, 1H), 2.23–2.09 (m, 1H), 1.48 (s, 9H).
13C NMR (125 MHz, CDCl3, VT = 50 ◦C) δ: 172.0, 170.5, 156.0, 134.6, 134.3, 117.0, 116.9, 81.0, 76.4, 72.2,
69.9, 69.6, 58.6, 53.0, 52.8, 52.2, 37.0, 28.3 (3C). IR (film): 3304, 2978, 2933, 1751, 1701 cm−1. HRMS
(DART) m/z: [M + H]+ calcd for C20H33N2O7, 413.2288; found, 413.2282.

H-l-HypOAll-l-SerOAll-OMe (A): To a solution of Boc-protected dipeptide 3 (100 mg, 0.242 mmol) in
CH2Cl2 (2.4 mL) was added trifluoroacetic acid (0.24 mL) dropwise at room temperature, and the
reaction mixture was stirred for 2 days at the same temperature. The reaction mixture was neutralized
by adding sat. aq NaHCO3 and the aqueous phase was extracted with CHCl3 three times. The combined
organic extracts were dried over anhydrous MgSO4 and concentrated under a vacuum to give amine A
(75.2 mg, quant) as an amorphous solid. Rf = 0.29 (EtOAc). Mp 81–83 ◦C. [α]28

D −39.4 (c 1.00, CHCl3).
1H NMR (400 MHz, CDCl3) δ: 8.27 (d, J = 8.6 Hz, 1H), 5.93–5.78 (m, 2H), 5.29–5.21 (m, 2H), 5.21–5.11
(m, 2H), 4.72 (dt, J = 8.3, 3.5 Hz, 1H), 4.08–4.00 (m, 1H), 4.00–3.96 (m, 2H), 3.94 (dt, J = 5.4, 1.5 Hz, 1H),
3.92–3.85 (m, 2H), 3.82 (dd, J = 8.3, 4.9 Hz, 1H), 3.76 (s, 3H), 3.58 (dd, J = 9.5, 3.7 Hz, 1H), 3.17 (dd,
J = 11.2, 5.4 Hz, 1H), 3.05 (dd, J = 11.2, 2.9 Hz, 1H), 2.28–2.16 (m, 2H). 13C NMR (125 MHz, CDCl3) δ:
168.4, 163.9, 134.1, 133.6, 118.0, 117.4, 74.6, 72.3, 70.1, 68.5, 57.2, 54.1, 52.5, 50.7, 33.6. IR (KBr): 3215, 2874,
1692, 1450 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C15H24N2O5Na, 335.1583; found, 335.1573.

Boc-l-HypOAll-l-SerOAll-[(l-Leu)2-Ac5c]2-OMe (4): To a solution of dipeptide 3 (50.0 mg, 0.121 mmol)
in MeOH (1.2 mL) was added 1 M of aqueous NaOH (0.121 mL, 0.121 mmol) at room temperature,
and the mixture was stirred overnight at the same temperature. The solution was acidified with
1 M of aqueous HCl and the MeOH was removed in vacuo. The resulting aqueous solution was
extracted with EtOAc three times. The combined organic extracts were washed with brine, dried over
Na2SO4, and concentrated in vacuo to give a carboxylic acid (44.7 mg, 93%). To a solution of the acid
(206 mg, 0.500 mmol) in CH2Cl2 (2.5 mL) was added EDCI·HCl (96.0 mg, 0.500 mmol) and HOBt·H2O
(92.0 mg, 0.600 mmol) at 0 ◦C, and the mixture was stirred at the same temperature for 30 min. Then,
a solution of H-[(l-Leu)2-Ac5c]2-OMe (354 mg, 0.500 mmol) in CH2Cl2 (2.5 mL) was added dropwise
to the reaction mixture at 0 ◦C. The reaction mixture was gradually warmed to room temperature and
stirred overnight. After the removal of CH2Cl2, the residue was diluted with EtOAc. The solution
was washed successively with 1 M of HCl, water, sat. aq NaHCO3, and brine. The organic layer was
dried over anhydrous MgSO4 and concentrated in vacuo to give crude product, which was purified
by flash column chromatography on silica gel (70% EtOAc in n-hexane) to give 4 (269 mg, 49%) as a
white solid. Rf = 0.20 (60% EtOAc in n-hexane). Mp 76–79 ◦C. [α]27

D +2.2 (c 1.02, CHCl3). 1H NMR
(500 MHz, CDCl3) δ: 7.49 (d, J = 5.6 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 4.9 Hz, 1H), 7.28–7.23
(m, 4H), 5.96–5.74 (m, 2H), 5.37–5.16 (m, 4H), 4.34 (t, J = 8.6 Hz, 1H), 4.25–4.12 (m, 5H), 4.05–3.90 (m,
5H), 3.84–3.73 (m, 2H), 3.72–3.65 (m, 1H), 3.67 (s, 3H), 3.48 (dd, J = 12.0, 3.4 Hz, 1H), 2.70–2.60 (m, 1H),
2.39–2.22 (m, 3H), 2.22–2.11 (m, 3H), 2.11–2.02 (m, 1H), 1.96–1.57 (m, 22H), 1.50 (s, 9H), 1.02–0.83 (m,
24H). 13C NMR (125 MHz, CDCl3) δ: 175.6, 175.2, 174.6, 174.2, 174.1, 173.2, 173.1, 171.8, 155.7, 133.9,
133.5, 117.8, 117.5, 81.7, 72.2, 69.6, 67.6, 66.7, 65.7, 60.1, 56.2, 54.8, 54.1, 54.0, 53.3, 52.23, 52.22, 52.1, 39.6,
39.4, 39.1, 38.3, 37.3, 36.74, 36.70, 35.5, 34.4, 28.32, 28.26 (3C), 25.2, 25.0, 24.73, 24.65, 24.54, 24.53, 24.46,
23.5, 23.4, 22.99, 22.97, 21.1, 21.0, 20.90, 20.87. IR (CDCl3): 3325, 2961, 1732, 1661, 1530 cm−1. HRMS
(ESI) m/z: [M + Na]+ calcd for C56H94N8O13Na, 1109.6838; found, 1109.6808.
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H-l-HypOAll-l-SerOAll-[(l-Leu)2-Ac5c]2-OMe (B): To a solution of Boc-protected peptide 4 (135 mg,
0.124 mmol) in CH2Cl2 (1 mL) was added trifluoroacetic acid (0.12 mL) dropwise at room temperature,
and the reaction mixture was stirred overnight at the same temperature. The reaction mixture was
neutralized by adding sat. aq NaHCO3 and the aqueous phase was extracted with CHCl3 four times.
The combined organic extracts were dried over anhydrous MgSO4 and concentrated under vacuum
to give amine product B (124 mg, quant). Rf = 0.10 (80% EtOAc in n-hexane). Mp 107–108 ◦C. [α]30

D
−1.9 (c 0.99, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 9.04 (br s, 1H), 8.06 (br s, 1H), 7.64 (d, J = 6.8 Hz,
1H), 7.57 (br s, 1H), 7.52–7.42 (m, 2H), 7.35 (d, J = 4.9 Hz, 1H), 5.92–5.75 (m, 2H), 5.32–5.14 (m, 4H),
4.60 (br s, 1H), 4.35 (d, J = 4.2 Hz, 1H), 4.29 (br s, 1H), 4.21–4.04 (m, 3H), 4.04–3.95 (m, 4H), 3.95–3.88
(m, 1H), 3.86–3.74 (m, 2H), 3.68 (s, 3H), 3.60 (d, J = 11.7 Hz, 1H), 3.47 (d, J = 8.8 Hz, 1H), 2.65–2.44 (m,
3H), 2.29–2.16 (m, 2H), 2.12 (br s, 2H), 2.03 (dd, J = 11.7, 6.1 Hz, 1H), 1.92–1.53 (m, 22H), 1.03–0.78 (m,
24H). 13C NMR (125 MHz, CDCl3) δ: 175.7, 175.5, 175.4, 174.7, 174.4, 174.3, 173.9, 171.8, 133.8, 133.5,
118.0, 117.9, 76.1, 72.3, 70.0, 68.1, 66.7, 66.0, 59.3, 56.4, 55.0, 54.9, 54.4, 53.3, 52.4, 51.3, 40.1, 39.7, 39.4,
39.2, 37.9, 36.89, 36.85, 35.2, 35.0, 29.7, 25.0, 24.78, 24.76, 24.58, 24.56, 24.4, 24.3, 24.23, 24.17, 23.2, 23.1,
22.5, 21.8, 21.6, 21.2. IR (KBr): 3329, 2959, 1736, 1655, 1535 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for
C51H86N8O11Na, 1009.6314; found, 1009.6288.

Stapled Boc-l-Hyp-l-Ser-OMe (6): Under an argon atmosphere, to a solution of 3 (90.0 mg, 0.218 mmol)
in CH2Cl2 (11 mL) was added second-generation Grubbs catalyst (37.0 mg, 0.0436 mmol) at room
temperature, and the mixture was stirred for 2 h at the same temperature. The reaction mixture was
filtered through a short pad of silica gel (60% EtOAc in n-hexane) and concentrated. The crude material
was purified by flash chromatography on silica gel (60% EtOAc in n-hexane) to provide a stapled
peptide 5 (46.2 mg, 55%) as a mixture of E- and Z-isomers (E/Z = 1.0:5.6). Rf = 0.30 (EtOAc). Next,
to a solution of stapled peptides 5 (46.2 mg, 0.120 mmol) in MeOH (12 mL) was added 10% Pd-C
(23 mg, 50 wt %) under a nitrogen atmosphere. After being vigorously stirred under a hydrogen
atmosphere for 19 h at room temperature, the reaction mixture was passed through a short plug of
Celite. The filtrate was concentrated under vacuum to give a crude product, which was purified by
flash column chromatography on silica gel (70% EtOAc in n-hexane) to give 6 (35.5 mg, 77%) as an
amber oil. Rf = 0.29 (EtOAc). [α]29

D −3.5 (c 1.07, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.27 (br s, 1H),
4.76–4.56 (m, 1H), 4.39–4.21 (m, 1H), 3.97 (br s, 2H), 3.87–3.78 (m, 1H), 3.76 (s, 3H), 3.59 (br s, 3H),
3.54–3.39 (m, 2H), 3.38–3.29 (m, 1H), 2.40–2.17 (m, 2H), 1.92–1.77 (m, 2H), 1.77–1.54 (m, 2H), 1.54–1.38
(m, 9H). 13C NMR (125 MHz, CDCl3) δ: 172.5, 170.3, 154.9, 80.8, 70.8, 69.7, 69.5, 69.1, 60.6, 53.0, 52.4,
52.0, 37.2, 28.1 (3C), 26.9, 25.5. IR (film): 3422, 2934, 1751, 1697 cm−1. HRMS (DART) m/z: [M + H]+

calcd for C18H31N2O7, 387.2131; found, 387.2130.

Stapled H-l-Hyp-l-Ser-OMe (A’): To a solution of Boc-protected dipeptide 6 (45.0 mg, 0.116 mmol) in
CH2Cl2 (1 mL) was added trifluoroacetic acid (0.2 mL) dropwise at room temperature, and the reaction
mixture was stirred for 24 h at the same temperature. The reaction mixture was neutralized by adding
sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3 three times. The combined organic
extracts were dried over anhydrous MgSO4 and concentrated under vacuum to give crude product A’
(20.5 mg, 62%) as an amber oil, which was used for the next step without further purification. Rf = 0.30
(EtOAc). [α]28

D +11.6 (c 1.00, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 8.52 (d, J = 7.6 Hz, 1H), 4.69–4.63
(m, 1H), 3.95 (t, J = 3.8 Hz, 1H), 3.91–3.82 (m, 2H), 3.78 (s, 3H), 3.79–3.74 (m, 1H), 3.61 (dt, J = 9.8,
5.9 Hz, 1H), 3.53–3.43 (m, 2H), 3.43–3.31 (m, 2H), 2.99 (dd, J = 10.5, 3.2 Hz, 1H), 2.27 (d, J = 14.2 Hz, 1H),
2.15 (ddd, J = 14.2, 11.0, 4.2 Hz, 1H), 1.78–1.46 (m, 4H). 13C NMR (125 MHz, CDCl3) δ: 175.1, 171.0,
78.6, 71.1, 69.0, 68.3, 58.9, 53.4, 52.5, 51.3, 37.0, 26.5, 26.1. IR (KBr): 3345, 2920, 2868, 1748, 1658, 1526,
1441 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C13H22N2O5Na, 309.1426; found, 309.1428.

Stapled Boc-l-Hyp-l-Ser-[(l-Leu)2-Ac5c]2-OMe (7): To a solution of stapled dipeptide 6 (104 mg,
0.269 mmol) in MeOH (3 mL) was added 1 M of aqueous NaOH (0.270 mL, 0.270 mmol) at room
temperature, and the mixture was stirred overnight at the same temperature. The solution was acidified
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with 1 M of aqueous HCl and the MeOH was removed in vacuo. The resulting aqueous solution was
extracted with EtOAc three times. The combined organic extracts were washed with brine, dried
over Na2SO4, and concentrated in vacuo to give a crude product (95.0 mg, 95%), which was used
for the next step without further purification. Rf = 0.27 (EtOAc). To a solution of the crude acid
(85.6 mg, 0.230 mmol) in CH2Cl2 (2.3 mL) was added N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide
hydrochloride (EDCI·HCl; 44.0 mg, 0.230 mmol) and HOBt·H2O (42.0 mg, 0.276 mmol) at 0 ◦C, and the
mixture was stirred at the same temperature for 30 min. Then, a solution of H-[(l-Leu)2-Ac5c]2-OMe [44]
(163 mg, 0.230 mmol) in CH2Cl2 (1 mL) was added dropwise to the reaction mixture at 0 ◦C. The reaction
mixture was gradually warmed to room temperature and stirred for 2 days. After the removal of
CH2Cl2, the residue was diluted with EtOAc. The solution was washed successively with 1 M of
HCl, water, sat. aq NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and
concentrated in vacuo to give a crude product, which was purified by flash column chromatography
on silica gel (80% EtOAc in n-hexane) to give 7 (178 mg, 73%) as a yellow oil. Rf = 0.46 (EtOAc). [α]28

D
−4.1 (c 1.07, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.75 (br s, 1H), 7.54–7.41 (m, 2H), 7.31 (s, 1H),
7.28–7.25 (m, 2H), 7.22 (d, J = 6.1 Hz, 1H), 4.37–4.30 (m, 1H), 4.28 (dd, J = 10.5, 4.2 Hz, 1H), 4.24–4.16 (m,
2H), 4.14 (d, J = 10.3 Hz, 1H), 4.08–4.03 (m, 1H), 3.98 (dd, J = 11.0, 4.9 Hz, 1H), 3.96–3.90 (m, 1H), 3.84
(d, J = 11.7 Hz, 1H), 3.75–3.69 (m, 1H), 3.67 (s, 3H), 3.65–3.50 (m, 3H), 3.46–3.36 (m, 2H), 2.70–2.60 (m,
1H), 2.39 (ddd, J = 14.6, 10.9, 4.0 Hz, 1H), 2.31–2.03 (m, 8H), 1.94–1.59 (m, 24H), 1.52 (s, 9H), 1.01–0.84
(m, 24H). 13C NMR (125 MHz, CDCl3) δ: 175.4, 175.2 (2C), 174.4, 174.2, 173.2, 173.1, 171.0, 155.4, 81.4,
78.9, 70.8, 68.5, 68.4, 66.7, 65.7, 60.4, 54.9, 54.7, 54.0, 53.9, 53.4, 52.2, 52.0, 40.0, 39.6, 39.4, 39.2, 38.2, 37.2,
36.7, 35.4, 35.3, 28.3 (3C), 27.4, 26.3, 25.0, 24.82, 24.81, 24.6, 24.50 (2C), 24.48, 24.4, 23.5, 23.4, 22.9, 22.6,
21.5, 21.2, 21.0, 20.9. IR (KBr): 3329, 2957, 1736, 1647, 1522 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for
C54H92N8O13Na, 1083.6682; found, 1083.6685.

Stapled H-l-Hyp-l-Ser-[(l-Leu)2-Ac5c]2-OMe (B’): To a solution of Boc-protected peptide 7 (120 mg,
0.113 mmol) in CH2Cl2 (2 mL) was added trifluoroacetic acid (0.113 mL) dropwise at room temperature,
and the reaction mixture was stirred overnight at the same temperature. The reaction mixture was
neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3 three times.
The combined organic extracts were dried over anhydrous MgSO4 and concentrated under a vacuum
to give crude product B’ (96.9 mg, 89%), which was used for the next step without further purification.
Rf = 0.25 (EtOAc). Mp 117–118 ◦C. [α]26

D −5.2 (c 0.95, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 8.83 (d,
J = 5.4 Hz, 1H), 7.58 (d, J = 4.6 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.34 (s, 1H), 7.32–7.24 (m, 3H), 4.37–4.27
(m, 2H), 4.23–4.16 (m, 1H), 4.11 (br s, 2H), 4.02 (dd, J = 10.9, 5.0 Hz, 1H), 3.94 (dt, J = 9.7, 4.8 Hz, 1H),
3.89 (dd, J = 8.8, 3.4 Hz, 1H), 3.78 (dd, J = 10.9, 3.1 Hz, 1H), 3.67 (s, 3H), 3.66–3.61 (m, 1H), 3.60–3.50 (m,
3H), 3.34 (d, J = 10.5 Hz, 1H), 3.06 (dd, J = 10.5, 2.4 Hz, 1H), 2.69–2.60 (m, 1H), 2.36 (br s, 3H), 2.30–2.21
(m, 4H), 2.20–2.03 (m, 3H), 1.97–1.55 (m, 24H), 1.03–0.80 (m, 24H). 13C NMR (125 MHz, CDCl3) δ: 178.1,
175.6, 175.1, 174.2, 173.9, 173.2, 173.1, 172.4, 80.0, 70.3, 69.8, 68.7, 66.8, 65.7, 59.8, 55.2, 54.8, 54.1, 54.0,
52.3, 52.1, 51.5, 39.6, 39.3, 38.2, 37.2, 36.7, 36.3, 35.4, 29.6, 28.4, 27.2, 26.5, 25.2, 25.12, 25.07, 24.7, 24.50,
24.49, 24.4 (2C), 23.5, 23.4, 23.1, 22.8, 21.3, 21.1, 21.0, 20.8. IR (CDCl3): 3325, 2958, 1655, 1526 cm−1.
HRMS (ESI) m/z: [M + Na]+ calcd for C49H84N8O11Na, 983.6157; found, 983.6142.

3.3. Synthesis of Unstapled Peptide C and Stapled Peptide C’

Boc-l-SerOPte-[(l-Leu)2-Ac5c]2-OMe (9): To a solution of Boc-l-SerOPte-OH 8 [51] (193 mg, 0.707 mmol) in
CH2Cl2 (2.5 mL) were added EDCI·HCl (136 mg, 0.707 mmol) and HOBt·H2O (130 mg, 0.848 mmol) at
0 ◦C, and the solution was stirred for 30 min. Then, a solution of H-[(l-Leu)2-Ac5c]2-OMe [44] (500 mg,
0.707 mmol) in CH2Cl2 (2.5 mL) was added to the reaction mixture at the same temperature, and the
resultant mixture was gradually warmed to room temperature. After stirring overnight, CH2Cl2 was
removed, and the residue was diluted with EtOAc. The solution was washed successively with 1 M
of HCl, water, sat. aq NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and
concentrated in vacuo to give a crude product, which was purified by flash column chromatography
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on silica gel (60% EtOAc in n-hexane) to give 9 (478 mg, 70%) as a white solid. Rf = 0.66 (EtOAc). Mp
109–115 ◦C. [α]26

D −4.3 (c 1.00, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.42 (d, J = 8.1 Hz, 1H), 7.33
(s, 1H), 7.29 (d, J = 4.4 Hz, 1H), 7.25–7.19 (m, 2H), 6.60 (d, J = 3.7 Hz, 1H), 5.80 (ddt, J = 17.0, 10.3,
6.6 Hz, 1H), 5.50 (d, J = 2.4 Hz, 1H), 5.08–4.96 (m, 2H), 4.39–4.32 (m, 1H), 4.20 (dd, J = 11.2, 6.1 Hz, 1H),
4.14–4.07 (m, 1H), 4.04 (q, J = 3.7 Hz, 1H), 3.98 (dt, J = 9.7, 5.0, Hz, 1H), 3.77–3.70 (m, 2H), 3.67 (s, 3H),
3.55–3.44 (m, 2H), 2.70–2.60 (m, 1H), 2.32–2.23 (m, 1H), 2.23–2.02 (m, 6H), 1.96–1.54 (m, 24H), 1.50 (s,
9H), 1.05–0.82 (m, 24H). 13C NMR (125 MHz, CDCl3) δ: 175.5, 175.1, 173.6, 173.4, 173.0, 172.9, 172.0,
156.9, 137.7, 115.1, 81.7, 71.0, 68.8, 66.8, 65.7, 56.9, 54.7, 54.1, 54.0, 52.2, 52.1, 40.1, 39.8, 39.6, 39.4, 38.1,
37.3, 36.7, 35.5, 30.2, 28.5, 28.1 (3C), 25.3, 25.1, 24.8, 24.7, 24.53, 24.51, 24.43, 24.40, 23.5, 23.4, 23.0, 22.9,
21.4, 21.3, 21.1, 20.9. IR (KBr): 3329, 2957, 1701, 1632, 1524 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for
C50H87N7O11Na, 984.6361; found, 984.6386.

Boc-l-HypOAll-l-SerOPte-[(l-Leu)2-Ac5c]2-OMe (11): To a solution of Boc-protected peptide 9 (480 mg,
0.499 mmol) in CH2Cl2 (5 mL) was added trifluoroacetic acid (0.749 mL) dropwise at room temperature,
and the reaction mixture was stirred overnight at the same temperature. The reaction mixture was
neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3 three times.
The combined organic extracts were dried over anhydrous MgSO4 and concentrated under a vacuum
to give crude product 10 (391 mg, 91%), which was used for the next step without further purification.
Rf = 0.20 (60% EtOAc in n-hexane). To a solution of Boc-l-HypOAll-OH (123 mg, 0.454 mmol) in CH2Cl2
(2.5 mL) were added EDCI·HCl (87.0 mg, 0.454 mmol) and HOBt·H2O (84.0 mg, 0.545 mmol) at 0 ◦C,
and the solution was stirred for 30 min. Then, a solution of amine 10 (391 mg, 0.454 mmol) in CH2Cl2
(2.5 mL) was added to the reaction mixture at the same temperature, and the resultant mixture was
gradually warmed to room temperature. After stirring overnight, the CH2Cl2 was removed and the
residue was diluted with EtOAc. The solution was washed successively with 1 M of HCl, water, sat. aq
NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and concentrated in vacuo
to give crude product, which was purified by flash column chromatography on silica gel (70% EtOAc
in n-hexane) to give 11 (248 mg, 49%) as a white solid. Rf = 0.56 (EtOAc). Mp 75–85 ◦C. [α]20

D −3.2
(c 1.03, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.49–7.41 (m, 2H), 7.37 (d, J = 4.9 Hz, 1H), 7.26–7.20
(m, 4H), 5.93–5.72 (m, 2H), 5.33–5.19 (m, 2H), 5.06–4.95 (m, 2H), 4.39–4.30 (m, 1H), 4.25–4.09 (m, 5H),
4.05–3.90 (m, 3H), 3.83–3.72 (m, 2H), 3.67 (s, 3H), 3.67–3.63 (m, 1H), 3.52–3.38 (m, 3H), 2.70–2.61 (m,
1H), 2.36–2.32 (m, 1H), 2.31–2.11 (m, 4H), 2.10–2.02 (m, 3H), 1.96–1.66 (m, 21 H), 1.66–1.56 (m, 4H), 1.51
(s, 9H), 1.03–0.80 (m, 24H). 13C NMR (125 MHz, CDCl3) δ: 175.6, 175.2, 174.6, 174.2, 174.1, 173.1, 173.0,
171.9, 155.7, 137.5, 133.9, 117.5, 115.2, 81.6, 77.2, 70.8, 69.6, 68.3, 66.8, 65.7, 60.2, 56.2, 54.8, 54.1, 54.0, 53.4,
52.2, 52.1, 39.7, 39.6, 39.4, 39.2, 38.3, 37.3, 36.7, 35.5, 34.3, 30.0, 28.4, 28.3 (3C), 25.2, 25.1, 24.8, 24.7, 24.57,
24.55 (2C), 24.47, 23.5, 23.4, 23.00, 22.97, 21.12, 21.06, 21.0, 20.9. IR (CDCl3): 3325, 2959, 2872, 1732, 1661,
1530 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C58H98N8O13Na, 1137.7151; found, 1137.7201.

H-l-HypOAll-l-SerOPte-[(l-Leu)2-Ac5c]2-OMe (C): To a solution of Boc-protected peptide 11 (30.0 mg,
0.0269 mmol) in CH2Cl2 (1 mL) was added trifluoroacetic acid (0.03 mL) dropwise at room temperature,
and the reaction mixture was stirred overnight at the same temperature. The reaction mixture was
neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3 three times.
The combined organic extracts were dried over anhydrous MgSO4 and concentrated under a vacuum
to give crude product C (23.5 mg, 86%), which was used for the next step without further purification.
Rf = 0.31 (EtOAc). Mp 79–81 ◦C. [α]28

D −7.8 (c 1.00, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 8.45 (br s,
1H), 7.65 (d, J = 5.1 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.32 (s, 1H), 7.26–7.21 (m, 2H), 6.59 (br s, 1H),
5.90–5.74 (m, 2H), 5.27–5.12 (m, 2H), 5.08–4.95 (m, 2H), 4.37–4.26 (m, 1H), 4.25–4.15 (m, 1H), 4.15–4.08
(m, 2H), 4.04 (br s, 1H), 3.98–3.83 (m, 4H), 3.76 (dd, J = 10.0, 4.0 Hz, 1H), 3.70 (dd, J = 10.0, 3.9 Hz, 1H),
3.67 (s, 3H), 3.55–3.43 (m, 2H), 3.20 (dd, J = 11.3, 4.2 Hz, 1H), 3.13 (d, J = 11.3 Hz, 1H), 2.64 (dt, J = 13.6,
8.4 Hz, 1H), 2.37 (d, J = 13.7 Hz, 1H), 2.30–2.02 (m, 8H), 1.98–1.50 (m, 25H), 1.03–0.81 (m, 24H). 13C
NMR (125 MHz, CDCl3) δ: 178.3, 175.6, 175.2, 174.2, 174.1, 173.3, 173.2, 172.1, 137.7, 134.6, 116.8, 115.1,



Molecules 2020, 25, 4667 12 of 18

78.7, 70.7, 69.6, 68.8, 66.8, 65.7, 59.2, 56.5, 54.8, 54.1 (2C), 52.4, 52.3, 52.1, 39.64, 39.62, 39.4, 39.1, 38.2,
37.2, 36.7, 35.7, 35.3, 30.1, 28.6, 25.2, 25.0 (2C), 24.7, 24.52, 24.49, 24.4, 24.3, 23.45, 23.36, 22.99, 22.96,
21.13, 21.08 (2C), 20.9. IR (KBr): 3343, 2957, 1639, 1547 cm−1. HRMS (ESI) m/z: [M + H]+ calcd for
C53H91N8O11, 1015.6807; found, 1015.6843.

Stapled Boc-l-Hyp-l-Ser-[(l-Leu)2-Ac5c]2-OMe (13): Under an argon atmosphere, to a solution of 11
(70.0 mg, 0.0628 mmol) in CH2Cl2 (3 mL) was added second-generation Grubbs catalyst (10.7 mg,
0.0126 mmol) at room temperature, and the mixture was stirred for 2 h at the same temperature.
The reaction mixture was filtered through short pad of silica gel (EtOAc) and concentrated. The crude
material was purified by flash chromatography on silica gel (70% EtOAc in n-hexane) to provide a
stapled peptide 12 (63.2 mg, 93%) as a mixture of E- and Z-isomers (E/Z = 5.5:1). Rf = 0.43 (EtOAc).
Next, to a solution of stapled peptides 12 (52.9 mg, 0.0486 mmol) in MeOH (4 mL) was added 10%
Pd-C (26 mg, 50 wt %) under a nitrogen atmosphere. After being vigorously stirred under a hydrogen
atmosphere for 23 h at room temperature, the reaction mixture was passed through a short plug of
Celite. The filtrate was concentrated under vacuum to give a crude product, which was purified
by flash column chromatography on silica gel (4% MeOH in CHCl3) to give 13 (46.9 mg, 89%) as a
colorless oil. Rf = 0.13 (3% MeOH in CHCl3). [α]25

D −7.8 (c 1.00, CHCl3). 1H NMR (500 MHz, CDCl3) δ:
7.58 (d, J = 5.9 Hz, 1H), 7.50 (d, J = 4.9 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.31 (s, 1H), 7.27–7.22 (m, 2H),
7.17 (d, J = 2.0 Hz, 1H), 4.37–4.30 (m, 2H), 4.23–4.13 (m, 3H), 4.02 (t, J = 3.4 Hz, 1H), 3.97–3.91 (m, 1H),
3.83–3.76 (m, 2H), 3.67 (s, 3H), 3.63–3.51 (m, 4H), 3.50–3.44 (m, 1H), 3.33 (dd, J = 12.0, 2.9 Hz, 1H), 2.65
(dt, J = 13.6, 8.2 Hz, 1H), 2.46–2.37 (m, 1H), 2.31–2.03 (m, 6H), 2.00 (br s, 1H), 1.95–1.54 (m, 26H), 1.52 (s,
9H), 1.51–1.42 (m, 3H), 1.01–0.82 (m, 24H). 13C NMR (125 MHz, CDCl3) δ: 175.6, 175.2, 174.5, 174.4,
174.1, 173.1, 173.0, 171.1, 155.8, 81.6, 78.0, 71.8, 69.7, 69.4, 66.7, 65.7, 60.5, 56.2, 54.8, 54.2, 54.0, 52.7, 52.2,
52.0, 39.7, 39.6, 39.4, 39.1, 38.3, 37.3, 36.7, 35.6, 35.4, 29.1, 28.2 (3C), 27.0, 26.9, 25.4, 25.1, 25.0, 24.8, 24.7,
24.54, 24.52 (2C), 24.4, 23.5, 23.4, 23.0, 22.8, 21.14, 21.05, 21.0, 20.9. IR (CDCl3): 3321, 2959, 1732, 1661,
1530 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C56H96N8O13Na, 1111.6995; found, 1111.7016.

Stapled H-l-Hyp-l-Ser-[(l-Leu)2-Ac5c]2-OMe (C’): To a solution of Boc-protected peptide 13 (11.5 mg,
0.0110 mmol) in CH2Cl2 (1 mL) was added trifluoroacetic acid (0.0110 mL) dropwise at room
temperature, and the reaction mixture was stirred for 2 days at the same temperature. The reaction
mixture was neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3
three times. The combined organic extracts were dried over anhydrous MgSO4 and concentrated
under a vacuum to give crude product C’ (11.6 mg, quant), which was used for the next step without
further purification. Rf = 0.20 (EtOAc). Mp 105–107 ◦C. [α]27

D −8.7 (c 1.00, CHCl3). 1H NMR (500 MHz,
CDCl3) δ: 8.27 (d, J = 5.1 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 4.6 Hz, 1H), 7.26–7.21 (m, 3H),
7.00 (d, J = 4.2 Hz, 1H), 4.37–4.27 (m, 2H), 4.19 (dd, J = 10.8, 5.9 Hz, 1H), 4.13–4.04 (m, 2H), 3.97–3.86
(m, 2H), 3.84 (dd, J = 10.5, 5.9 Hz, 1H), 3.70 (dd, J = 10.6, 2.8 Hz, 1H), 3.67 (s, 3H), 3.64–3.59 (m, 1H),
3.59–3.53 (m, 1H), 3.48 (t, J = 8.9 Hz, 1H), 3.43–3.37 (m, 1H), 3.35 (d, J = 10.5 Hz, 1H), 3.00 (dd, J = 10.5,
2.9 Hz, 1H), 2.69–2.60 (m, 1H), 2.37–2.03 (m, 7H), 1.97–1.49 (m, 30H), 1.03–0.78 (m, 24H). 13C NMR
(125 MHz, CDCl3) δ: 175.7, 175.3, 174.2, 174.0, 173.23, 173.20 (2C), 172.0, 79.5, 71.5, 69.3, 69.0, 66.8, 65.7,
59.6, 55.9, 54.8, 54.1 (2C), 52.4, 52.2, 51.0, 39.6, 39.5, 39.4, 39.2, 38.3, 37.2, 36.7, 36.0, 35.4, 28.9, 28.3, 27.5,
26.4, 25.23, 25.20, 25.1, 24.8, 24.6, 24.52, 24.49, 24.40, 23.5, 23.4, 23.1, 22.9, 21.3, 21.1, 21.0, 20.9. IR (KBr):
3337, 2957, 1736, 1655, 1535 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C51H88N8O11Na, 1011.6470;
found, 1011.6467.

3.4. Synthesis of Unstapled Peptide D and Stapled Peptide D’

Boc-l-SerOPte-(l-Leu)2-Ac5c-OMe (14): To a solution of Boc-l-SerOPte-OH 8 [51] (200 mg, 0.732 mmol) in
CH2Cl2 (2.5 mL) were added EDCI·HCl (140 mg, 0.732 mmol) and HOBt·H2O (135 g, 0.878 mmol) at 0
◦C, and the solution was stirred for 30 min. Then, a solution of H-(l-Leu)2-Ac5c-OMe [44] (270 mg,
0.732 mmol) in CH2Cl2 (2.5 mL) was added to the reaction mixture at the same temperature, and the
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resultant mixture was gradually warmed to room temperature. After stirring overnight, the CH2Cl2
was removed and the residue was diluted with EtOAc. The solution was washed successively with 1
M of HCl, water, sat. aq NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and
concentrated in vacuo to give a crude product, which was purified by flash column chromatography
on silica gel (50% EtOAc in n-hexane) to give 14 (307 mg, 67%) as a white solid. Rf = 0.52 (60% EtOAc
in n-hexane). Mp 109–115 ◦C. [α]26

D −40.4 (c 0.995, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 6.84 (br s,
2H), 6.57 (d, J = 4.9 Hz, 1H), 5.79 (ddt, J = 17.0, 10.3, 6.6 Hz, 1H), 5.38 (br s, 1H), 5.06–4.95 (m, 2H), 4.44
(td, J = 9.2, 4.9 Hz, 1H), 4.37–4.29 (m, 1H), 4.12 (q, J = 4.9 Hz, 1H), 3.76 (dd, J = 9.5, 4.6 Hz, 1H), 3.68 (s,
3H), 3.62 (dd, J = 9.2, 5.3 Hz, 1H), 3.53–3.44 (m, 2H), 2.25 (dt, J = 13.2, 7.7 Hz, 1H), 2.17 (dt, J = 13.1,
7.8 Hz, 1H), 2.10 (q, J = 7.3 Hz, 2H), 2.07–1.95 (m, 2H), 1.87–1.63 (m, 9H), 1.63–1.49 (m, 3H), 1.47 (s,
9H), 1.00–0.85 (m, 12H). 13C NMR (125 MHz, CDCl3) δ: 174.6, 171.6, 171.5, 171.1, 156.3, 137.8, 115.1,
81.1, 71.0, 69.4, 65.9, 55.6, 53.0, 52.3, 51.5, 40.4, 39.9, 37.2, 36.9, 30.2, 28.6, 28.2 (3C), 25.1, 24.8, 24.5, 24.4,
23.1, 23.0, 21.6, 21.4. IR (KBr): 3277, 2957, 1719, 1670, 1560 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for
C32H56N4O8Na, 647.3996; found, 647.3991.

Boc-(l-Leu)2-l-SerOPte-(l-Leu)2-Ac5c-OMe (16): To a solution of Boc-protected peptide 14 (307 mg,
0.491 mmol) in CH2Cl2 (5 mL) was added trifluoroacetic acid (0.982 mL) dropwise at room temperature,
and the reaction mixture was stirred overnight at the same temperature. The reaction mixture was
neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3 four times.
The combined organic extracts were dried over anhydrous MgSO4 and concentrated under a vacuum
to give crude product 15 (295 mg, quant), which was used for the next step without further purification.
Rf = 0.20 (60% EtOAc in n-hexane). To a solution of Boc-(l-Leu)2-OH (194 mg, 0.562 mmol) in CH2Cl2
(2 mL) were added EDCI·HCl (108 mg, 0.562 mmol) and HOBt·H2O (103 mg, 0.674 mmol) at 0 ◦C,
and the solution was stirred for 30 min. Then, a solution of amine 15 (295 mg, 0.562 mmol) in CH2Cl2
(2 mL) was added to the reaction mixture at the same temperature, and the resultant mixture was
gradually warmed to room temperature. After stirring for 5 days, the CH2Cl2 was removed and the
residue was diluted with EtOAc. The solution was washed successively with 1 M of HCl, water, sat.
aq NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and concentrated in
vacuo to give a crude product, which was purified by flash column chromatography on silica gel (60%
EtOAc in n-hexane) to give 16 (300 mg, 63%) as a white solid. Rf = 0.30 (60% EtOAc in n-hexane). Mp
243–246 ◦C. [α]25

D −43.2 (c 1.02, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.41 (d, J = 4.4 Hz, 1H), 7.30 (d,
J = 6.6 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.02 (s, 1H), 6.84 (d, J = 3.7 Hz, 1H), 5.76 (ddt, J = 17.1, 10.3,
6.6 Hz, 1H), 5.05–4.92 (m, 2H), 5.00 (s, 1H), 4.42–4.34 (m, 1H), 4.34–4.27 (m, 1H), 4.25–4.20 (m, 1H),
4.06–3.96 (m, 2H), 3.86 (dd, J = 10.0, 5.4 Hz, 1H), 3.67 (s, 3H), 3.67–3.64 (m, 1H), 3.50–3.38 (m, 2H),
2.27–2.00 (m, 6H), 1.87–1.51 (m, 18H), 1.48 (s, 9H), 1.02–0.83 (m, 24H). 13C NMR (125 MHz, CDCl3) δ:
174.9, 174.3, 173.4, 172.47, 172.45, 170.9, 156.6, 137.8, 114.9, 81.5, 70.5, 68.7, 65.7, 56.3, 54.3, 54.0, 53.4,
52.2, 52.0, 40.2, 39.62 (2C), 39.59, 39.4, 37.2, 36.8, 30.1, 28.7, 28.22 (3C), 28.17 (2C), 25.0, 24.9, 24.8, 24.7,
24.4, 24.3, 23.4, 22.9, 21.5, 21.2, 20.7. IR (KBr): 3277, 2957, 1719, 1630, 1560 cm−1. HRMS (ESI) m/z:
[M + Na]+ calcd for C44H78N6O10Na, 873.5677; found, 873.5658.

Cbz-l-ProαAll-(l-Leu)2-l-SerOPte-(l-Leu)2-Ac5c-OMe (19): To a solution of Boc-protected peptide 16
(112 mg, 0.132 mmol) in CH2Cl2 (1.3 mL) was added trifluoroacetic acid (0.264 mL) dropwise at room
temperature, and the reaction mixture was stirred for 2 days at the same temperature. The reaction
mixture was neutralized by adding sat. aq NaHCO3, and the aqueous phase was extracted with CHCl3
three times. The combined organic extracts were dried over anhydrous MgSO4 and concentrated under
a vacuum to give crude product 17 (85.8 mg, 87%), which was used for the next step without further
purification. Rf = 0.37 (EtOAc). To a solution of Cbz-l-ProαAll-OH (18 [52,53]; 27.2 mg, 0.0939 mmol)
in CH2Cl2 (1 mL) were added EDCI·HCl (18.0 mg, 0.0939 mmol) and HOBt·H2O (17.3 mg, 0.113 mmol)
at 0 ◦C, and the solution was stirred for 30 min. Then, a solution of amine 17 (70.5 mg, 0.0939 mmol) in
CH2Cl2 (1 mL) was added to the reaction mixture at the same temperature, and the resultant mixture
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was gradually warmed to room temperature. After stirring for 23 h, the CH2Cl2 was removed and the
residue was diluted with EtOAc. The solution was washed successively with 1 M of HCl, water, sat. aq
NaHCO3, and brine. The organic layer was dried over anhydrous MgSO4 and concentrated in vacuo to
give a crude product, which was purified by flash column chromatography on silica gel (50% EtOAc in
n-hexane) to give 19 (77.0 mg, 80%) as a colorless oil. Rf = 0.60 (60% EtOAc in n-hexane). [α]25

D −8.6 (c
2.13, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 7.65 (br s, 1H), 7.51 (br s, 1H), 7.42–7.35 (m, 3H), 7.35–7.31
(m, 2H), 7.29 (d, J = 6.6 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.08 (s, 1H), 6.33 (br s, 1H), 5.82–5.63 (m, 2H),
5.18 (s, 2H), 5.17–5.05 (m, 2H), 5.00–4.89 (m, 2H), 4.37 (q, J = 7.5 Hz, 1H), 4.32–4.24 (m, 2H), 4.10–3.98
(m, 2H), 3.92–3.85 (m, 1H), 3.83–3.71 (m, 2H), 3.67 (s, 3H), 3.54–3.47 (m, 1H), 3.45 (t, J = 6.6 Hz, 2H), 2.96
(dd, J = 14.2, 7.3 Hz, 1H), 2.76 (dd, J = 14.2, 7.6 Hz, 1H), 2.28–2.11 (m, 5H), 2.11–1.99 (m, 5H), 1.91–1.54
(m, 17H), 1.46–1.38 (m, 1H), 1.05–0.81 (m, 24H). 13C NMR (125 MHz, CDCl3) δ: 175.3, 175.0, 174.6,
174.1, 172.62, 172.60, 171.0, 155.2, 138.1, 136.0, 132.0, 128.7 (2C), 128.5, 127.4 (2C), 120.5, 114.6, 70.2, 69.0,
68.9, 67.5, 65.7, 56.7, 54.6, 54.2, 53.5, 52.12, 52.11, 48.6, 39.7 (2C), 39.4, 39.3, 37.6, 37.1, 36.8, 35.7, 30.2, 28.7,
25.3, 25.0, 24.9, 24.8, 24.4 (2C), 24.3, 23.4 (2C), 23.3 (2C), 23.1, 22.9, 21.3, 20.9. IR (CDCl3): 3323, 2959,
1663, 1531 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C55H87N7O11Na, 1044.6361; found, 1044.6360.

H-l-ProαAll-(l-Leu)2-l-SerOPte-(l-Leu)2-Ac5c-OMe (D): To a solution of Cbz-protected peptide 19 (21.4 mg,
0.0209 mmol) in MeOH (2 mL) was added 10% Pd-C (10 mg, 50 wt %) under a nitrogen atmosphere.
After being vigorously stirred under a hydrogen atmosphere for 2 days at room temperature, the reaction
mixture was passed through a short plug of Celite. The filtrate was concentrated under a vacuum to
give a crude product, which was purified by flash column chromatography on silica gel (70% EtOAc in
n-hexane) to give D (14.5 mg, 78%) as a white solid. Rf = 0.38 (EtOAc). [α]25

D −54.3 (c 1.60, CHCl3). 1H
NMR (500 MHz, CDCl3) δ: 8.45 (d, J = 4.4 Hz, 1H), 7.32 (d, J = 5.1 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H),
7.19–7.10 (m, 2H), 6.99 (s, 1H), 4.43–4.29 (m, 2H), 4.22–4.14 (m, 2H), 4.00–3.92 (m, 1H), 3.85 (dd, J = 9.9,
4.8 Hz, 1H), 3.70 (dd, J = 9.8, 3.4 Hz, 1H), 3.67 (s, 3H), 3.48–3.37 (m, 2H), 3.16–3.07 (m, 1H), 2.84 (dt,
J = 10.5, 5.4 Hz, 1H), 2.27–2.12 (m, 3H), 2.12–1.94 (m, 3H), 1.86 (d, J = 12.5 Hz, 2H), 1.83–1.61 (m, 18H),
1.59–1.46 (m, 4H), 1.41–1.22 (m, 4H), 1.04–0.81 (m, 30H). 13C NMR (125 MHz, CDCl3) δ: 179.4, 174.9,
173.9, 173.4, 172.5, 172.4, 171.0, 71.5, 70.0, 68.6, 65.7, 56.2, 54.5, 53.3, 52.3, 52.2, 52.0, 47.4, 41.3, 40.4, 39.6,
39.3, 38.5, 37.2, 37.0, 36.8, 29.3, 28.0, 26.3, 24.9, 24.8 (3C), 24.4, 24.3, 23.6, 23.4, 23.2, 22.9, 22.5, 21.3, 21.2,
21.1, 20.7, 18.6, 14.4, 14.0. IR (CDCl3): 3327, 2961, 1734, 1663, 1530 cm−1. HRMS (ESI) m/z: [M + Na]+

calcd for C47H85N7O9Na, 914.6306; found, 914.6267.

Stapled H-l-Pro-(l-Leu)2-l-Ser-(l-Leu)2-Ac5c-OMe (D’): Under an argon atmosphere, to a solution of 19
(22.3 mg, 0.0218 mmol) in CH2Cl2 (1 mL) was added second-generation Grubbs catalyst (3.7 mg, 4.4
µmol) at room temperature, and the mixture was stirred for 2 h at the same temperature. The reaction
mixture was filtered through a short pad of silica gel (EtOAc) and concentrated. The crude material
was purified by flash chromatography on silica gel (80% EtOAc in n-hexane) to provide stapled peptide
20 (21.0 mg, 96%) as a mixture of E- and Z-isomers (E/Z = 1.1:1). Rf (E-form) = 0.35 (50% EtOAc in
n-hexane), Rf (Z-form) = 0.26 (50% EtOAc in n-hexane). Next, to a solution of stapled peptides 20
(28.1 mg, 0.0283 mmol) in MeOH (1.5 mL) was added 10% Pd-C (15 mg, 50 wt %) under a nitrogen
atmosphere. After being vigorously stirred under a hydrogen atmosphere for 21 h at room temperature,
the reaction mixture was passed through a short plug of Celite. The filtrate was concentrated under a
vacuum to give a crude product, which was purified by flash column chromatography on silica gel (5%
MeOH in CHCl3) to give D’ (13.6 mg, 71%) as a white solid. Rf = 0.16 (3% MeOH in CHCl3). [α]23

D
−30.2 (c 1.38, CHCl3). 1H NMR (500 MHz, CDCl3) δ: 8.49 (br s, 1H), 7.27 (d, J = 7.3 Hz, 1H), 7.23 (d,
J = 6.1 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 6.96 (s, 1H), 6.38 (br s, 1H), 4.48 (ddd, J = 10.0, 6.1, 3.4 Hz, 1H),
4.40–4.27 (m, 2H), 4.03–3.93 (m, 2H), 3.90 (dd, J = 9.8, 3.4 Hz, 1H), 3.77–3.68 (m, 1H), 3.68 (s, 3H), 3.54
(dt, J = 9.2, 4.5 Hz, 1H), 3.50–3.43 (m, 1H), 3.14–3.06 (m, 1H), 2.86–2.78 (m, 1H), 2.31–2.20 (m, 2H),
2.19–2.12 (m, 1H), 2.11–1.99 (m, 2H), 1.99–1.91 (m, 1H), 1.90–1.58 (m, 21H), 1.57–1.36 (m, 7H), 1.05–0.82
(m, 24H). 13C NMR (125 MHz, CDCl3) δ: 174.9, 174.2, 173.39, 173.38, 172.5, 172.4, 170.4, 69.0, 68.8,
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65.8, 56.0, 54.5, 54.3, 53.5, 52.2, 52.0, 46.6, 40.3, 40.1, 39.68, 39.66, 38.7, 37.2, 36.9, 36.8, 28.2, 27.4, 26.4,
25.5, 25.2, 25.1, 24.9, 24.7, 24.40, 24.35 (2C), 24.2, 23.3 (2C), 23.0, 22.7, 21.8, 21.2, 21.1, 21.0. IR (KBr):
3296, 3109, 2953, 1641, 1530 cm−1. HRMS (ESI) m/z: [M + Na]+ calcd for C45H79N7O9Na, 884.5837;
found, 884.5874.

3.5. General Procedure for Peptide-Catalyzed Michael Addition of 1-Methylindole to α,β-Unsaturated Aldehyde

Michael adduct 23: To a mixture of (E)-4-nitrocinnamaldehyde (21; 8.9 mg, 0.050 mmol), peptide catalyst
(0.010 mmol), and benzoic acid (1.2 mg, 0.010 mmol) in THF (0.25 mL) was added 1-methylindole 22
(0.0187 mL, 0.150 mmol) at room temperature, and the mixture was stirred for the given time. To the
reaction mixture were added NaBH4 (9.5 mg, 0.25 mmol) and EtOH (0.25 mL) at the same temperature,
and additionally stirred for 30 min. After filtration via a short plug of silica gel (60% EtOAc in n-hexane),
the filtrate was concentrated under a vacuum to give crude product 23 as a white solid. Rf = 0.14 (50%
EtOAc in n-hexane). 1H NMR (500 MHz, CDCl3) δ: 8.12 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H),
7.36 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.96
(s, 1H), 4.55 (t, J = 7.7 Hz, 1H), 3.79 (s, 3H), 3.74–3.61 (m, 2H), 2.52–2.45 (m, 1H), 2.31–2.24 (m, 1H).
HPLC (Chiralpak AD-H, 10% i-propanol in n-hexane, flow rate = 1.0 mL/min): tR = 26.0 min (minor),
tR = 35.2 min (major), ee = 47%. HPLC chart is given in the Supplementary Materials.

Supplementary Materials: The following are available online, 1H and 13C NMR spectra of compounds 3, A, 4, B,
6, A’, 7, B’, 9, 11, C, 13, C’, 14, 16, 19, D, and D’; HPLC chart of compound 23.
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